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General-purpose Monte Carlo - Motivation

There is a huge gap between a one-line formula of a fundamental theory, like
the Lagrangian of the SM, and the experimental reality that it implies.




Motivation

Ilheory.

Lagrangian

Scs " DATA MAKES

Partons

NLO YOU SMARTER

Resummation

Tt doesn't matter how beautiful your theory
iis, it doesn’t matter how smart you are. If it )
doesn't agree with experiment, it's wrong. Pion S, Kaon Sy

Reconstruction
B-tagging efficiency
Boosted decision tree
Neural network

Detector simulation

Richard P. Feynman

Experiment
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Motivation

> General Purpose Monte Carlo (GPMC) event generators are designed to
bridge that gap.

Theory

Lagrangian
Gauge invariance
QCD

Partons

NLOC
Resummation

Detector simulation
Pions, Kaons, ...
Reconstruction

B-tagging efficiency
Boosted decision tree
Neural network

D
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» General Purpose Monte Carlo (GPMC) event generators are designed to
bridge that gap.

'CMS Experiment at the LHC, CERN
Data recorded: 2015-Sep-28 06:09:43.129280 GMT
Run/Event / LS: 257645 / 1610868539 / 1073

> One can think of a GPMC as a “Virtual Collider” = Direct comparison
with the data.
» Almost all HEP measurements and discoveries in the modern era have
relied on GPMC generators, most notably the discovery of the Higgs
boson. 6/68



Real vs Virtual

real life virtual reality
Machine Event Generator
LHC, Tevatron ... Herwig, Pythia, Sherpa ...
Detector, Data Acquisition Detector Simulation
CMS, ATLAS, CDF ... Geant 4 ...

~ e

Event Reconstruction
ORCA ...

A

Analysis quick and dirty
ROOT ...




General-purpose Monte Carlo event generators

(GPMC)

Monte Carlo simulations are used by all experimental collaborations
both to compare their data and theoretical predictions, and in data
analysis.

Unfortunately they are often treated as black boxes ...
J. D. Bjorken
“But it often happens that the physics simulations provided by the MC generators carry
the authority of data itself. They look like data and feel like data, and if one is not careful
they are accepted as if they were data.”
It’s important to understand the assumptions and approximations
involved in these simulations.
It is important to understand what is inside the programs to be able to
answer the following type of questions.
» Is the effect I'm seeing due to different models (important
to use more then one generator!), or approximations, or is it
a bug?
» Am I measuring a fundamental quantity or merely a
parameter in the simulation code?
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What do MC event generators do?

> An “event” is a list of particles (pions, protons, ...) with their momenta.
» The MCs generate events.

» The probability to generate an event is proportional to the
(approximate!) cross section for such an event.

» Calculate Everything ~ solve QCD (1M $ prize) — requires
compromise!

» Improve lowest-order perturbation theory, by including the “most
significant” corrections — complete events (can evaluate any
observable you want)

The Workhorses: What are the Differences?

All offer convenient frameworks for LHC physics studies, but with slightly different
emphasis:

PYTHIA: Successor to JETSET (begun in 1978). Originated in hadronization
studies: Lund String.

HERWIG: Successor to EARWIG (begun in 1984). Originated in coherence
studies: angular ordering parton shower. Cluster model.

SHERPA: Begun in 2000. Originated in “matching” of matrix elements to
showers: CKKW.
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What do parton shower event generators do?

S

physics
2012 J.J. Sakurai Prize for Theoretical Particle Physics Recipient

The 2012 Sakurai Prize is awarded to:
» Guido Altarelli (Universita di Roma Tre)
» Torbjorn Sjostrand (Lund University)
» Bryan Webber (University of Cambridge)

for key ideas leading to the detailed confirmation of the Standard Model of particle
physics, enabling high energy experiments to extract precise information about
quantum chromodynamics, electroweak interactions, and possible new physics.
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Basics of Monte Carlo Generators - art by S. Gieseke®

