

Strong and Electroweak Interactions

Top-quark Physics

Manuella G. Vincter (Carleton University) vincter@physics.carleton.ca

CTEQ summer school 2017

· BEVERAGES ·

pp collisions...

How to measure a cross section?

Single-boson production:

- Importance of various kinematic variables
- Orders and generators
- V+jets, γ+jets
- W,Z production vs η & impact on PDFs
- Z-production angular coefficients
- W mass

Multiboson production:

- diboson cross sections: WZ, ZZ
- aTGCs: WZ, WW, Zγ
- aQGCs: WWW, Ζγγ
- vector-boson scattering

· DESSERTS ·

Top-quark production and decay:

- Comparisons at different \sqrt{s}
- dilepton ttbar
- single top
- W polarisation in ttbar (Wtb vertex)
- top mass from dilepton

· FRUIT ·

Lots of pedagogical back-up slides...

How to measure lumi, definitions, pileup, MB, UE...

SINGLE W, Ζ, γ PRODUCTION

Parton distribution functions f of the proton (pdf)

 x_1, x_2 = momentum fraction of partons

 $\sigma = \sum_{a,b,k} \int dx_1 dx_2 f_a(x_1, Q^2) \quad \widehat{\sigma}_{a,b,k}(x_a, x_b) \quad f_b(x_1, Q^2)$

Via hard scatter, can test perturbative QCD (pQCD) between initial, final states Z balances the hadronic system e.g. gluon hadronises/showers to jet of particles

Global fits to extract PDFs

- DY production at LHC probes PDFs in the region $x \approx 10^{-4}$ -10⁻¹ and $Q^2 \approx 5x10^2$ -10⁶ GeV²
- Feed e.g. W^{\pm} , Z/γ^{*} , W+charm cross section information into global fits to extract PDFs
 - All data have differing sensitivity to different aspects of the proton's PDFs.
 - EW boson production sensitive to valence and sea quark distributions

Anatomy of a cross section: simple sketch

 $\frac{d\sigma}{dx}$, $\left(\frac{d^2\sigma}{dxdv}\right)$,

object reconstruction, identification, triggering, etc... as well as (usually small) theory uncertainties associated with going from reco to truth.

Luminosity L: ratio of the number of events detected N within a time t to the interaction crosssection σ :

L depends on the beam parameters

- $N_{\rm b}$ = number of particles per bunch $\approx 1.15 \text{ x} 10^{11} \text{ protons}$
- $n_{\rm b}$ = number of bunches per beam ≈ 2800
 - 26659 m/7.5 m between bunches = 3550 bunches but need extra room to insert bunches etc... so effectively 2800
- f_r = revolution frequency of the accelerator $\approx [26659 \text{ m}/3x10^8 \text{ m/s}]^{-1} \approx 11245 \text{ Hz}$
- Parameters related to the size of the beam in the transverse plane

At full LHC design:

- Centre-of-mass energy of 14TeV
 - Run 1: 7TeV (2010/1), 8TeV (2012)
 - Run 2: 13TeV (2015-17)
- Collisions every 25 ns
 - 50 ns (2010-12), 25 ns (2015-17)
- Peak luminosity of L=10³⁴ cm⁻²s⁻¹ Integrated luminosity Ldt so far:

0.04fb⁻¹ (2010), 5fb⁻¹ (2011), 20fb⁻¹ (2012), 3fb⁻¹ (2015), 33fb⁻¹ (2016), 2017 ongoing 10

V (= γ , W, or Z) production

- At born level, V has nothing to recoil against in the transverse plane
 - V produced with no transverse momentum p_T

- At one gluon emission (order α_s), V recoils against hadronic products
 - V produced with transverse momentum!

V p_T tells us something about the hard interaction!

- Low p_T^{*l*}: region of ISR and intrinsic k_T of partons
- modeled through softgluon resummation (e.g. RESBOS NNLL) or parton showers (e.g. PYTHIA)
- Low-mass DY: dominated by EM coupling of γ^* to $q\bar{q}$
- Different sensitivity to u, d-type qq than on peak
 - Probe for PDFs

JHEP02(2017)096 EPJC75 (2015)147

- High p_T^{*u*}: region dominated by radiation of high p_T gluons
 - Sensitive to gluon PDF
- Modeled with fixed-order calculations like FEWZ@ NNLO or generators like POWHEG
- Peak region and above dominated by Z, γ^* coupling to $q\overline{q}$
 - Probe for PDFs

High-mass DY shape can be modified by new physics

V+jet production

Probing QCD with V+jet production

- Hard scatter (matrix element, ME)
- Parton shower (PS), matching to ME
- Fragmentation to jets
- Jet composition/dynamics
- Multiparton interactions (MPI) from underlying event (UE)
- Parton distribution functions (PDF)

Iconic diagrammes contributing to each order

+ many other similar diagrammes...

