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pp collisions… 
 
How to measure a cross section? 
 
Single-boson production: 
 Importance of various kinematic variables 

 Orders and generators  
 V+jets, γ+jets 
 W,Z production vs η & impact on PDFs  
 Z-production angular coefficients  
 W mass 

 
Top-quark production and decay: 
 Comparisons at different √s 
 dilepton ttbar  
 single top  
 W polarisation in ttbar (Wtb vertex) 
 top mass from dilepton 

Multiboson production: 
 diboson cross sections: WZ, ZZ 
 aTGCs: WZ, WW, Zγ   
 aQGCs: WWW, Zγγ  
 vector-boson scattering 
 

Lots of pedagogical back-up slides… 
 How to measure lumi, definitions, pileup, 

MB, UE… 





SINGLE W, Z, γ  
PRODUCTION 
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Parton distribution 
functions f of the 
proton (pdf) 
x1,x2 = momentum 
fraction of partons 10-4          1 x2 

xuv u 

Thanks to: 
desy.de, hepdata.cedar.ac.uk 
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Parton distribution 
functions f of the 
proton (pdf) 
x1,x2 = momentum 
fraction of partons 

Z/γ* 

q,g 

10-4          1 x2 

xuv u 

σ=∑ ∫𝒅𝒅𝟏𝒅𝒅𝟐  
𝒇𝒂(𝒙𝟏, 𝑸𝟐)     σ�𝒂,𝒃,𝒌(𝒙𝒂, 𝒙𝒃)𝒂,𝒃,𝒌       

𝒇𝒃(𝒙𝟏, 𝑸𝟐) 

Hard scattering σ� for kth 
sub-process between 
partons of flavour a and b 

q q 

Z/γ* g 

(+ other 
diags…) 

Thanks to: 
desy.de, hepdata.cedar.ac.uk 

Via hard scatter, can test perturbative QCD (pQCD) between initial, final states 
Z balances the hadronic system 

e.g. gluon hadronises/showers to jet of particles 
                     

Perturbative QCD Legal disclaimer: always some (small) 
component of γ in the Z sample… 



Global fits to extract PDFs 
 DY production at LHC probes PDFs in the region x ≈ 10-4-10-1 and Q2 ≈ 5x102-106 GeV2 

 Feed e.g. W±, Z/γ*, W+charm cross section information into global fits to extract PDFs 
 All data have differing sensitivity to different aspects of the proton’s PDFs.  
 EW boson production sensitive to valence and sea quark distributions 
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Result: e.g testing 
relationship between 
strange and down sea 

Rapidity y 
(related at LO to momentum fraction x) 

𝑍~ 0.29 𝑢𝑢� + 𝑐𝑐̅ + 0.37(𝑑𝑑̅ + 𝑠𝑠̅ + 𝑏𝑏�) 

𝑊+~ 0.95 𝑢𝑑̅ + 𝑐𝑠̅ + 0.05(𝑢𝑠̅ + 𝑐𝑑̅) 
𝑊−~ 0.95 𝑑𝑢� + 𝑠𝑐̅ + 0.05(𝑑𝑐̅ + 𝑠𝑢�) 

Parameterise PDFs: 
xg(x) = AgxBg(1-x)Cg+… 
xuv(x)= … 
xdv(x)= … 
xu(x) = ... 
xd(x) = … 
xs(x) = … 
xs(x) = … 

x 

Eur.Phys.J. C77 (2017) 367 



Truth (fid.) 
    Reco 

Cross section 
methodology 

 Experiments select events that enhance the physics signal that they want to measure 
 W: 1 prompt, energetic, isolated charged l + ν giving rise to ET

miss:       W → lν 

 Z: 2 prompt, energetic , isolated charged l, same flavour, opposite sign: Z → l+l- 

Leptons reconstructed within pseudorapidity η and transverse momentum pT ranges 
afforded by the detector  
 Fiducial phase space e.g. requirements on: 

 pT,l, ηl, pT,ν, mT
W, mll 

 Measurements reported (to the world) in fiducial or full phase-space 
 Use simulation to unfold data from “reconstruction” to “truth” level 
 Correction factor: reconstruction → truth level in fiducial region 
 Acceptance: truth fiducial region → full truth phase-space 
Cross-section measurement reported at one or more levels: 
 Born, bare, dressed: 
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 Anatomy of a cross section: simple sketch    
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# cand. evts # bkg evts 

Integrated lumi  

C: correction factor from reco to fiducial 

C = Expected # evts passing selection at reco
Expected # evts passing selection at truth 

 

A: acceptance factor from fiducial 
to full phase space (entirely from 
truth info and so can have 
considerable theory uncertainties) 

C includes MC-to-data correction factors (with 
uncertainties) for object reconstruction, 
identification, triggering, etc… as well as 
(usually small) theory uncertainties associated 
with going from reco to truth. 

σ 

Going to differential cross sections in 1D, 2D 
etc… Important to think about the correlations 
in the uncertainties between the variables 

dσ
dx ,  d2σ

dxdy
, … 



Properties of the LHC 

Luminosity L: ratio of the number of events detected N within a time t to the interaction cross-
section σ: 
 
L depends on the beam parameters 
 Nb= number of particles per bunch ≈ 1.15 x 1011 protons  
 nb = number of bunches per beam ≈ 2800  

 26659 m/7.5 m between bunches = 3550 bunches but need extra room to insert 
bunches etc… so effectively 2800 

 fr = revolution frequency of the accelerator ≈ [26659 m/3x108 m/s]-1 ≅ 11245 Hz 
 Parameters related to the size of the beam in the transverse plane 
At full LHC design: 
 Centre-of-mass energy of 14TeV 

 Run 1: 7TeV (2010/1), 8TeV (2012)  
 Run 2: 13TeV (2015-17) 

 Collisions every 25 ns 
 50 ns (2010-12), 25 ns (2015-17) 

 Peak luminosity of L=1034 cm-2s-1 

Integrated luminosity ∫Ldt so far: 
 0.04fb-1 (2010), 5fb-1 (2011), 20fb-1 (2012), 3fb-1 (2015) , 33fb-1 (2016), 2017 ongoing 10 
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V (=γ, W, or Z) production 

 At born level, V has nothing to recoil against in the transverse plane 
 V produced with no transverse momentum pT 

 
 
 
 
 
 

 
 At one gluon emission (order αs), V recoils against hadronic products 

 V produced with transverse momentum! 
 
