Jets

Davison E. Soper University of Oregon

CTEQ School, Pittsburgh, July 2017

What are jets?

• Denote angles in the detector by azimuthal angle ϕ pseudorapidity $\eta = -\log \tan(\theta/2)$

• Lego plot event display.

 ϕ

• An Atlas event.

• Sometimes there are more jets.

- The P_T is concentrated in a few narrow sprays of particles.
- These sprays are called jets.
- In this event, there are two jets.
- Events with big $\sum_{i} P_{T,i}$ are rare.

Why are there jets?

- Here is a Feynman diagram for quark-quark scattering, with additional radiation.
- Diagram has a factor $1/(p_1 + p_2)^2$.

- If $p_1 \to 0$, then $1/(p_1 + p_2)^2 \to \infty$.
- If $p_2 \to 0$, then $1/(p_1 + p_2)^2 \to \infty$.
- If $p_2 \to \lambda p_1$, then $1/(p_1 + p_2)^2 \to \infty$.
- So probability is big to get a spray of collimated particles plus some low momentum particles at wide angles.

Prediction pre-QCD

- Bjorken, Berman and Kogut (1971) had it figured out before jets were seen and before QCD.
- "... the isolated high P_T partons will communicate with the 'wee' partons by cascade emission of partons."

FIG. 4. A momentum-space visualization of hadronhadron deep-inelastic scattering occurring in three steps.

Electron-positron to hadrons provided early evidence

- The PETRA

 accelerator (DESY)
 had enough energy to
 make jets clearly
 visible.
- The PETRA

 experiments had 4π
 detectors, so that one
 could be convinced
 that two and three jet
 events existed with
 single event displays.

from G. Wolf, Multiparticle Conference, 1983

Renormalization of the QCD coupling

- At each vertex in a diagram, there is a factor g.
- $g^2/(4\pi) = \alpha_s$.
- Consider a diagram in which momenta are of order Q.

- We can add loop diagrams with $\int d^4k \cdots$.
- For some loop diagrams, $k^2 \gg Q^2$ is important.

• Surprisingly, we can (approximately) omit these loop diagrams if we simply adjust α_s .

• Then the value of the effective α_s depends on Q.

• Result of renormalization group analysis (M = cutoff scale).

$$\begin{aligned} \alpha_s(Q) &\sim \alpha_s(M) - (\beta_0/4\pi) \log(Q^2/M^2) \ \alpha_s^2(M) \\ &+ (\beta_0/4\pi)^2 \log^2(Q^2/M^2) \ \alpha_s^3(M) + \cdots \\ &= \frac{\alpha_s(M)}{1 + (\beta_0/4\pi)\alpha_s(M) \log(Q^2/M^2)} \\ &= \frac{\alpha_s(M_Z)}{1 + (\beta_0/4\pi)\alpha_s(M_Z) \log(Q^2/M_Z^2)} \end{aligned}$$

• Note that $\alpha_s(Q)$ decreases as Q increases.

Running can be tested

• Plot value of $\alpha_s(Q)$ determined from experiments at scale Q.

Plot from Review of Particle Physics (2016)

Alesson

• Perturbation theory, an expansion in powers of $\alpha_s(Q)$, is not reliable unless Q is large.

Jet cross sections

• Consider, for example, the one jet inclusive cross section

 $\frac{d\sigma}{dP_T \, dy}$

- P_T = transverse momentum of the jet y = rapidity of the jet $\approx -\log \tan(\theta/2)$
- Here "inclusive" means that the event has one jet with P_T, y plus anything else.
- One can also look at Z-boson + two jets, missing P_T plus jet, ...

• A result from Atlas.

• Note ten orders of magnitude variation in cross section at one |y|.

• Approximate agreement of theory and experiment means no new-physics effects are seen to 2 TeV.

We need a jet definition

• Otherwise, jets are ambiguous and we cannot define a cross section.

• How many jets are there here?

The definition must be infrared safe

• What jets we measure must not depend on small Q^2 physics.

- Suppose $p_2 \approx 0$ and p_1 is almost collinear with p_3
- Then the Q^2 for the two splittings shown is small.
- The corresponding $\alpha_s(Q)$ couplings are large.

• Perturbation theory breaks down.

Infrared safety

- We construct jets from particle momenta $\{p_1, p_2, \ldots, p_n\}$.
- We get N jets with momenta $\{P_1, P_2, \ldots, P_N\}$.

- If any p_i becomes very small, we should get the same jets by leaving particle *i* out.
- If any two momenta p_i and p_j become collinear, we should get the same jets by replacing the particles by one with momentum $p_i + p_j$.