Parton Distribution Function - see P. Nadolsky lectures

4 e



Basics of Monte Carlo Generators - art by S. Gieseke®

Hard process (exact fixed-order perturbation theory - R. Boughezal lecture)

N =)
- v
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Basics of Monte Carlo Generators - art by S. Gieseke®

Parton Shower (Approximate all-order perturbation theory)




Basics of Monte Carlo Generators - art by S. Gieseke®

Parton Shower (Approximate all-order perturbation theory)
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Basics of Monte Carlo Generators - art by S. Gieseke®

Hadronization (non-perturbative semi-empirical models)




Basics of Monte Carlo Generators - art by S. Gieseke®
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Basics of Monte Carlo Generators - art by S. Gieseke®

Multiple tions and beam remnants




Basics of Monte Carlo Generators - art by S. Gieseke®

Literature
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Basics of Monte Carlo Generators - art by S. Gieseke®

Literature

e R. K. Ellis, W. J. Stirling, B. R. Webber
QCD and Collider Physics
Cambridge University Press, 2003

e T. Sjéstrand, S. Mrenna, P. Z. Skands
PYTHIA 6.4 Physics and Manual
JHEP 05 (2006) 026

e A. Buckley et al.
General-Purpose Event Generators for LHC Physics
Phys. Rept. 504 (2011) 145

e R. D. Field
Applications of Perturbative QCD
Addison-Wesley, 1995
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» 1stlecture

» Monte Carlo methods why and how?
» Parton Shower

v

1st tutorial

» Build your own Parton Shower (in Python)!

v

2nd lecture
» Hadronization
» Multiple Parton Interaction
» Tuning

v

2nd tutorial

» Shower uncertainties (in Python)
or

» MC@NLO/POWHEG (see Marek’s lecture) matching in
Python

3rd tutorial

v

» Real life example - work with Herwig, Sherpa and Pythia!
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Basics of Monte Carlo Generators - art by S. Gieseke®

» We want to compute expectation values of observables

(0) =22, [ duP(6n)O(n),
where ¢, - Point in n-particle phase-space, P(¢,) Probability to produce
¢n, Value of observable at O(¢y).

» large n O(100 <+ 1000) = Monte Carlo is the only choice.

®)
&»



Why they are called Monte Carlo Event Generators?

©0) =Y [ 46,2600

Problems:
> Integrate a multi dimensional function
» Pick a point at random according to a probability distribution

» Problems with “memory”, eg.:
Radioactive decay

Integrate a function

Numerical Integration: Relati rtainty One Dimension | D Dimensicns
(after n functio ) v. Rate
Trapezoidal Rule (2-point) 20 1/n? 1/n?0
Simpson's Rule (3-point) 30 1/n? 1/n4/0
Monte Carlo 1 1/n'?2 1/n'2

+ optimisations (stratification, adaptaticn), ive solutions (Markov-Chain Monte Carlo)
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Why there are called Monte Carlo Event Generators?

Wikipedia

Monte Carlo methods are a broad class of computational algorithms that rely
on repeated random sampling to obtain numerical results.

Examples:

> Buffon’s needle, 18th century by Georges-Louis Leclerc,

Calculate 7 by dropping a needle onto
the floor.
<« 34/11 ~ 3.1 based on 17 throws

» Lord Kelvin (1901) — use random sampling (drawing numbered pieces
of paper from a bowl) to aid in evaluating some integrals in the kinetic
theory of gases.

N
)



MC examples

» Enrico Fermi (1930s) — numerical sampling experiments on neutron
diffusion and transport in nuclear reactors (device FERMIAC —a
mechanical sampling device).

< S. Ulam with FERMIAC

» Project Manhattan (nuclear weapons projects) - S. Ulam, ]. von
Neumann. Name Monte Carlo refers to the Monte Carlo Casino in
Monaco where Ulam’s uncle would borrow money from relatives to
gamble

» In Particle Physics we have to solve multidimensional integrals (many
particles) MC methods very efficient! So we play roulette to understand

low of the nature :) /68



MC methods - notation

The distribution of a random variable gives the probability of a given value
(or infinitesimal range of values).
> For continuous variables we define

p(u)du = Plu < u' < u+ du,

p(u) — the probability density function (pdf) of u (gives the probability of
finding the random variable ' within du of a given value u).
> The cumulative (integrated) distribution function (cdf):

Ry = [ peotn ot = .