 
 
 
 

 
 

 
 V pT tells us something about the hard interaction! 11 

Born-level 

    V 

* 

Annihilation                      Compton 
             (also other diagrammes…) 

V 

q,g 

Jet of particles 

http://www.google.ca/url?sa=i&rct=j&q=feynman+diagram+z+boson&source=images&cd=&cad=rja&docid=4Uh8HfNdoQjOAM&tbnid=uuS2kpQPNT6sRM:&ved=0CAUQjRw&url=http://home.fnal.gov/~rruiz/FeynLib/&ei=OmFTUfXfN-PqyQGvwICICg&bvm=bv.44342787,d.aWc&psig=AFQjCNFEYQnBlow_SxaFw8mNmwdRGtVzDA&ust=1364505144055341


Z/γ*: pT, mll 
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 Low pT
ll: region of ISR 

and intrinsic kT of 
partons  

 modeled through soft-
gluon resummation (e.g. 
RESBOS NNLL) or parton 
showers (e.g. PYTHIA) 

 High pT
ll: region 

dominated by radiation of 
high pT gluons 
 Sensitive to gluon 

PDF 
 Modeled with fixed-order 

calculations like FEWZ@ 
NNLO or generators like 
POWHEG 

JHEP02(2017)096 
EPJC75 (2015)147 

Near Z pole  
mll=60-120GeV 
  (1/σ) dσ/dpT

ll 

, 

mll=15-2000GeV 
dσ/dmll 

* 

 Low-mass DY: dominated 
by EM coupling of γ* to qq� 

 
 
 

 Different sensitivity to u, 
d-type qq� than on peak 
 Probe for PDFs 

 

 Peak region and above 
dominated by Z, γ* 
coupling to qq� 
 Probe for PDFs 

 
 
 

 High-mass DY shape can be 
modified by new physics 

Z → l+l- 

http://www.google.ca/url?sa=i&rct=j&q=feynman+diagram+z+boson&source=images&cd=&cad=rja&docid=4Uh8HfNdoQjOAM&tbnid=uuS2kpQPNT6sRM:&ved=0CAUQjRw&url=http://home.fnal.gov/~rruiz/FeynLib/&ei=OmFTUfXfN-PqyQGvwICICg&bvm=bv.44342787,d.aWc&psig=AFQjCNFEYQnBlow_SxaFw8mNmwdRGtVzDA&ust=1364505144055341


Hard  
scatter 

Underlying  
event 

Parton distribution 
functions 

Jet Jet 

V (W, Z, γ) 

Probing QCD with V+jet production 
• Hard scatter (matrix element, ME) 
• Parton shower (PS), matching to ME 
• Fragmentation to jets 
• Jet composition/dynamics 
• Multiparton interactions (MPI) from 

underlying event (UE) 
• Parton distribution functions (PDF) 

Jet 

Fragmentation: 
π, K, p… 

V+jet production 





Z+0                                Z+1                              Z+2                              Z+3   partons 

2 loops 
 
 
 
 
 
1 loop 
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level 
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Z+2j@NNLO 

Z+2j@NLO 

Z+2j@NNLO 

Z+3j@LO 

Z 

Z@LO 

Z Z Z 

Z 

Z@NNNLO 

+ many other similar diagrammes… 

Z@NLO 

Z+3j@NLO 

αS
5 

etc… 

Iconic diagrammes contributing to each order 



pQCD accur. MC  Illustrative diagrammes 

LO ME + PS Pythia, Herwig 

Multiparton LO 
ME + PS 

Alpgen,  
Sherpa 1.4, 
Madgraph 

NLO inclusive + 
PS 

(a)MC@NLO, 
Powheg, 
Herwig++ 

NLO  at a given 
jet mult. +  
LO for other jet 
mult. + PS 

Powheg MiNLO 
(e.g. W/Z+ 1 jet) 

NLO for 0,1,2 
parton ME + 
LO up to 3,4 (5 
for Sherpa) 
partons + PS 

Sherpa 2.X 
(MEPS@NLO), 
MG5_aMC@NLO 

Inspired from A. Tricoli! 

Accuracy in the perturbative region: MC samples used in W,Z production 

Note: MiNLO formally NLO only for 
given a jet multiplicity. For lower 
and higher jet multiplicities in the 
ME, formally LO.  



V+jets 

 Benchmark the validity range of 
our various generators! 
 

Generator+PS: 
 BLACKHAT+SHERPA: parton-level 

fixed-order predictions at NLO up 
to four partons 

 SHERPA: matrix elements (ME) up 
to two additional partons at NLO 
and up to four partons at leading 
order (LO) interfaced to SHERPA 
showering 

 ALPGEN+Py6: multiparton LO ME 
 MG5_aMC+Py8 CKKWL: ME 

including up to four partons at LO, 
interfaced to Py8, using CKKWL 
merging scheme 

 MG5_aMC+Py8 FxFx: ME up to 
two jets and with PS beyond, using 
FxFx merging scheme  

17 

Eur. Phys. J. C77 (2017) 361 



V+jets 

 V+jets: non-negligible background for Higgs boson production and in BSM searches 
 kinematics of jets exploited to achieve separation of the signal of interest from SM bkg 

18 

Phys. Rev. D 95 (2017) 052002 

W+≥1jet: 
HT, the scalar pT 
sum of all visible 
objects, employed 
in BSM searches, 
to enrich final 
states resulting 
from the decay of 
heavy particles 
 
W+≥2jets: 
Di-jet invariant 
mass: modeling 
of correlations 
among jets 
important for BSM 
searched in dijet 
final states 



What can we learn from  
γ+jet production? 

        Direct photon                       Fragmentation photon 
q exchange: (1- |cos θγj|)-1          g exchange: (1- |cos θγj|)-2 

 
 Can test perturbative QCD (pQCD) in cleaner environment  

 Photon doesn’t undergo hadronisation 
 Understand diff betw (t-channel) quark & gluon exchange 

 Angular distrib. sensitive to spin of exchanged particle 
 |cos θγj| useful to study dynamics of underlying process 

 dσ/d|cos θγj| much closer to (1- |cos θγj|)-1 
 Dominance: process where (t-channel) quark exchanged 

 A good source of high purity quark-originated jets! 
 Jets from quarks look different than jets from gluons! 

 One of the main backgrounds to Higgs decay H→γγ 
19 

q                 g Hadronic 
Calo 
 
                    JET 
 
 
 

    γ                EM calo 

Nucl.Phys. B918 (2017) 257-316 



THREE MEASUREMENTS IN 
SOME DETAIL… 

20 



Precise measurements of  
W,Z production at 7TeV - I 

 2011 LHC dataset has a special place in our hearts 
 Relatively low pileup + well understood 

detector (in part from performing precise 
measurements like this one!) 