What does IR safety mean?

 The physical meaning is that for an IR-safe quantity, the physical event with hadron jets should give approximately the same measurement as a parton event.

• It also means that in a Monte Carlo simulation (to be discussed later) the hadronization model and the underlying event model should not much matter.

Two kinds of jet algorithms

There are two kinds of algorithms for defining jets:
 *cone algorithms

*successive combination algorithms

- Both can be infrared safe.
- I will discuss just the successive combination algorithms.
- These trace back to the JADE collaboration at DESY.

- Choose a resolution parameter R.
- Start with a list of protojets, specified by their p_i^{μ} .
- Start with an empty list of finished jets.
- Result is a list of finished jets with their momenta.
- Many are low p_T debris; just ignore these.

1. For each pair of protojets define

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2$$

For each protojet define

$$d_i = p_{T,i}^2$$

2. Find the smallest of all the d_{ij} and the d_i . Call it d_{\min} 3. If d_{\min} is a d_{ij} , merge protojets *i* and *j* into a new protojet *k* with

$$p_k^{\mu} = p_i^{\mu} + p_j^{\mu}$$

4. If d_{min} is a d_i, then protojet i is "not mergable." Remove it from the list of protojets and add it to the list of jets.
5. If protojets remain, go to 1.

Example

$$\begin{aligned} \mathbf{d}_{ij} &= \min(p_{T,i}^2, p_{T,j}^2) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2 \\ \mathbf{d}_i &= p_{T,i}^2 \end{aligned}$$

Infrared safety of this

- Suppose $p_j \to 0$.
- Then when it merges with another protojet,

$$p_k = p_i + p_j \to p_i$$

- If it never merges, then it just remains as a low p_T jet at the end.
- Suppose $p_i = \lambda p_j$.
- \bullet Then protojets i and j are merged at the start to

$$p_k = p_i + p_j$$

Why the name?

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2$$

is essentially

$$d_{ij} = k_T^2 / R^2$$

The "no merge" condition

• Suppose $p_{T,i}^2 < p_{T,j}^2$.

 η

$$\begin{aligned} \mathbf{d}_{ij} &= \min(p_{T,i}^2, p_{T,j}^2) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \right] / R^2 \\ \mathbf{d}_i &= p_{T,i}^2 \end{aligned}$$

• Protojet i is not mergable with parton j if $d_{ij} > d_i$. That is if

$$[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2] > R^2$$

Why the no merge condition

- There will be many soft jets.
- They should not merge into a few giant jets.

Example with k_T

- Here is an example event from Cacciari, Salam, and Soyez (2008).
- With the k_T algorithm, we see what detector area goes into each jet. The area is irregular.

- The graph of parton joinings (read right to left) can be thought of as a graph of parton splittings (read left to right) in a parton shower.
- If we use the k_T jet algorithm, then the parton splittings go from harder (high k_T) to softer (low k_T).
- Beware: the same final state can be generated in many different ways in a parton shower.

The Cambridge-Aachen algorithm

- This is a variation on the general successive combination plan.
- Use $d_{ij} = [(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2]/R^2$ $d_i = 1$
- Thus only angles count.
- Keep everything else the same.

Example with C-A

- Here is the same example event from Cacciari, Salam, and Soyez (2008).
- With the Cambridge-Aachen algorithm, we see what detector area goes into each jet. Jets are irregular.

The anti- k_T algorithm

- This is another variation on the general successive combination plan.
- Use

$$\begin{aligned} \mathbf{d}_{ij} &= \min\left(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}\right) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2\right]/R^2\\ \mathbf{d}_i &= \frac{1}{p_{T,i}^2} \end{aligned}$$

• Keep everything else the same.

$$\begin{aligned} \mathbf{d}_{ij} &= \min\left(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}\right) \left[(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2\right]/R^2\\ \mathbf{d}_i &= \frac{1}{p_{T,i}^2} \end{aligned}$$

• This puts protojets together in an order that is nothing like the order that any shower Monte Carlo would generate splittings.

• The highest P_T protojet has priority to absorb nearby softer protojets (out to radius R).

Example with anti- k_T

- Here is the same example event from Cacciari, Salam, and Soyez (2008).
- With the anti- k_T algorithm, we see what detector area goes into each jet. High P_T jets are round.

Conclusions

- QCD gives us jets.
- Jets are seen in experiments.
- To measure jet cross sections, you need a careful definition of a jet.
- The definition needs to be infrared safe.
- Definitions typically use an angular size parameter R.
- The conceptually simplest kind of definition successively combine small protojets into bigger ones.