Note: R(u#) — monotonically non-decreasing function and 0 < R(u) < 1.
Expectation value of a function f(u'):

()= [ ruare = [ g

If u 6 u (0 1) i.e. uniformly distributed between 0 and 1, then
fo u)du Variance of a function f(u'):

V() = Elf ~ B = [ - EOPIR= E(F) - E7)

= Standard deviation: o(f) = /V(f) .

N
)



Mathematical foundations of MC methods

1. The Law of Large Numbers (LLN) Let’s choose n numbers u;
randomly with a probability density uniform on the interval (a, b), and
for each u; evaluate the function f (u;). Then, as n becomes large:

w0 = Ef) = o [

2. The Central Limit Theorem (MC precision is stochastic: 1/+/n)
The sum of a large number of independent random variables is always
normally distributed (i.e. a Gaussian distribution), no matter how the
individual random variables are distributed, provided they have finite
expectations and variances and provided n is ‘large enough’.

¢

The MC estimate is Gauss distributed around the true value with

V' V(f)/+/n precision.
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The Central Limit Theorem

In practice the CLT convergence is pretty fast. The illustration of CLT for
x €U(0,1),i=1,...,12:

1.2

1

0.8

0.6

0.4

0.2
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The Central Limit Theorem

Non-uniform random number generation

Random numbers of distributions other than uniform are usually obtained
from uniformly distributed random numbers by applying some
transformation methods.

Gaussian random number generator based on the CLT:
Letx; € U(0,1),i=1,...,n,take R, = >, x;, then:

E(x;) = 5 E(Ry) =7
V(x) = 5 }:’{ V(R,) = &

— From the above we have:

Re /2, N0, 1),

/7’1/12 n— oo

i.e. we get the standardized Gaussian random number generator.
A convenient choice for practical purposes is:

n=12 — R12—6.

Warning: The tails of the Gaussian distribution are not well reproduced by
this kind of a generator!

28 /68



Non-uniform random number generation

Inverse transform method:
Let U - uniformly distributed random number over (0,1),i.e. U € U4(0,1),
and F — some continuous and increasing cumulative distribution function.

X =F Y
is distributed according to the cumulative distribution function F(x).
Proof: P[X <x]=P[F}(U) <x]=P[U<F(x)] = F(x).

Then the random variable

Example:

Exponential distribution E(0,1) — pdf: | p(x) =e™*, x>0

= cdf: F(x) = [y e ¥dxr' =1—¢*
Letr cU(0,1): r=F(x)=1—e¢* = x=—-In(1-7),If r€U(0,1),

then 1-re(0,1) = [x=—Inr|

The method applies if both the integral of the density and its inverse
are known (i.e. practically never)

29 /68



Non-uniform random number generation

Rejection (hit-or-miss) method (von Neumann, 1951):
(Solution, if F~! is unknown.)

» Builds on “over-estimator” g(x) (G and G~! known):
8(x) > f(X)Vx € [Xmin, Xomax]

» Select an x according to ¢ (using inverse transform method)

> Accept with probability f(x)/g(x) (with another random number)

Hit and miss Importance sampling
8(x) = Maxpy, . xelf (X) (Improved hit-and-miss)
Y Y

4

fmax 5
Yo N .\\\ ted -

N

n pted Y1 A
0 : . x 0-

Zmin T Tmax
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Branching algorithms

Let: oo
flx) = Zpigi(X),

where: p; — density of some discrete distribution, i.e. p; > 0, >, pi =1;
gi(x) — some continuous pdfs.

Generation scheme:

A. Generate a number i according to the density p;, e.g. using the inverse

transform.