 ATLAS 4.6fb-1: lots of stats! 
 30M W→lν, l=e,µ 
 3M Z→ll, l=e,µ 

 Measurement of inclusive fiducial and total cross 
sections as well as fiducial differential cross 
sections (extrapolated to a common phase space 
for e and µ) 

 Compatibility of electron and muon channels a 
powerful test of lepton universality in weak vector-
boson decay 

                                       vs. 
 Then combine lepton channels to ~ double your 

statistics… 

21 Eur. Phys. J. C 77 (2017) 367 



Precise measurements of  
W,Z production at 7TeV - II 

 Measurement of fiducial cross sections vs. lepton 
(boson) rapidity for W (Z) 
 Recall that this is sensitive to PDFs! 
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 Some PDFs include other LHC data (some don’t) 
 ABM12 match quite well the data 
 Most agree within 1.8% lumi uncertainty 
 Don’t forget that uncertainties can be correlated bin-to-bin! 

Eur. Phys. J. C 77 (2017) 367 



W-charge asymmetry 

 Dominant W production mechanisms at LHC:  
 valence+sea antiquark:                  , 
 W+,W-  asymmetry due to valence content 

                                                               

 Lepton charge asymmetry vs. η provides  
information on PDFs 
 
 
 
 d/u ratio and sea antiquarks (including 

strangeness) 
 significant cancellation of systematic uncertainties 

when taking ratios!  
 Cross sections don’t agree well with PDFs but 

ratios do! 
 Illustrates the importance of making absolute 

cross-section measurements! 
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u 
u d 

u 
u d 

d� 

W+ 

ud�→W+ du�→W− X 

Eur. Phys. J. C 77 (2017) 367 

Expt uncert. ~1% 



Impact of precise W,Z results on PDFs 

 Use profiling technique to see impact of data on knowledge of PDFs 
 Compare data to theo. predictions using χ2, treating PDF uncert. as nuisance params 

 Significant impact on strange sea  central value (increased) and uncertainty (decreased) 
 

24 

x 𝑢�                                𝑥𝑑̅                                   xs 

 These data are combined with previous HERA 
data to extract a new set of PDFs 
 ATLAS-epWZ16 

 
 

 Close to unity 
Eur. Phys. J. C 77 (2017) 367 



Z production/decay: pp →Z(/γ*)→ ll at 8TeV 

 Initial-state parton, final-state lepton spin correlations carry info about Z polarisation 
 Five-dimensional differential cross section describing kinematics of the two Born-level 

leptons from Z decay can be decomposed as 9 harmonic polynomials (think  Y𝑙
𝑚

 !), 
dependent on the lepton polar θ, azimuthal ϕ (here in Collins-Soper frame) multiplied by 
helicity cross sections that depend on Z transverse momentum (pT

Z), rapidity (yZ), 
invariant mass (mZ).  

 Standard convention: factorise out unpolarised cross-section, σU+L. Differential cross 
section: expansion into 1+ 8 harmonic polynomials Pi 

(cos θ, ϕ)  and dimensionless 
angular coefficients Ai(pT

Z , yZ, mZ)  (ratios of helicity cross-sections with respect to  σU+L ) 
 
 
 
 

 Dynamics from production described within structure of Ai, and factorised from Z  decay 
kinematics. 

 Angular coefficients Ai are a critical component to the measurement of mW 

 Current measurement: on Z peak mll =80-100GeV 
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Z@8TeV JHEP 08 (2016) 159 

∑ Ai(pT
Z , yZ, mZ)⋅ Pi

7
𝑖=0 (cos θ, ϕ) 



P0                               P1                            P2                              P3 
 
 
 
P4                               P5                            P6                               P7 
 

� Ai ⋅Pi

7

𝑖=0

 

Differential cross section 

ϕ vs. cos θ 

Ai     Polynomials Pi 

A0 P0 = 1
2
  [1-3 cos2 θ] 

A1 P1 = sin 2θ cos ϕ  
A2 P2 = 1

2
 sin2 θ cos 2ϕ  

A3 P3 = sin θ cos ϕ  
A4 P4 = cos θ 

A5 P5 = sin2 θ sin 2ϕ 

A6 P6 = sin 2θ sin ϕ 

A7 P7 = sin θ sin ϕ 

x 



O(α𝑆
1): examples 

Annihilation 

Compton 

𝑞𝑞�→Z𝑔𝑔 𝑞𝑞→Z𝑞𝑞 𝑞𝑞�→Z𝑞𝑞� 𝑞𝑞→Z𝑞𝑞 𝑔𝑔→Z𝑞𝑞� 

O(α𝑆
2):  

examples 

Order Ai non-zero Process Comment 

O(α𝑆
0) A4 𝑞𝑞�→Z 

O(α𝑆
1) A0,A1,A2,A3,A4 

𝑞𝑞�→Z𝑔 Annihilation 

𝑞𝑞→Z𝑞 Compton 

O(α𝑆
2) A0,A1,A2,A3,A4,A5,

A6,A7 

𝑞𝑞�→Z𝑔𝑔 

𝑞𝑞�→Z𝑞𝑞� 

𝑞𝑞→Z𝑞𝑞 

𝑞𝑞→Z𝑞𝑞 

𝑔𝑔→Z𝑞𝑞� 

𝑞𝑞�→Z𝑔 
Loop 

𝑞𝑞→Z𝑞 

𝑞𝑞�→Z𝑔 𝑞𝑞→Z𝑞 Mirkes, NPB 387 (1992) 3-85 



Some Ai values: DYNNLO at 
O(α𝑆

1) (NLO), O(α𝑆
2) (NNLO) 

pT
Z 

O(α𝑆
1): A0-A2 =0  

due to gluon spin 
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sin2θW 

A5,6,7 ~0.005 at higher  
values of pT

Z  

A0  

A1 

A2  
A0-A2 

A3 

A4 

Ai     Polynomials Pi Couplings Non-zero 

A0 P0 = 1
2
  [1-3 cos2 θ] 

(𝑣𝑙
2+𝑎𝑙

2)⋅(𝑣𝑞
2+𝑎𝑞

2) 

O(α𝑆
1) 

A1 P1 = sin 2θ cos ϕ  O(α𝑆
1) 

A2 P2 = 1
2
 sin2 θ cos 2ϕ  O(α𝑆

1) 