Accuracy in the perturbative region: MC samples used in W,Z production

pQCD accur.	МС	Illustrative diagrammes			
LO ME + PS	Pythia, Herwig				
Multiparton LO ME + PS	Alpgen, Sherpa 1.4, Madgraph				
NLO inclusive + PS	(a)MC@NLO, Powheg, Herwig++	NIQ hest gue			
NLO at a given jet mult. + LO for other jet mult. + PS	Powheg MiNLO (e.g. W/Z+ 1 jet)	Note: MiNLO formally NLO only for given a jet multiplicity. For lower and higher jet multiplicities in the ME, formally LO.			
NLO for 0,1,2 parton ME + LO up to 3,4 (5 for Sherpa) partons + PS	Sherpa 2.X (MEPS@NLO), MG5_aMC@NLO				

Inspired from A. Tricoli!

 Benchmark the validity range of our various generators!

Generator+PS:

- BLACKHAT+SHERPA: parton-level fixed-order predictions at NLO up to four partons
- SHERPA: matrix elements (ME) up to two additional partons at NLO and up to four partons at leading order (LO) interfaced to SHERPA showering
- ALPGEN+Py6: multiparton LO ME
- MG5_aMC+Py8 CKKWL: ME including up to four partons at LO, interfaced to Py8, using CKKWL merging scheme
- MG5_aMC+Py8 FxFx: ME up to two jets and with PS beyond, using FxFx merging scheme

V+jets: non-negligible background for Higgs boson production and in BSM searches

V+jets

kinematics of jets exploited to achieve separation of the signal of interest from SM bkg

THREE MEASUREMENTS IN SOME DETAIL...

20

Precise measurements of W,Z production at 7TeV - I

- Relatively low pileup + well understood detector (in part from performing precise measurements like this one!)
- ATLAS 4.6fb⁻¹: lots of stats!
 - 30M W→ℓν, ℓ=e,μ
 - 3M Z→*ℓℓ*, *ℓ*=e,μ
- Measurement of inclusive fiducial and total cross sections as well as fiducial differential cross sections (extrapolated to a common phase space for e and µ)
- Compatibility of electron and muon channels a powerful test of lepton universality in weak vectorboson decay

$$(R_{W^{\pm}} = \sigma_{W^{\pm} \to e\nu}^{\text{fid}} / \sigma_{W^{\pm} \to \mu\nu}^{\text{fid}}) \text{ VS. } (R_Z = \sigma_{Z \to e^+e^-}^{\text{fid}} / \sigma_{Z \to \mu^+\mu^-}^{\text{fid}})$$

Then combine lepton channels to ~ double your statistics...

21

Don't forget that uncertainties can be correlated bin-to-bin!

W-charge asymmetry

- Dominant W production mechanisms at LHC:
 - valence+sea antiquark: $d\overline{u} \rightarrow W^-$, $ud \rightarrow W^+$
 - W⁺,W⁻ asymmetry due to valence content

 $R_{W^+/W^-}^{\text{tot}} = 1.450 \pm 0.001 \,(\text{stat}) \pm 0.004 \,(\text{syst}) \pm 0.029 \,(\text{acc})$

 Lepton charge asymmetry vs. η provides information on PDFs

$$A_{\ell} = \frac{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}$$

- d/u ratio and sea antiquarks (including strangeness)
- significant cancellation of systematic uncertainties when taking ratios!
- Cross sections don't agree well with PDFs but ratios do!
 - Illustrates the importance of making absolute cross-section measurements!