B. For a given value i, generate X according to the pdf gi(x).

Polynomial probability density functions

n n
i . G _
f(X)=;cix, 0<x<1, 620, 3 —5=1.

i=

S

> A. Generate the index i € {1,2,...,n} according to the pdf p; = e

> B. For a given value i generate X according to the pdf (i + 1), e.g. using
the inverse transform method: X = U (Y, where U € 14(0, 1).



Branching algorithms

The simple branching method:
f0) = S5 piain) |

Branching and rejection:

f0) = S5 pifi)|

@ rejection loop

[ g0 | |20 ] [ g |
NO
> Un >—p>|
NO >
w > Uw® NO U:g:S e >
f()yYES fa(X)y £ (X)y

f(x)




Radioactive decays

N(t) = number of remaining nuclei at time ¢, normalized to N(0) = Ny = 1, so
N(t) = probability that (single) nucleus has not decayed by time ¢
P(t) = dN(t)/dt = probability for it to decay at time ¢.

N(t)

Nyg

» No memory (wrong):
P(t)=c=N(t)=1—cta
nucleus can only decay once!

» Correct (with memory):
P(t)=cN(t) = N(t) =e™@

<



Veto algorithm

For radioactive decays P(t) = cN(t), with ¢ constant,
but now generalize to time-dependence:

~dN(t)

P =——5

=f(t)N(t); f(t)>0

Standard solution:

W) _ conen) s % — d(In N) = —F(t) dt

it
InN(t)—InN(O):—/tf(t')dt/ s N(E) = exp (—/tf(t')dt'>
0 0
F(t):/ FE)AE —s N(t) = exp (—(F(£) — F(0))

Assuming F(o0) = oo, i.e. always decay, sooner or later:

N(t)=R = t=FYF(0)-InR)



Veto algorithm

What now if f(t) has no simple F(t) or F~17?
Hit-and-miss not good enough, since for f(t) < g(t), g “nice”,

t=G1(G0O0)—InR) = N(t)=exp (— /Otg(t')dt')

piy=-2 exp(— / tg(t')dr')

and hit-or-miss provides rejection factor f(t)/g(t), so that

P(t) = f(t) exp <_ /Otg(t’)dt’>

(modulo overall normalization), where it ought to have been

P(t) = f(t) exp (— /Ot f(t’)dt')



Veto algorithm

The veto algorithm

1 start with/i=0and tp =0
2 i=i+1

3 ti=GYG(ti1) —InR),iet; >t
4 y=Rg(t)

5 while y > f(t) cycle to 2

to t1 totz t=14

That is, when you fail, you keep on going from the time when you
failed, and do not restart at time t = 0. (Memory!)
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Veto algorithm

Study probability to have i intermediate failures before success:
Define Sg(ta, tp) = exp (— é" g(t’)dt’) (“Sudakov factor")

Po(t) = P(t =t1) = g(t) S¢(0, 1) % = f(t) Sg(0, t)

Pi(t) = P(t = t)
o f(1) (1)
=, dt1 g(t1)Sg(0, t1) (1— g(t1)> g(t) Sg(tl,t)m
— £() $5(0,1) /0 dty (g(t1) — F(t2)) = Po(t) lg_r

Paft) = -+ = Po(t) | "4t (g(t) - (1)) / "4t (g(ts) - f(12))

- Au(e) [ "ty (g(t) - (1)) / dta (g(t2) — F(£2)) Otz — 1)
t 2
= rutt) 3 [ an et - () = Pote) 3 2



Veto algorithm

[
’ 1 =12
Generally, i intermediate times
corresponds to /!
" equivalent ordering regions.
\‘
1
0 tl P(t)_PO()|gf
0 t

P(t) Z Pi(t) = Po(t Z /7 = Po(t) exp(lg—r)

~ (- [ s )dtf> o ([ (e(t) - i)t
= f(t) exp( dt’)



MC methods summary

» Why? Very efficient when we have large n dimensional integrals and
complex boundaries of integration < Many particles and complicated
cuts.

» How?

» Formally, the Monte Carlo method is based on two basic
theorems of the mathematical statistics: the Law of Large
Numbers and the Central Limit Theorem.