A3 P3 = sin θ cos ϕ  (𝑣𝑙𝑎𝑙)⋅(𝑣𝑞𝑎𝑞)  
~ sin2θW 

O(α𝑆
1) 

A4 P4 = cos θ O(α𝑆
0) 

A5 P5 = sin2 θ sin 2ϕ 
(𝑣𝑙

2+𝑎𝑙
2)⋅(𝑣𝑞𝑎𝑞)  

O(α𝑆
2) 

A6 P6 = sin 2θ sin ϕ O(α𝑆
2) 

A7 P7 = sin θ sin ϕ (𝑣𝑙𝑎𝑙) ⋅ (𝑣𝑞
2+𝑎𝑞

2) O(α𝑆
2) 



Some results… 
(also in 3 bins of |yZ|) 

Observations  
• Most cases: stats dominated 

even in most populated bins 
which contain 100,000s of 
events 

• A0-A2 factor 2 larger than 
NNLO expectations, likely 
due to higher-order effects 

• A5,A6,A7 non-zero: 3σ level 
• Some coefficients sensitive to 

parton-shower models 
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A0   
A2  
A0-A2                               
 
 
 
 
 
 
A1, A3, A4 
 
 
 
 
 
 
 
 
 
 
 
A5, A6, A7 

Theory-data 
   A0-A2                               
 
 
 
 
 
   A3  
 
 
 
 
 
 
   A4 A1 

Important for mW! 



MASS OF THE 

30 30 

Tevatron (2014) 

OPAL  
(2006) 

δmW~50MeV 

δmW~20MeV 

UA1 (1983): 

First measurement: δmW~5GeV 



The mass of the W boson: mW 

 EW sector of SM relates important parameters such as mW, αEM, GF and sin2θW 

 Quantum corrections to mW dominated by contributions depending quadratically on the top 
mass mt and logarithmically on the Higgs mass mH  
 
 

 
 Precision measurements of mW were first used to predict mH before the Higgs was observed 
 Now use comparisons of predicted mH  to measured mH to look for new physics! 
 Current SM prediction to 8MeV precision 
 Extraction of mW from hadron collisions 

 ud�→W+(→l+ν)+X     →  Can’t fully reconstruct the final state! 
 Look at transverse plane balance 

 Most recent measurements from 
  Tevatron: pp� collider 
 ATLAS@LHC: pp collider 

Different √s and sensitivity to PDFs 

31 

Higher orders, 
 new physics? 



Observables in W, Z decay 
 Lepton l: pT

l, ηl, φl 

 Dilepton (Z): mll, yll, pT
ll  

 
 Recoil: 𝑢T, u⊥, u 

 𝑢T  a measure of pT
W,Z  

 Excluding l : 

 

 

 Transverse missing momentum: 
 
 

 Transverse mass: 
 

l 

pT
l 

l 

pT
Z y 

x 
z 

y 

φ 

l 

l 
Z 

𝑢T  Hadronic  
recoil 

Z 

pT
l 

Transverse plane 

32 

For W:  u⊥, u 
with respect to pT

l 



https://arxiv.org/pdf/hep-ex/0012018.pdf 

The role of the Z 

 Properties of the Z measured to exquisite precision at LEP 
 Use this information at hadron colliders to nail down the 

experimental uncertainties e.g. 
 pT

l ,  pT
miss : affected by lepton energy calibration 

 Use leptonic decay Z→ll 
 Recoil calibration 

 u can be compared to - pT
ll : probes the detector 

response to recoil RE: linearity, resolution 
 u⊥ satisfies <u⊥>=0: width provides an estimate of 

recoil resolution 
 Shape of kinematic distributions affected by lepton 

identification/reconstruction efficiency 
 From Z “Tag and probe” measurements  

 Z used as an (approximate) avatar for the W of mW 

 Use the Z to make “W-like” measurements 
 Measure mZ using mW techniques 

 Treat one l as a ν 
Extract mZ from mll, pT

l, mT 

 33 

And the Oskkar for best supporting boson 
in a measurement goes to… Z 

(PDG) 
mW= 

e 
ν 

W 

e 
e 

Z 

≈ X 



Tevatron mW 

 Fermilab Tevatron measurements 
 D0: W→eν, 4.3fb-1, 1.68M evts (+earlier 1fb-1) [PRD89 (2014) 012005, PRL108 (2012) 151804] 

 CDF: W→e,µν, 2.2fb-1, 1.10M evts                  [PRD89 (2014) 072003, PRL108 (2012) 151803] 

 
 
 
 
 
 

 Dominant expt sys: lepton E scale & hadronic recoil, dominant theo uncert: knowledge of PDF 
δmW

D0 = 23MeV, δmW
CDF= 19MeV           mW

Tevatron=80387±16MeV 
World avg: known to 15MeV! 
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CDF 

U
pdated from

 arXiv:1204.0042 

mT                        pT
e                    ET

miss 



Measurement of mW at ATLAS 

Compare expectations of pT
l, mT for various values of mW 

to measured distributions 
 Build templates using a single reference sample 

(+background) for a given mW, reweight to other mW 
using a relativistic Breit-Wigner 
 
 

      (width scaling as ΓW ∝ mW
3) 

 Signal expectations from Powheg+Pythia8, 
reweighted event-by-event for 
 Improvements in kinematics (better match data) 
 Missing higher-order terms e.g. EW 

 Performed for several categories 
 χ2 compatibility test to judge best mW value 
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arXiv:1701.07240 



The model, guided by data:  
     Powheg+Pythia8 → best Drell-Yan cross section 

 Factorisation of fully differential leptonic Drell-Yan cross section: 
 
 
 

 Modelling: dσ/dm with a BW, dσ/dy and Ai with fixed-order pQCD predictions (optimised 
DYNNLO), remaining component with Pythia8 MC   

 Data-driven improvements in the modelling: 
 √s=7TeV Z data used to tune pQCD parameters  in Pythia8 parton shower generator 

 Validation of: dσ/dy with √s=7TeV W,Z σ meas., Ai with √s=8TeV Z angular coefficients meas. 
 Sources of uncertainties related to the above plus other important sources such as choice of 

PDF (CT10nnlo+variations and alternate PDFs: MMHT2014, CT14), effects of missing high 
orders on the NNLO predictions, contributions from heavy quarks (b,c) 
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Agreement of  
data with tune 

Agreement of  
model with data 

Data sets scale  
of uncertainty 



Experimental  
considerations - I 

Select leptons 
 Trigger 
 Reconstruct 
 Identify 
 Isolate 
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Calibrate leptons 
 Energy/momentum

Scale 
 Resolution 
 Biases 

 

Shape of pT
l, mT sensitive to mW: e.g. Jacobian edge at 

mW/2 of pT
l   → could be shifted or distorted by 

experimental effects?  
→ Correct and calibrate (mostly done to the MC)!  