Impact of precise W,Z results on PDFs

- Use profiling technique to see impact of data on knowledge of PDFs
 - Compare data to theo. predictions using χ^2 , treating PDF uncert. as nuisance params
- Significant impact on strange sea central value (increased) and uncertainty (decreased)

Z production/decay: pp $\rightarrow Z(/\gamma^*) \rightarrow \ell \ell$ at 8TeV

Z@8TeV JHEP 08 (2016) 159

- Initial-state parton, final-state lepton spin correlations carry info about Z polarisation
- Five-dimensional differential cross section describing kinematics of the two Born-level leptons from Z decay can be decomposed as 9 harmonic polynomials (think Y^m_l!), dependent on the lepton polar θ, azimuthal φ (here in Collins-Soper frame) multiplied by helicity cross sections that depend on Z transverse momentum (p^Z_T), rapidity (y^Z), invariant mass (m^Z).
- Standard convention: factorise out unpolarised cross-section, σ^{U+L}. Differential cross section: expansion into 1+ 8 harmonic polynomials P_i (cos θ, φ) and dimensionless angular coefficients A_i(p^Z_T, y^Z, m^Z) (ratios of helicity cross-sections with respect to σ^{U+L})

 $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \left\{ (1+\cos^{2}\theta) + \sum_{i=0}^{7}\mathsf{A}_{\mathrm{i}}(\mathsf{p}_{\mathrm{T}}^{Z},\mathsf{y}^{Z},\mathsf{m}^{Z}) \cdot \mathsf{P}_{\mathrm{i}}(\cos\theta,\varphi) \right\}.$

- Dynamics from production described within structure of A_i, and factorised from Z decay kinematics.
- Angular coefficients A_i are a critical component to the measurement of m_w
- Current measurement: on Z peak m_{ℓℓ} = 80-100GeV

Differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}}$$
$$\mathbf{x} \left\{ (1+\cos^{2}\theta) + \sum_{i=0}^{7} \mathbf{A}_{i} \cdot \mathbf{P}_{i} \right\}.$$

 A_i Polynomials P_i A_0 $P_0 = \frac{1}{2} [1-3 \cos^2 \theta]$ A_1 $P_1 = \sin 2\theta \cos \phi$ A_1 $P_2 = \frac{1}{2} \sin^2 \theta \cos 2\phi$ A_3 $P_3 = \sin \theta \cos \phi$ A_4 $P_4 = \cos \theta$ A_5 $P_5 = \sin^2 \theta \sin 2\phi$ A_6 $P_6 = \sin 2\theta \sin \phi$

Order	A _i non-zero	Process	Comment	
$\mathcal{O}(\alpha_S^0)$	A ₄	$q\bar{q} \rightarrow Z$		$\mathcal{O}(\alpha_S^1)$: examples
$\mathcal{O}(\alpha_S^1)$	A _{0,} A _{1,} A _{2,} A _{3,} A ₄	$q\bar{q} \rightarrow Zg$	Annihilation	335350
		$qg \rightarrow Zq$	Compton	
$\mathcal{O}(\alpha_S^2)$	A _{0,} A _{1,} A _{2,} A _{3,} A _{4,} A _{5,} A _{6,} A ₇	$q\bar{q} \rightarrow Zgg$		leeeee
		$q\bar{q} \rightarrow Zq\bar{q}$		Annihilation
		$qg \rightarrow Zqg$		/
		$qq \rightarrow Zqq$		
		$gg \rightarrow Zq\bar{q}$		· · · · · · · · · · · · · · · · · · ·
		$q\bar{q} \rightarrow Zg$	Loon	Compton
		$qg \rightarrow Zq$	соор	
$\mathcal{O}(\alpha_S^2)$: examples exercise k ₁ or k ₁				
$\begin{array}{cccc} q\bar{q} \rightarrow Zgg & q\bar{q} \rightarrow Zq\bar{q} \\ \hline \end{array} \\ \begin{array}{c} & & \\ & $				$qg \rightarrow Zqg qq \rightarrow Zqq gg \rightarrow Zq\overline{q}$
$q\bar{q} \rightarrow Zg \qquad qg \rightarrow Zq$				Mirkes, NPB 387 (1992) 3-85

Some results...

(also in 3 bins of |y^z|) Observations

- Most cases: stats dominated even in most populated bins which contain 100,000s of events
- A₀-A₂ factor 2 larger than NNLO expectations, likely due to higher-order effects
- A₅, A₆, A₇ non-zero: 3σ level
 Some coefficients sensitive to parton-shower models

The mass of the W boson: m_w

- EW sector of SM relates important parameters such as m_W , α_{EM} , G_F and $sin^2\theta_W$
- Quantum corrections to m_w dominated by contributions depending quadratically on the top mass m_t and logarithmically on the Higgs mass m_H

$$m_{W}^{*} \bigoplus_{\mu}^{*} m_{W}^{*} \bigoplus_{\mu}^{*} m_{W}^{*} = \frac{m_{W}^{2}}{\sqrt{2}G_{\mu}} = \frac{\pi\alpha}{\sqrt{2}G_{\mu}} (1 + \Delta r), \quad \text{Higher orders, new physics?}$$