» Pick a point at random according to a probability
distribution:

» Inverse transform. Limitation: we need to know F~1.

» If we don’t know F' - Hit and miss more efficient version of
it importance sampling

» Branching algorithm

» Memory - Veto algorithm
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Parton Shower and hard process
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Parton Shower

» The hard subprocess, by definition, involves large momentum transfers
and therefore the partons involved in it are violently accelerated.

» The accelerated coloured partons will emit QCD radiation in the form
of gluons leading to parton showers.

» In principle, the showers represent higher-order corrections to the hard
subprocess. However, it is not feasible to calculate these corrections
exactly. Instead, an approximation scheme is used, in which the
dominant contributions are included in each order.

» These dominant contributions are associated with collinear parton
splitting or soft (low-energy) gluon emission.

» The conventional parton-shower formalism is based on collinear
factorization

b

e

41/68



Parton Shower and hard process

Exact —

<—— Approximate

in i
ner jet Structure

S. Hoche®©
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Parton Shower and hard process

Hadron

t-quark Photon 1~ -lepton

u(p1)
g
(p1+p2)*+ie
—ieQu —ieyy
93T
i) ()
fa(k)
u-quark Gluon p*-lepton

The hadronic cross section is
| M(ui — ptpg)|* dnis

41/ (ppv)?

do(pp = p " g+ X) = dxdxf(x, t)fy (e, t)ds , d& =

S. Prestel©



Parton Shower and hard process

Hadron

a-quark Photon /1~ -lepton

fo(p, 1)

vi(py) u(p1)

—ighv

p1tp2) Fie

—ieQus

v(p2)

fa(k)

u-quark Gluon 4t -lepton

E(y—k) ~ zE, and small gluon p, = Interal quark almost on-shell. Then:

l(E — ;é) ~ u(pa)ﬁ(pa) d‘bn+1 ~y d<1>,, d¢dldp2l

1 z
-k~ ’ 42m)P(1 =20 7 4\ /(op)? 4/ (papn)?
= Matrix element, phase space integration and flux factors factorise!

S. Prestel®©
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Parton Shower - outline

ete” annihilation to jets
Universality of collinear emission
Sudakov form factors
Universality of soft emission

Angular ordering

AR S

Dipole cascades



ete” annihilation to jets

PS is process-independent, however lets start with simple example:
(see also Tutorial 1)
» Consider ete™ — 3 partons

1 dozss o Qs 2 14 (1—2)?
o2_s9 dcosfdz o sin26 z

0 - angle of gluon emission
z - fractional energy of gluon
» Divergent in
> Collinear limit: 8 — 0,7
> Soft limit: z — 0
» Separate into two independent jets

2dcosf  dcosf dcosf  dcosf dcosf Nd92 de?
sin20 1—cosf®  1+cos® 1—cosf 1—cosh 62 02

» Independent jet evolution

sdf2 14 (1—2)2
dg3NUQZCF%gTdZ%Z)

jets

It starts to look like we can iterate it!
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Universality of collinear emission

» Same equation for any variable with same limiting behavior

» Transverse momentum k% = 2%(1 — 2)%6*E?

» Virtuality t=2(1-— 2)02E2
» Call this the “evolution variable”

de? dk% dt

—=—L=— “ collinear divergence
02 K2 ¢

» Absorb z-dependence into flavor-dependent splitting kernel P,;(2)

= 1+ 22 z 1+ (1-2)?