Efficiencies(pT
l, ηl, φl, q, u)  

Data/MC agreement?  
→ Scale factors! 

Use: 
Z→ll 

Transfer from Z to W 

Z→µµ Z→ee 



Experimental  
considerations - II 

Correct for:  
 Event activity 

 Pileup <µ>: match MC to what is observed in data 
 Sum ET: Σ𝐸�𝑇 residual data-MC differences responsible 

for remaining u⊥ mismodeling 
 Residual corrections: 

 Non-zero crossing angle of the beam 
 Energy scale and resolution 

 Z: u+pT
ll  → calibrates energy scale 

 Z: u⊥ → resolution 
Test applicability of Z-based corrections to the W 

38 

Recoil response 



Measurement of mW 

 28 measurements of mW 

 Optimise the fitting range of pT (32-45GeV) and mT (66-99GeV) (vary range as systematic) 
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W +

W −  x 3e
4µ η bins  x pT

mT
 

W-→µν pT
l W+→eν mT 

7.8M W→µν 
5.9M W→eν 
    4.6fb-1 
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HO EW    QCD model 
Muon  Electron 

recoil  bkg 
19MeV 



The final result 

 Combine the measurements into one determination of mW 
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MULTIPLE W,Z,γ 
PRODUCTION: 

43 

u 
u d 

u 
u d 

u� 

Z/γ* 

 Z 

 Z 



Diboson cross-section measurements 

44 

As with single-boson production, diboson cross-sections measurements are made and 
confronted to theory expectations → rather good agreement with the SM! 



Examples of diboson  
cross section measurements 
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ZZ@13TeV Phys. Rev. Lett. 116 (2016) 101801 

 Cross sections: fiducial and total  
 Very much stats dominated 
 ~ equal contributions from theory, 

experiment, luminosity 

Data/Pred. 

WZ@13TeV Phys. Lett. B 762 (2016) 1 

 Fiducial cross-section ratios W+Z/W-Z:  
 sensitive to PDFs 

Benefit from cancellation of sys uncertainties 
Syst+lumi: 5% → 2% (but stats dominated) 
 
 
 
 
 
 
 
 
 
 

 Results also used to test pQCD in low bkg 
(unlike WW), high cross-section (unlike ZZ) 
environment 
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γWW 
• λγ, ∆κγ 

ZZZ 
• f4Z, f5Z 

γZZ 
• f4γ, f5γ  

ZZγ 
• h3

Z, h4
Z 

γγZ 
• h3

γ, h4
γ 

ZWW 
• λZ, ∆κZ, 

∆g1
Z 

V V” 

V’ 

Effective Lagrangian formalism 
 General V V’ V” vertex  
 Tree level some TGCs non-zero:  

 γWW, ZWW 
 Other TGCs zero at tree level but non-

zero contributions at higher order 
 Couplings such that SM values = 0 or 1 

 For SM=1 → deviation ∆ from 1 
 Leptonic decays of V (W→lν, Z→ll,νν) 
 Note: terms in Lagrangian would lead 

to unitarity violation vs. √s. New 
physics interactions at scale Λ needed 
 form factor parameterisation 

 
 

Effect Field Theory approach 
 Particle content of SM unchanged, 

add to Lagrangian linear 
combination of dimension–six 
operators: ci/Λ2 

 Not considered here 

fi
V =fi0

V/(1+𝑠̂/Λ2)𝑛 

 Test EW sector of SM: gauge boson self-interactions 
 anomalous Triple Gauge Couplings (aTGC) 

 SM multiboson production a source of bkg for: 
 Higgs production (e.g. H→WW, ZZ) 
 New physics (e.g. new resonances→VV)  



aTGC methodology.  
An example: WZ@8 and 13TeV 

 Measure diboson kinematic 
distributions/cross section vs. 
variables sensitive to aTGCs 
 WZ →lν+ll : mT

WZ    
 Presence of aTGC distorts shape 
 Use MC@NLO MC to reweight to 

distributions with aTGCs 
 Set limits on each coupling: 

 assuming others are zero or  
 pairs assuming others zero 
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mT
WZ 

WZ@8TeV Phys. Rev. D 93 (2016) 092004 

WZ@13TeV ATLAS-CONF-2016-043  

8+13TeV 



Recent results: aTGCs 

WW@8TeV  JHEP 09 (2016) 029 

 aTGCs extracted from leading lepton pT 
 NLO EW corrections (signif. at high pT) 

Scenarios: 
 No constraints 
 LEP: SU(2)xU(1)  
    gauge invariance 
 HISZ: absence of 

cancellation between 
tree-level and one-loop 

 Equal couplings: params 
same for WWZ, WWγ 
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Zγ@8TeV Phys. Rev. D 93, 112002 (2016) 

 Includes Z→νν! 
 Missing ET requirements 

 aTGCs extracted from Zγ 
fiducial cross section with high 
ET

γ (>250GeV for llγ, >400GeV 
νν�γ) with exclusive zero-jet  
 Stats dominated 

 aTGC predictions from MCFM 
 

e.g. λZ vs. ∆κZ    

LEP                      HISZ                     Equal C. 

h3                            h4 

γ 
  
Z 

γ 
  
Z 



anomalous Quartic Gauge Couplings 

ZZγγ 

ZZZγ 

ZZZZ 

WWZγ 

WWγγ WWZZ 

WWWW 

γγγγ 

Zγγγ 
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V V’’’ 
V’’ 

V’ 

 18 dim-8 effective operators 
involving gauge bosons built from 
 Higgs field: fSi /Λ4, i=0,1 
 Field strengths SU(2)L, U(1)γ:  
     fTi /Λ4, i=0-2,5-9 
 Both: fMi /Λ4, i=0-7 

 
 



Dimension-8 operators and quartic vertices 
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M. Baak et al. arXiv:1310.6708 