- Precision measurements of m_w were first used to predict m_H before the Higgs was observed
- Now use comparisons of predicted m_H to measured m_H to look for new physics!
- Current SM prediction to 8MeV precision
- Extraction of m_W from hadron collisions
 - $u\bar{d} \rightarrow W^+(\rightarrow \ell^+ \nu) + X \rightarrow Can't$ fully reconstruct the final state!
 - Look at transverse plane balance
- Most recent measurements from
 - Tevatron: pp̄ collider
 - ATLAS@LHC: pp collider
 - Different \sqrt{s} and sensitivity to PDFs

Observables in W, Z decay

- Lepton ℓ : p_T^{ℓ} , $\eta_{\ell'}$, ϕ_{ℓ}
- Dilepton (Z): $m_{\ell \ell}, y_{\ell \ell}, p_T^{\ell \ell}$
- Recoil: \vec{u}_{T} , u_{\perp} , u_{\parallel}
- \vec{u}_{T} a measure of $p_{T}^{W,Z}$
 - Excluding *l* :

 $\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i},$

Transverse missing momentum:

 $\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\ell} + \vec{u}_{\rm T}\right).$

Transverse mass:

 $m_{\rm T} = \sqrt{2 p_{\rm T}^{\ell} p_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)}$

The role of the Z

And the Oskkar for best supporting boson in a measurement goes to...

- Use this information at hadron colliders to nail down the experimental uncertainties e.g.
 - p_T^{ℓ} , p_T^{miss} : affected by lepton energy calibration
 - Use leptonic decay Z→ℓℓ
 - Recoil calibration
 - u_{||} can be compared to p_T^{||}: probes the detector response to recoil RE: linearity, resolution
 - u_{\perp} satisfies $<\!u_{\perp}\!>\!=\!0\!:$ width provides an estimate of recoil resolution
 - Shape of kinematic distributions affected by lepton identification/reconstruction efficiency
 - From Z "Tag and probe" measurements
- Z used as an (approximate) avatar for the W of m_W
 - Use the Z to make "W-like" measurements
 - Measure m_z using m_w techniques
 - Treat one *l* as a v
 - Extract m_z from $m_{\ell\ell}$, p_T^{ℓ} , m_T

Fermilab Tevatron measurements

■ D0: W→ev, 4.3fb⁻¹, 1.68M evts (+earlier 1fb⁻¹) [PRD89 (2014) 012005, PRL108 (2012) 151804]

Dominant expt sys: lepton E scale & hadronic recoil, dominant theo uncert: knowledge of PDF

• $\delta m_W^{D0} = 23 MeV, \ \delta m_W^{CDF} = 19 MeV$

World avg: known to 15MeV!

TABLE II. Uncertainties for the final combined result on M_W .

Source CDF	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal	2
Backgrounds	3
$p_T(W)$ model	5
Parton distributions	10
QED radiation	4
W-boson statistics	12
Total	19

34

Measurement of m_w at ATLAS

Compare expectations of p_T^{ℓ} , m_T for various values of m_W to measured distributions

 Build templates using a single reference sample (+background) for a given m_w, reweight to other m_w using a relativistic Breit-Wigner

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m} \propto \frac{m^2}{(m^2 - m_V^2)^2 + m^4 \Gamma_V^2 / m_V^2}$$

(width scaling as $\Gamma_W \propto m_W{}^3)$

- Signal expectations from Powheg+Pythia8, reweighted event-by-event for
 - Improvements in kinematics (better match data)
 - Missing higher-order terms e.g. EW
- Performed for several categories
- χ² compatibility test to judge best m_w value

Decay channel	$W \rightarrow e v$	$W ightarrow \mu u$
Kinematic distributions Charge categories	$p_{\mathrm{T}}^{\ell}, m_{\mathrm{T}}$ W^+, W^-	$p_{\mathrm{T}}^{\ell}, m_{\mathrm{T}}$ W^+, W^-
$ \eta_{\ell} $ categories	[0, 0.6], [0.6, 1.2], [1.8, 2.4]	[0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

The model, guided by data: Powheg+Pythia8 → best Drell-Yan cross section

• Factorisation of fully differential leptonic Drell-Yan cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y) P_i(\cos\theta,\phi)\right],$$