& _

\*CFI—Z =Bl g
5 = 2 — )2 D _ Z 1-=z _
mm< Tr [+ (1 - 2)?] % CAsz —Z +2(1-2)

» Universal DGLAP evolution equation emerges

dopt1 ~ on Z —dz —5 (2)

jets

We know where the divergence comes from and that it is universal, but not
how to tame it!
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Resolvable partons- Taming the divergence

What is a parton?
» Collinear parton pair <= single parton
» Introduce resolution criterion, e.g. kr > Qo

» Combine virtual contributions with unresolvable emissions: Cancels
infrared divergences (Kinoshita-Lee-Nauenberg, Bloch-Nordsieck
theorems)

» Instead of calculating it use the Unitary:

P(resolved) + P(unresolved) = 1

48 / 68



Sudakov form factor

Probability (emission between ¢* and ¢* + dg):

1-Qo /¢ 2
dp= = dzP(z) = dizp(qz)
2 Qo/4? q

Define probability (no emission between Q? and %) to be A(Q?, ¢%).
We have evolution equation:

dA(szqz)_ 2 2y, 2dP

dg? =A(Q%, 9 )dq diqz

2 2 ko o

M@ =exp— [ FPE)
q2

We know how to deal with it — Veto algorithm!

AQ% ) = A(QY)
Sudakov form factor = Probability (emitting no resolvable radiation)

2 o~ O sz
A(Q7) ~exp szﬂlog o

49 /68



The soft limit and QM interference

Apart from collinear divergence, there is also a soft divergence: Also
universal. But at amplitude level...

Soft gluon comes from everywhere in event — Quantum interference
Spoils independent evolution picture?
NO!

Outside angular ordered cones, soft gluons sum coherently: only see colour
charge of whole jet.
Angular ordering!
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Angular ordering

The differential cross section for e~ — ggg expressed in terms of the QCD
“antenna” radiation pattern

dw dQ

1- Oz
d0'3 =doy; — — Cr Wg <08 o
w 2w

(1 — cos ) (1 — cosbBzg)

7 where Wy =
QM interference between gluon emission off quark! How can soft emissions
be independent??

We can split the antenna W,; into two parts, W;g) and W;g), which are
divergent only if the gluon is collinear to the quark / antiquark:

Wi = WD+ WP

1 1 1
P where W;g) = 5 <qu+ ) .

1T—cosfy 1— cosby
Upon azimuthal integration, we obtain:

1
débyg WO = § 1 —cosby

2 qq

if qu < Hqﬁ
0 else

That’s angular ordering! Soft emissions are independent if ordered in
emission angle!
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Radiation from parton i is Results in angular ordered
bound to a cone, given by the parton shower and suppresses
colour partner parton j. soft gluons viz. hadrons in a jet.

52 /68



Parton Shower - angular ordering

Events with 2 hard (> 100 GeV) jets and a soft 3rd jet (~ 10 GeV)

X

(a) (0)
— HERWG _ISAJET

S
S °
S s
3 2
T T
T
E
&
‘0
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§ . )
H e
2o . | | L |
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+
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s

FIG. 13. Observed 73 distribution compared to the predic-
tions of (a) HERWIG; (b) 1SAJET; (c) PYTHIA; (d) PYTHIA+.

F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.
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Initial state parton shower

In principle identical to final state (for not too small x)
In practice different because both ends of evolution fixed:

AN VS. _.

Problem: Forward evolution not very efficient.

Solution: Backward evolution.

Formulate as backward evolution: start from hard scattering and work down
in qz, up in x towards incoming hadron.

Algorithm identical to final state with A;(Q?, 4%) replaced by

A(Q ) [fi(x, 1)
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Parton Shower - Not at all unique!

Some (more or less clever) choices still to be made.
Standard shower language of @ — bc successive branchings

g g q
q_@ g'mmw‘sgg g'zmm~<
q 9 q

g evolution variable can be 6 (Herwig), Q*(old Pythia), p., ...
Choice of gin scale not fixed.

Integration limits, available parton shower phase space.
Massless partons become massive. How?

vyvYyVvyy

Initial-state showers to increase the Monte Carlo efficiency the
backward evolution is used.

Dipole shower: dipole splittingisa2 — 3

In this framework one can get the correct logarithmic structure for both soft
and collinear emissions without angular-ordering requirement. First
ARIADNE, now also available in SHERPA, Herwig++, VINCIA.