Recent results: aQGCs 
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WWW@8TeV (Eur. Phys. J. C 77 (2017) 141) 

 lνlνlν: categorised by number of same-flavour opposite-sign leptons 
SFOS=0, 1, 2 

 lνlνjj: e±e±, e±µ±, µ±µ± +2 jets consistent with mW 
 Specific requirements on missing ET and mll to enhance signal, and 

veto Z background 
 VBFNLO to produce events with aQGCs with coefficients fS0/Λ4, fS1/Λ4 
 profile likelihood incorporates observed and expected numbers of 

events for different aQGCs 
 

fS1/Λ4 vs. fS0/Λ4 

mT
3l 



Recent results: aQGCs 

Zγγ@8TeV Phys. Rev. D 93 (2016) 112002 

 VBFNLO to produce events with aQGCs with 
coefficients:  
 fT0/Λ4, fT5/Λ4, fT9/Λ4, fM2/Λ4, fM3/Λ4  

 aQGCs extracted from exclusive zero-jet fiducial 
cross section for mγγ>300 (200)GeV for ννγγ (llγγ) 
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WZ@8TeV Phys. Rev. D 93, 092004 (2016) 

 WHIZARD to produce events with 
aQGCs with coefficients:  
 α4→fS0/Λ4, α5→fS1/Λ4 

 aQGCs extracted from fiducial cross 
section of WZ production with at 
least 2 jets, in phase space:  

 |∆ϕ(WZ)|>2, Σ|pT
l |>250GeV 

Without these requirements, 
set limit on vector-boson 
scattering production WZjj-EW 



Vector boson scattering (VBS): W±γjj 

 VBS VV→VV where V=γ,W, Z: key process to probe nature of EW symmetry breaking 
 Without a SM Higgs, longitudinally polarised VBS amplitude violates unitarity at ~1TeV! 
 Newly discovered Higgs boson could unitarise process 

 V+V+jet+jet in final state → both EW and QCD processes 
 W±γjj production at 8TeV 

 Enhanced EW-induced Wγ+2j region: exactly 1 e or µ + ET
miss  

≥2 well separated jets in y,η,ϕ, high invariant mass mjj>700GeV 
 ~10 (20) EW (QCD)-induced events expected 

 2.7σ significance of EW signal 
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W± 

γ 

q 

q 

Jet 

Jet 

W± 

γ 

Shape of distribution 
at high pT

W used to 
extract aQGC limits 
on: 

JHEP 06 (2017) 106 



TOP-QUARK  
PHYSICS 

54 

Top! 



Top production and decay: the many properties 
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p 𝑝 or 𝑝̅ 

(anomalous?) couplings 
→ Vtb 

Top properties  
→ mass, width, charge … 

𝑡𝑡̅ and single top  
→ production cross sections  

(differential too!) 
→ new production mechanisms? 

Polarisation, spin correlations,  
production asymmetries  

(LHC or Tevatron) 



Top quark pair production and decay 

 Top quark pair (𝑡𝑡̅) production is via the strong interaction 
 
 

 
 Top quark subsequently decays ~100% to W + b: 𝑡𝑡̅→W+W-𝑏𝑏� 

 W decays are hadronic or leptonic 
 Dilepton channel: very clean but low rate 
 Lepton+jets: clean and good rate  
 Measure 𝑡𝑡̅ production cross section σ(𝑡𝑡̅) 

 Precise σ(𝑡𝑡̅) → measurement of SM parameters: mt and αS 

 New physics could be hidden? New production modes or decays? 
 
 
 
 
 

 SM predictions: 
 Will be a trade off: 

 stats vs. sys 
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←85% Tevatron 15%→ 
 
←15%    LHC     85%→ 

All jets 
~45% 

Lepton+jets 
    ~45% 

Dileptons 
    ~10% 

Z’(?) 

𝒕′or 𝒕�? New heavy quarks?  
SUSY decays?  

√s [TeV] σ(𝑡𝑡̅) (NNLO+NNLL)  
[pb] (mt=172.5GeV) 

 Uncert. 
   [%] 

2 7.35 

~4-6% 
7 177.3 

8 252.8 

13 824.2 

x100 

ICHEP2014 

1989                              2013 

https://inspirehep.net/record/1121128/files/fig_1_feynman_ttbar_production.png
https://inspirehep.net/record/1121128/files/fig_1_feynman_ttbar_production.png
https://inspirehep.net/record/1121128/files/fig_1_feynman_ttbar_production.png


𝒕𝒕̅: dilepton – I  

How to reconstruct t, tbar, ttbar system? 
 2 opposite-sign leptons 

 Usually take e±µ∓ to avoid Z→ee,µµ  
 Several jets (two of them from b) 
 Two unobserved ν, both contributing to 𝑝⃑T

miss 

Ambiguity: mapping partons/leptons to reco objects  
Under-constrained system! 

 e.g. apply additional constraints provided by event topology! 
 Scan η(ν), η(ν�) for possible values e.g. between -5 to 5 

 Equations can be solved with two possible solutions for each input η(ν), η(ν�)  
 Look at “ET

miss” for each solution. See which ν+ν�  Ex, Ey best corresponds to reco ET
miss  

 Which solution maximises the weight, w? 
 Used to assign ν, ν� to t, tbar 

 Not always successful… 
 Redo assuming mismeasurements of objects 

Smearing 
 If all else fails 

 Count is as inefficiency in reconstruction 
 e.g. 20% for signal in Eur. Phys. J. C77 (2017) 299 57 

l- 
ν� 

η(ν) 
η(ν�) 

w 



𝒕𝒕̅: dilepton – II 
cross section in a fiducial phase space at 13TeV 

58 PDF 

𝒕𝒕̅ 

pT(𝒕) 

pT(𝒕𝒕̅) 

|y(𝒕)| |y(𝒕𝒕̅)| 

m(𝒕𝒕̅) 

m(𝒕𝒕̅) pT(𝒕𝒕̅) 

Eur. Phys. J. C77 (2017) 299 



Single-top production 

 Single-top production is via the EW interaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Measure fundamental parameters of SM 
 σsingle-top ~ |Vtb|2 → CKM and unitarity 

Vtb measured at LHC, Tevatron: ~2-10% 
 Bkg in Higgs and SUSY searches. Sensitive to new physics? 59 

t-channel            Wt-channel          s-channel 

SM prediction [pb] arXiv:1311.0283 

√s [TeV] t Wt s Tot. 

2 2.08 
(62%) 

0.25 
(7%) 

1.05 
(31%) 

~3 

8 87.8 
(76%) 

22.2 
(19%) 

5.55  
(5%) 

~115 

14 248 
(72%) 

83.6 
(24%) 

11.86 
(4%) 

~343 

W’, H+,? 