- Modelling: dσ/dm with a BW, dσ/dy and A_i with fixed-order pQCD predictions (optimised DYNNLO), remaining component with Pythia8 MC
- Data-driven improvements in the modelling:
 - $\sqrt{s}=7$ TeV Z data used to tune pQCD parameters in Pythia8 parton shower generator
- Validation of: $d\sigma/dy$ with $\sqrt{s}=7$ TeV W,Z σ meas., A_i with $\sqrt{s}=8$ TeV Z angular coefficients meas.
- Sources of uncertainties related to the above plus other important sources such as choice of PDF (CT10nnlo+variations and alternate PDFs: MMHT2014, CT14), effects of missing high orders on the NNLO predictions, contributions from heavy quarks (b,c)

Experimental considerations - II

Measurement of m_w

7.8M W \rightarrow µv 5.9M W \rightarrow ev 4.6fb⁻¹

39

28 measurements of m_W

$$\begin{pmatrix} W^+ \\ W^- \end{pmatrix} x \begin{pmatrix} 3e \\ 4\mu \\ \eta \\ bins \end{pmatrix} x \begin{pmatrix} p_T \\ m_T \end{pmatrix}$$

• Optimise the fitting range of p_T (32-45GeV) and m_T (66-99GeV) (vary range as systematic)

	W-boson charge W+	W ⁻ Combine	d
	Kinematic distribution $p_{\rm T}^{\rm t} = m_{\rm T} = p_{\rm T}^{\rm t}$	$p_{\rm T}^{\iota} m_{\rm T} p_{\rm T}^{\iota} m_{\rm T}$	ıΤ
Decay channel $W \to ev$ $W \to \mu v$ Kinematic distribution $p_T^\ell m_T p_T^\ell m_T$	$\begin{array}{ccc} \delta m_W \text{ [MeV]} \\ \text{Fixed-order PDF uncertainty} \\ A \ \ & 2.0 \\ 2.4 \\ 3.0 \\ 3.4 \\ 3.4 $	0 14.2 8.0 8.	.7
δmw [MeV	AZ tule 5.0 5.4 Charm-quark mass 12 15 1	2 - 5 - 12 - 1	.4 5
FSR (real) $< 0.1 < 0.1 < 0.1 < 0.1$	Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation 5.0 6.9 5	6.9 5.0 6	.9
Pure weak and IN corrections 3.3 2.5 3.5 2.5	Parton shower PDF uncertainty 3.6 4.0	.6 2.4 1.0 1	.6
FSR (pair production) 3.6 0.8 4.4 0.8	Angular coefficients 5.8 5.3 5	.8 5.3 5.8 5.	.3
Total 4.9 2.6 5.6 2.6	Total 15.9 18.1 14	.8 17.2 11.6 12.	.9
		2.2.41 Combined	
$ \eta_{\ell} $ range [0.0, 0.8] [0.8, 1.4] [1.4, 2.0] [2.0, 2.4]	Combined η_ℓ range [0.0, 0.6] [0.0, 1.2] [1.2 Kinematic distribution $p_\ell^\ell m_T p_\ell^\ell m_T p_\ell^\ell$	$m_{\rm T} = p_{\rm T}^{\ell} = m_{\rm T}$	
Kinematic distribution $p_{\rm T}^{t} m_{\rm T} p_{\rm T}^{t} m_{\rm T} p_{\rm T}^{t} m_{\rm T} p_{\rm T}^{t} m_{\rm T} p_{\rm T}^{t} m_{\rm T}$	$p_{\rm T}^t m_{\rm T}$ $\delta m_{\rm W}$ [MeV]	···1 PT ···1	
δm_W [MeV]	Energy scale 10.4 19.3 10.8 10.1 16.1	17.1 8.1 8.0	
Momentum scale 8.9 9.3 14.2 15.6 27.4 29.2 111.0 115.4	8.4 8.8 Energy resolution 5.0 6.0 7.3 6.7 10.4	15.5 3.5 5.5	
Momentum resolution 1.8 2.0 1.9 1.7 1.5 2.2 3.4 3.8	1.0 1.2 Energy linearity 22 4.2 5.8 8.9 8.6	10.6 3.4 5.5	
Sagitta bias 0.7 0.8 1.7 1.7 3.1 3.1 4.5 4.3	0.6 0.6 Energy tails 2.5 5.5 2.5 5.5 2.5 Reconstruction efficiency 10.5 8.8 9.9 7.8 14.5	3.3 2.3 3.3 110 72 60	
Reconstruction and	Identification efficiency 10.4 7.7 11.7 8.8 16.7	12.1 7.3 5.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7 2.2 Trigger and isolation efficiencies 0.2 0.5 0.3 0.5 2.0	2.2 0.8 0.9	
Trigger efficiency 5.6 5.0 7.1 5.0 11.8 9.1 12.1 9.9	4.1 3.2 Charge mismeasurement 0.2 0.2 0.2 0.2 1.5	1.5 0.1 0.1	
Total 11.4 11.4 16.9 17.0 30.4 31.0 110 116.1	9.8 9.7 Total 19.0 17.5 21.1 19.4 30.7	30.5 14.2 14.3	
	Kinematic distribution p_{μ}^{ℓ} m		
W-boson charge $W^+ W^- C$ Kinematic distribution $p_{\pm}^{\ell} m_T p_{\pm}^{\ell} m_T$	Decay channel $W \rightarrow ev W \rightarrow \mu v W \rightarrow ev W \rightarrow \mu v$		
$\frac{1}{5} \frac{1}{m_{1}} \frac{1}{p_{1}} \frac{1}{p_{$	$\frac{W - boson charge}{W^+ W^- W^+ W^- W^+ W^- W^+ W^-}$	_	
$\langle u \rangle$ scale factor 0.2 1.0 0.2 1.0	$\frac{\delta m_W [\text{MeV}]}{2 1.0}$		
$\Sigma \bar{E}_{\rm T}$ correction 0.9 12.2 1.1 10.2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Residual corrections (statistics) 2.0 2.7 2.0 2.7 2.	0 2.7 $Z \rightarrow \mu\mu$ (fraction, shape) 3.5 4.5 4.3 5.2		
Residual corrections (interpolation) 1.4 3.1 1.4 3.1 1. Residual corrections (Z + Wattranslation) 0.2 5.8 0.2 4.2 0	4 3.1 $Z \to \tau \tau$ (fraction, shape) 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.3 5.1 UVV V/Z Z G (, ;) 0.1 0.1 0.1 0.1 0.4 0.4 0.2 0.4		
Residual contections ($Z \rightarrow w$ extrapolation) 0.2 5.8 0.2 4.5 0	$\frac{2}{2}$ $\frac{5.1}{5.1}$ WW, WZ, ZZ (fraction) 0.1 0.1 0.1 0.1 0.4 0.4 0.5 0.4 Top (fraction) 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3		
Total 2.6 14.2 2.7 11.8 2.	6 13.0 Multijet (fraction) 3.2 3.6 1.8 2.4 8.1 8.6 3.7 4.6		
	Multijet (share) 3.8 3.1 1.6 1.5 8.6 8.0 2.5 2.4	_	
HO EW OCD model	Total 6.0 6.8 4.3 5.3 12.6 13.4 6.2 7.4	_	
		_	
VIUON Electron			
recoil bkg			
	19MeV		
		10	
		40	