Dipole Shower

g g
. g
Pe———— _
» g q q q
q
Alternative: dipole picture (first Ariadne, now everybody else).
2 — 3 parton branching, or 1 — 2 colour dipole branching.
Can be viewed as radiator a — bc with recoiler r.
In the soft limit, we found:
dw d2 1 — cos 0,7
doyyr =doy [ ——Cp D Wy, where Wy = 1 .
w 2w 7 (1 — cos Ogg) (1 — cos Ogg)

We could have directly used Wj; as splitting probability (QCD antenna), or partitioned cleverly (QCD dipole).

pipk 1 PiPk 1 Pk
(ip))(jpk) — pivj i +p0p;  pepy (Pi + PiP;

In a parton shower, they are mostly used in their spin-averaged form, which reads

Vhgg Gow) = x| —a+3],

2
1—-2(1—vy)
1 1
o + p
1-21-y) 1-01-9)01-y)
See Tutorial 1. Two advantages over 1->2 parton showers
a) The soft limit of QCD is described in a more natural way, and

Vg &y) = 2CA[ —24%1 - z)] .

b) Momentum conservation is simpler (recoil particle). 56 /68
20/ 66
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Parton Shower: Initial State:

ATLAS: arXiv:1107.2381, CMS: arXiv:1110.4973

P1(Z) ~ Z P(d)

jEjets

ISR

ISR

Particularly sensitive to
|. & renormalization scale choice
2. Recoil strategy (color dipoles vs global vs ...)
3.FSR off ISR (ISR jet broadening)

Non-trivial result that modern GPMC shower
models all reproduce it ~ correctly

Note: old PYTHIA 6 model (Tune A) did not give correct
distribution, except with extreme g choice (DW, Dé, Pro-Q20)
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Parton Shower: Final State
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(Also larger UE uncertainties)

o

Issue for WBF? &
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Parton Shower: Study of Jet Substructure in pp Collisions at 7 TeV in CMS

Jet pruning/filtering designed to isolate new physics through hard internal
jet structure but also a good probe of final state parton shower.
[CMS-PAS-]ME-10-013]

Leading jet pruned jet mass and
“mass drop” (ratio of masses of highest pr subjet to full jet)
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Parton Shower: non-perturbative component

One example: “Non-perturbative gluon emission model”
Primordial kr from soft, non-perturbative gluons
Allow for very soft gluon radiation (all cutoffs, masses — ).

07 : T ; o 06 r 012 r r
E605-5-00-075 R209-5-00-075 H{ TVT-5-00-075
MC C MC
06 - { { data —— ] 05 F { data —— - o1 | { { data —— |
05 F { i } Bl { } {
} 04 F - L a
0.08
04 4 { }
i 03 g HH
i 0.06 B
03 g { i
t i 02 q i ! 1
02 ; q 0.04 1 }ﬁ“ 7
0 SR By 1 b
i
2 i3 } 002 | ii .
1 T T % 1 T i T { { T 1 ¢ =
T T T
¥ =084 x? =061 x? =059
_ exp err “xp err exp err
05 f MCD)yD . 05F MCD)/D . | 05F (MC-D)/D o
0 - 0 4 0 -
0 4 05 4 sh Bl
-1 I I I I I I I 0 I I I I L] 3 I I
0 05 1 15 2 25 3 35 0 1 2 3 4 5 0 5 10 15 20
pL/GeV pL/GeV p1/CeV

Get good description of DY pr spectrum (38.8, 62 and 1800 GeV) using only small
Gaussian primordial kr ~ 0.4 GeV , (allowed by Heisenberg), not > 2 GeV.

[S. Gieseke, M. Seymour, AS, JHEP 06 (2008) 001]
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Quark and gluon jet discrimination ATLAS gur. phys.J.c

(2014) 74]

Cartoon:

Quark:Cr=4/3 vs. Gluon:Ca=3
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”...A detailed study of the jet properties reveals that quark- and gluon-jets look

more similar to each other in the data than in the Pythia 6 simulation and less
similar than in the Herwig++ simulation. As a result, the ability of the tagger to

reject gluons at a fixed quark efficiency is up to a factor of two better in Pythia 6 and

up to 50% worse in Herwig++ than in data...” 61/68



Parton shower - developments

Herwig 7
» New parton shower variables in Herwig++ (still angular-ordered).
» Dipole shower, based upon Catani-Seymour dipoles.