Single-top 
at 7,8,13TeV 

 Sensitive: u,d PDFs, expect Rt=σ(t)/σ(tbar)~2  
 Valence-quark arguments 
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t-channel 

R~2 



ONE MEASUREMENT IN 
SOME DETAIL… 

61 



 Properties of Wtb vertex given by (V-A) structure of 
the weak interaction 

 In the SM: t→bW ~100% of the time: |Vtb|~1 
 Real W from decay of top has 3 polarisation states 

 Left-handed: L, right-handed: R, longitudinal: O 
 Predictions for helicity fractions: 

 
 
 
 
 
 
 

 LO: (V-A), massless b is L-H so W can only be L,O 
 Two Wtb vertices in each ttbar event:  

 can be studied with leptonic or hadronic analysers 
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QCD order FL FR F0 

LO 2x2

1+2x2=0.3 
0 1

1+2x2=0.7 

NNLO* 0.311±0.005 0.0017±0.0001 0.687±0.005 

*arXiv:1005.2625 

Vtb Vtb 

x=mW mt⁄  

Probing the Wtb vertex: 
W polarisation in ttbar events - I 



Probing the Wtb vertex: 
W polarisation in ttbar events - II 

 Differential cross section of analyser (l or d-like): 
 
 
 
 
 
 
 
 

 New physics could modify the structure of the Wtb vertex 
 Structure of Wtb vertex can be expressed in a more general form using left- and right-

handed vector (VL,VR) and tensor couplings (gL,gR ) giving the Lagrangian: 
 
 
 

 VL (= Vtb ~1 in SM) and VR,gL,gR anomalous couplings (=0 in SM) 
Dimension-six operators, introduced in effective field theories 

can lead to non-zero values of VR,gL,gR  
63 

W+ 

t 
b 

l+ 

ν�l 

θ* 
W+ 

t 
b 

u 

θ* 
d� 

-1     0     1 

L𝑊𝑊𝑊 = − g
2

 b� γµ(VLPL+VRPR) t Wµ
− −  g

2
 b�  𝑖



W polarisation in ttbar events 
 at √s=8TeV - I 

Desired final state: tt→(Wb)(Wb)→(lνb)(qqb) 
 1 e or µ + ≥ 4 jets (≥1 b-tagged jet)  + missing ET  
 Combinatorics methodology (kinematic likelihood fitter) 

 map 2b+qq to 4 jets 
 Analysis has four categories of events: 

 e+1b, e+≥2b, µ+1b, µ+≥2b: ~35-45k evts in each 
 Explore using both leptonic and hadronic analysers  

 i.e. θ* from leptonic (e/µ) & hadronic decay (qq) of W 
 Build templates of reconstructed θ* for each Fi (MC for 

ttbar) and Fi-independent templates for various bkgs  
 
 

 Selection efficiency ε different for each polarisation state, 
determines the number of selected events ni 

 Likelihood of sum of templates to data: get nbkg and Ni 
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Vtb Vtb 

Signal                                  backgrounds 

EPJC77(2017)264 



Leptonic                                     Hadronic 

e+≥2b        µ+≥2b  e+1b      e+≥2b    µ+1b      µ+≥2b 

W polarisation in ttbar events 
 at √s=8TeV - II 

 Various combinations of simultaneous fits of 4 categories with two analysers: best results 
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NNLO QCD 

0.687±0.005 

0.311±0.005 

0.0017±0.0001 

 No evidence for beyond-SM Fi 

 95% exclusion limits set on e.g. (gL,gR) assuming SM (VL,VR)  
 

 
 
 

Leptonic 



Summary of previous helicity-fraction 
measurements 
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Top mass: one example 

 mt is a fundamental parameter: mW, mt, mH together test the consistency of the SM 
 Many techniques to extract mt 

 Template method from dilepton events:   
 Exactly two opposite-sign leptons (ee, eµ, µµ) with at least two jets (one of them b-tagged) 
 Templates: reconstructed mlb of MC signal events for different mt values (interpolate 

between points) and for backgrounds 
 Unbinned LH fit to data with only mt as the free parameter 

 
 
 
 
 
 
 
 

 
 mt = 172.99±0.41(stat)±0.74(sys)  [±0.84(tot)], dominated jet-energy-scale uncertainties 
 Combined with 7TeV results (including correlations), which reduces uncertainty to 0.70GeV 

 
 
 
 
 

 

67 

PLB 761 (2016) 350 



Top-quark mass averages (Aug 2016) 
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Includes Tevatron 

Uncertainty ~0.5GeV 
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pp collisions… 
 
How to measure a cross section? 
 
Single-boson production: 
 Importance of various kinematic variables 

 Orders and generators  
 V+jets, γ+jets 
 W,Z production vs η & impact on PDFs  
 Z-production angular coefficients  
 W mass 

 
Top-quark production and decay: 
 Comparisons at different √s 
 dilepton ttbar  
 single top  
 W polarisation in ttbar (Wtb vertex) 
 top mass from dilepton 

Multiboson production: 
 diboson cross sections: WZ, ZZ 
 aTGCs: WZ, WW, Zγ   
 aQGCs: WWW, Zγγ  
 vector-boson scattering 
 

Lots of pedagogical back-up slides… 
 How to measure lumi, definitions, pileup, 

MB, UE… 

Top! 
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Back up… 
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Proton-proton collisions 

Proton-proton cross section: 
 σpp

tot(s) = σelastic(s) + σinelastic(s) 
 At centre-of-mass energy √s = 14TeV (LHC): 

 σpp
tot (s)    ≈ 100mb 

 σelastic(s)   ≈ 20mb 
 σinelastic(s) ≈ 80mb 
 Note: 1 millibarn (mb) = 10−31m2 = 

10−27cm2 (i.e. units of area) 
 Orders of magnitude of event rates  

for various physics channels for L=1034 cm-2s-1:  
 Inelastic:                     109 Hz 
 W → lν :                     102  Hz 
 tt production :       101  Hz 
 Higgs                            1  Hz 
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Inelastic collisions per bunch crossing 

 Extract number of inelastic collisions per bunch crossing (BC) 

µ σ ∆ ε
 
 LHC: <µ> = ~70-80 mb x 1034 cm-2 s-1 x 25 ns /  0.8 = 20-25 

 On average, there are >20 simultaneous collisions per bunch crossing at 
high luminosity 

 Big change compared to recent machines: 
 LEP:           ∆t = 22 ms      and        <µ> << 1 
 SppS:         ∆t = 3.3 ms     and        <µ>  ≈  3 
 HERA:        ∆t = 96 ns      and         <µ> << 1 
 Tevatron:    ∆t = 0.4 ms     and        <µ>  ≈  2 

 