The final result

- Combine the measurements into one determination of m_w
 - $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ = 80370 ± 19 MeV,

 $m_{W^+} - m_{W^-} = -29 \pm 28$ MeV.

MULTIPLE W,Z,γ PRODUCTION: cross sections and aT/QGC

Diboson cross-section measurements

As with single-boson production, diboson cross-sections measurements are made and confronted to theory expectations \rightarrow rather good agreement with the SM!

44

Examples of diboson cross section measurements

WZ@13TeV Phys. Lett. B 762 (2016) 1

- Fiducial cross-section ratios W+Z/W-Z:
 - sensitive to PDFs
- Benefit from cancellation of sys uncertainties
- Syst+lumi: $5\% \rightarrow 2\%$ (but stats dominated)

 Results also used to test pQCD in low bkg (unlike WW), high cross-section (unlike ZZ) environment

ZZ@13TeV Phys. Rev. Lett. 116 (2016) 101801

- Cross sections: fiducial and total
- Very much stats dominated
- ~ equal contributions from theory, experiment, luminosity

- Test EW sector of SM: gauge boson self-interactions
 - anomalous Triple Gauge Couplings (aTGC)
- SM multiboson production a source of bkg for:
 - Higgs production (e.g. $H \rightarrow WW$, ZZ)
 - New physics (e.g. new resonances \rightarrow VV)