Sherpa

» Catani-Seymour Shower default by now, also matched via CKKW (see
later). New shower: DIRE

Pythia 8
» p. ordered shower based on dipole showering. VINCIA (plugin), New
shower: DIRE (plugin)
» Interleaved with Multiple partonic interactions.

IR Safe Summary (ISR/FSR):

» LO showers generally in good 0(20%) agreement with LHC
(modulo bad tunes, pathological cases)

» Room for improvement: Quantification of uncertainties is still more art than
science. Recent progress by all generators.

» Bottom Line: perturbation theory is solvable. Expect progress for example:
NLO Parton Shower - Cracow group S. Jadach at al., S. Prestel and S. Hoche, P.
Skands ...
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Parton-shower uncertainties - example Herwig 7

[Bellm, Nail, Platzer, Schichtel, AS; Eur.Phys.]. C76]

Higgs boson rapidity Z boson rapidity
g T w03
= 5 E
3 Ty
Herw —— LO®PS 10 Herwig 7 —— LO®PS
. —— LO @ Dipoles N pp—Z —— LO @ Dipoles
L‘O ® : ,J,, : s E — 07 —
| <
2oR s e HQ N O5E e s = Jj
E —= O Dipoles [T B — LO & Dipoles Wi
o AL I Wk AT CESSL e
-4 -2 o 2 4 6 -6 -4 -2 o 2 4 6
) e
Two Parton Showers: Up/Down Variations of:
> Angular-ordered Parton Shower > - argument of PDF, as in hard
(PS) matrix element
> pr-ordered Dipole Shower > s - argument of PDF, as in the
shower

1o - shower starting/veto scale

L - shower cutoff
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Parton-Shower Reweighting

Run-time improvement via parton-shower reweighting

[Bellm, Platzer, Richardson, AS, Webster, Phys.Rev. D94 (2016)]

Transverse momentum of Higgs boson in pp — gg — H, v/S = 13 TeV

—— Dipole

—— Dipole

7
—— A0 (o pur) —— Dipole (. 4

i
]

1 10*

1 10*

107 10%
(1) [GeV] P (1) [GeV]

> excellent agreement between individual runs for different scales and
reweighting

» significant speed improvements: time in seconds for 10 000 events

Shower | Hadron- No MPT
ization MPI Primary All
& Decays | Direct Reweight Frac. Diff. | Direct Reweight Frac. Diff. | Direct Reweight Frac. Diff.
AO Off 79.8 94.2 -0.18 384.4 249.1 0.35 416.7 375.1 0.09
On 183.2 128.3 0.30 738.7 364.3 0.51 751.4 482.3 0.35
Dipole Off 99.6 52.8 0.47 435.4 161.9 0.63 462.7 213.6 0.54
On 271.8 108.2 0.60 831.7 286.6 0.65 859.2 340.1 0.60
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» In order to provide fully exclusive modeling of high-energy collisions
we have to solve multidimensional integrals (many particles) - MC
methods very efficient!

» Accelerated colour charges radiate gluons.Gluons are also charged —
Parton Shower cascade

» Modern parton shower models are very sophisticated implementations
of perturbative QCD

» but would be useless without hadronization models...
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Thank you for your attention!



PS veto algorithm in details

v

Start with set of n partons at scale ¢/, which evolve collectively
Sudakov form factors factorize, schematically

At t) =[] Aut.t) At t)= [] Aisitt)
=1 J=49
» Use veto algorithm to find new scale ¢t where branching occurs

Generate ¢ using overestimate ag ™ P, (2)
Determine “winner” parton i and select new flavor j
Select splitting variable according to overestimate
Accept point with weight as(k2)Pap(2) /al® PR (2)

Construct splitting kinematics and update color flow

v
vyvvyVvVvy

v

Continue until ¢t < ¢,



Backward evolution

Q2
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