How do you measure the luminosity? – Part I 

 L  =               
µ  nb

    
frσ𝑖𝑖𝑖𝑖

                        =                  
µ𝑣𝑣𝑣  nb    

frσ𝑣𝑣𝑣
 

 
 

Luminosity detectors: 
 Bunch-by-bunch luminosity 

 Dedicated lumi monitor (LUCID), beam conditions monitor (BCM), inner tracking 
detector to count the number of primary vertices   

 Bunch blind: 
 Currents in the calorimeters 

 Should all give consistent results! 
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Inelastic  
interactions  
per BC 

Bunch pairs  
colliding LHC revolution  

frequency 

Measured  
quantity 

= ε X σinel 
Needs to be 
calibrated! 
van der Meer scan 

2012  Z→µµ 
25 reconstructed vertices 



How do you measure the luminosity? – Part II 
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y 

x 

ρ1(x,y)               Transverse proton density functions          ρ2(x,y)     

Bunch 1               Bunch 2 
 
    n1                         n2 
      # protons/bunch  

Convoluted  
beam widths 

Bunch population 
product 

 Beam-separation scan to get the absolute lumi calibration 
 Peak luminosity is a convolution of the beam widths 

 
 
 
 
 
 
 
 
 

 Method assumed that you can factorise scan into x and y components 
 Not totally true 

 



How do you measure the luminosity? – Part II 
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y 

x 

ρ1(x,y)               Transverse proton density functions          ρ2(x,y)     

Bunch 1               Bunch 2 
 
    n1                         n2 
      # protons/bunch  

y 

x 

 Beam-separation scan to get the absolute lumi calibration 
 e.g. scan in x 

x-scan width 



How do you measure the luminosity? – Part II 

 Example of σvis measured in 2011 using the LUCID detector 
 Two different scans (VII, VIII) as a function of which beam crossing (BCID) where 

you perform the scan 
 
 
 
 
 
 
 
 
 
 
 
 

 Luminosity uncertainty: 2011 data: 1.8%, 2012: 1.9%, 2015: 2.1% 
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2011 



−
+

=
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Jet kinematics: η 

 Angular separations in θ are not invariant under longitudinal boosts: a given set of 
hadrons will appear more collimated depending on the boost. To treat equivalently 
partons with same pT but different boost → use rapidity y 
 
 
 

 y is additive under Lorentz transformation, corresponding to a boost in the z 
direction: rapidity differences are boost invariant 

 In practice, use pseudorapidity variable η, as this is what is measured in the 
detector. y and η coincide in the limit m→0 

 
 

 

( ) ( )φφηη −+−=∆
→ 

η
φ

ln ln 

ln 
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The underlying event (UE) 

 Underlying event (UE): is the 
soft part associated with the 
hard scattering  
 Everything except the two 

outgoing hard scattered jets 
but has some correlations 
with the hard scatter 

 Contains hard components: 
e.g. initial/final state 
radiation, additional parton 
interactions (becomes 
significant at LHC) 

 Contains soft components: 
Beam-beam remnants 

Proton Proton 

Beam 
remnants 

 UE: cannot be described by pQCD 
 Phenomenological models, tuned with LHC data 

R. Field 
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The underlying event (UE) 

 Must understand the UE as it is an important “background” to jets and 
missing transverse energy ET

miss (=negative of the vector sum of the 
calorimeter ET) 

 generates ET flow around the hard scatter (shifting up the signal) 
 generates fake jets not related to the hard scatter 
 distorts the ET

miss resolution 
 Can study UE by looking at region transverse to the hard scatter axis 

 Tune Monte Carlo event generators to data 

Avg PT
sum for 

stable particles per 
unit area in η-ϕ in  
transverse region 
as a function of 
pT(lead) 

Eur.Phys.J. C71 (2011) 1636 

Also:  UE in Z production: Eur. Phys. J. C (2014) 74:3195 

http://www.springerlink.com/content/w5g34017158h68n5/
http://www.springerlink.com/content/w5g34017158h68n5/
http://www.springerlink.com/content/w5g34017158h68n5/
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The inelastic term 

 Recall: σpp
tot = σelastic + σinelastic 

 Can express inelastic term as:  
 σinelastic= σsingle diffractive,sd  + σdouble diffractive,dd + σnon-diffractive,nd  

 

Elastic Single 
diffractive 

Double diffractive Non-diffractive 

 Single (double)  
diffractive:  
 pp → pX  (XX) 

 Diffractive events: show 
clear gap  

 Non-diffractive:  
 pp → X 

 Non-diffractive: gaps 
which naturally occur 
between 2 systems 
moving in opposite 
directions filled by 
particles moving in the 
central region 
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Minimum bias events (MB) 

 What is a minimum bias event? 
 What a theorist might say: any non-diffractive inelastic event 
 What an experimentalist might say: anything that triggers my minimum bias 

trigger!  
 
 
 
 
 

 
 

 This effectively is any non-single diffractive (nsd) inelastic event 
 Minimum bias cross section not that different from total inelastic cross section: 

σinelastic~80-85mb, σnsd~65-70mb  
 Governed by the same non-perturbative QCD physics as the underlying event 

(but has no correlation to the hard scatter) 
 Depends on instantaneous luminosity 

 Number of MB per bunch crossing µ~25 at L=1034, ~2.5 at L=1033, ~0.025 at L=1031 
 

p p 
Elastic event p 

p 

π± π± 
Minimum  
bias trigger 

Inelastic event 
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Impact of minimum bias events 

µ 
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 Other examples of 
including MB 
 Impact of many MB 

events in physics 
collisions is called “pile 
up” 
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pile-up (in-time) 

 Protons are not point-like objects!  
 Protons are really small! 10-15 m  

 Collide many protons simultaneously 
in the hopes that one or more collide 

 Every time the beams cross, more than 
just one pair of protons can interact! 
 
 
 

 Mean # of interactions per beam crossing 
 

 
 

 2012  Z→µµ 
25 reconstructed vertices 

2010:  <µ> ~2 
2015 (25ns) ~14 
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Ti
m

e-
of

-f
lig

ht
 



  



  

pile-up  
(out-of-time) 



• z-axis: in Z rest frame, external bisector of angle between the two protons 
• +z: direction of positive longitudinally-polarised Z in lab frame 

• y-axis: normal to plane spanned by the two incoming protons 

• x-axis: right-handed cartesian system 

Collins-Soper frame (PRD16 (1977) 2219) 

• Polar θCS and azimuthal ϕCS angles: calculated with respect to negatively 
charged lepton 

Definition of θ, ϕ measured in the experiment: CS frame 
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