TGC

Effective Lagrangian formalism

- General V V' V" vertex
- Tree level some TGCs non-zero:
 - γWW, ZWW
- Other TGCs zero at tree level but nonzero contributions at higher order
- Couplings such that SM values = 0 or 1
 - For SM=1 \rightarrow deviation \wedge from 1
- Leptonic decays of V ($W \rightarrow \ell v, Z \rightarrow \ell \ell, vv$)
- Note: terms in Lagrangian would lead to unitarity violation vs. \sqrt{s} . New physics interactions at scale Λ needed
 - form factor parameterisation

 $f_{i}^{V} = f_{i0}^{V} / (1 + \hat{s} / \Lambda^{2})^{n}$

Effect Field Theory approach

- Particle content of SM unchanged, add to Lagrangian linear combination of dimension-six operators: c_i/Λ^2
- Not considered here

Recent results: aTGCs

WW@8TeV JHEP 09 (2016) 029

- aTGCs extracted from leading lepton p_{T}
- NLO EW corrections (signif. at high p_{T})

Zγ@8TeV Phys. Rev. D 93, 112002 (2016)

- Includes $7 \rightarrow vv!$
 - Missing E_{T} requirements
 - aTGCs extracted from $Z\gamma$ fiducial cross section with high E_{τ}^{γ} (>250GeV for $\ell \ell \gamma_{\tau}$ >400GeV $v\bar{v}\gamma$) with exclusive zero-jet
 - Stats dominated
 - aTGC predictions from MCFM

49

anomalous Quartic Gauge Couplings

- Higgs field: f_{Si}/Λ^4 , i=0,1
- Field strengths SU(2)_L, U(1)γ: f_{Ti} /Λ⁴, i=0-2,5-9

)GC

■ Both: f_{Mi} /Λ⁴, i=0-7

Dimension-8 operators and quartic vertices

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	Х	Х						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	Х	Х	Х	Х	Х	Х	Х		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	Х	Х	Х	Х	Х		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			Х			Х	Х	Х	Х

M. Baak et al. arXiv:1310.6708

Table 1-16. Quartic vertices modified by each dimension-8 operator are marked with X.

$$\begin{split} \mathcal{O}_{S,0} &= \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] , & \mathcal{O}_{M,0} = \operatorname{Tr} \left[W_{\mu\nu}W^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] , & \mathcal{O}_{T,0} = \operatorname{Tr} \left[W_{\mu\nu}W^{\mu\nu} \right] \times \operatorname{Tr} \left[W_{\alpha\beta}W^{\alpha\beta} \right] , \\ \mathcal{O}_{S,1} &= \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] , & \mathcal{O}_{M,1} = \operatorname{Tr} \left[W_{\mu\nu}W^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] , & \mathcal{O}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu}W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\beta\nu}W^{\nu\alpha} \right] , \\ \mathcal{O}_{M,2} &= \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] , & \mathcal{O}_{T,5} = \operatorname{Tr} \left[W_{\mu\nu}W^{\mu\beta} \right] \times B_{\alpha\beta}B^{\alpha\beta} , \\ \mathcal{O}_{M,3} &= \left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] , & \mathcal{O}_{T,6} = \operatorname{Tr} \left[W_{\alpha\mu}W^{\mu\beta} \right] \times B_{\beta\beta}B^{\alpha\nu} , \\ \mathcal{O}_{M,4} &= \left[(D_{\mu}\Phi)^{\dagger} W_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} , & \mathcal{O}_{T,6} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta} \\ \mathcal{O}_{M,5} &= \left[(D_{\mu}\Phi)^{\dagger} W_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu} , & \mathcal{O}_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha} . \\ \mathcal{O}_{M,6} &= \left[(D_{\mu}\Phi)^{\dagger} W_{\beta\nu}W^{\beta\mu}D^{\mu}\Phi \right] , \\ \mathcal{O}_{M,7} &= \left[(D_{\mu}\Phi)^{\dagger} W_{\beta\nu}W^{\beta\mu}D^{\nu}\Phi \right] , \end{split}$$

Recent results: aQGCs

WWW@8TeV (Eur. Phys. J. C 77 (2017) 141)

- *lvlvlv*: categorised by number of same-flavour opposite-sign leptons SFOS=0, 1, 2
- $\ell \nu \ell \nu j j$: $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm} + 2$ jets consistent with m_W
 - Specific requirements on missing E_T and m_l to enhance signal, and veto Z background

W

W

W

W

W

W

51

W

- VBFNLO to produce events with aQGCs with coefficients f_{S0}/Λ^4 , f_{S1}/Λ^4
- profile likelihood incorporates observed and expected numbers of events for different aQGCs

Recent results: aQGCs

Zγγ@8TeV Phys. Rev. D 93 (2016) 112002

- VBFNLO to produce events with aQGCs with coefficients:
 - f_{T0}/Λ^4 , f_{T5}/Λ^4 , f_{T9}/Λ^4 , f_{M2}/Λ^4 , f_{M3}/Λ^4
- aQGCs extracted from exclusive zero-jet fiducial cross section for m_{γγ}>300 (200)GeV for ννγγ (ℓℓγγ)

WZ@8TeV Phys. Rev. D 93, 092004 (2016)

 WHIZARD to produce events with aQGCs with coefficients:

• $\alpha_4 \rightarrow f_{S0}/\Lambda^4$, $\alpha_5 \rightarrow f_{S1}/\Lambda^4$

- aQGCs extracted from fiducial cross section of WZ production with at least 2 jets, in phase space:
 - $|\Delta \phi(WZ)| > 2, \Sigma |p_T^{\ell}| > 250 \text{GeV}$
 - Without these requirements, set limit on vector-boson scattering production WZjj-EW

95% CL upper limit on $\sigma_{W^{\pm}Z jj - \text{EW} \to \ell' \nu \ell \ell}^{\text{fid.}}$ [fb]				
Observed	0.63			
Expected	0.45	52		

Vector boson scattering (VBS): W[±]γjj

- VBS VV \rightarrow VV where V= γ ,W, Z: key process to probe nature of EW symmetry breaking
 - Without a SM Higgs, longitudinally polarised VBS amplitude violates unitarity at ~1TeV!
 - Newly discovered Higgs boson could unitarise process
- V+V+jet+jet in final state \rightarrow both EW and QCD processes
- W[±]γjj production at 8TeV
 - Enhanced EW-induced $W\gamma$ +2j region: exactly 1 e or μ + E_T^{miss}
 - \geq 2 well separated jets in y, η , ϕ , high invariant mass m_{ii}>700GeV
 - ~10 (20) EW (QCD)-induced events expected
- 2.7σ significance of EW signal

Shape of distribution at high p_T^W used to extract aQGC limits on:

$$f_{M,0-7}/\Lambda^4$$
 , $f_{T,0-2}/\Lambda^4$, $f_{T,5-7}/\Lambda^4$

TOP-QUARK PHYSICS

Top production and decay: the many properties

Top quark pair production and decay

- Top quark pair $(t\bar{t})$ production is via the strong interaction
 - $t \leftarrow 15\%$ LHC 85% $\rightarrow g^{4\%}$

 \leftarrow 85% Tevatron 15%→

- Top quark subsequently decays ~100% to W + b: $t\bar{t} \rightarrow W^+W^-b\bar{b}$
 - W decays are hadronic or leptonic
- Dilepton channel: very clean but low rate
- Lepton+jets: clean and good rate
- Measure $t\bar{t}$ production cross section $\sigma(t\bar{t})$
 - Precise $\sigma(t\bar{t}) \rightarrow$ measurement of SM parameters: m_t and α_s
 - New physics could be hidden? New production modes or decays?

SM predictions: \rightarrow

stats vs. sys

Will be a trade off:

 \mathbf{q}

00000

t' or \tilde{t} ? New heavy quarks? • SUSY decays?

00000

 W^+

√s [TeV]	σ(<i>tī</i>) (ΝΝ [pb] (m _t	Uncert. [%]	
2	7.35		
7	177.3		4 / 0/
8	252.8	x100	~4-0%
13	824.2		

Dileptons

.epton+jets

~45%

~10%

All jets

~45%

g 70000

g 00000

, q

$t\bar{t}$: dilepton – I

How to reconstruct t, tbar, ttbar system?

- 2 opposite-sign leptons
 - Usually take e[±]µ[∓] to avoid Z→ee,µµ
- Several jets (two of them from b)
- Two unobserved v, both contributing to \vec{p}_{T}^{miss}
- Ambiguity: mapping partons/leptons to reco objects
 - Under-constrained system!
- e.g. apply additional constraints provided by event topology!
 - Scan $\eta(v)$, $\eta(\overline{v})$ for possible values e.g. between -5 to 5
- Equations can be solved with two possible solutions for each input $\eta(v)$, $\eta(\bar{v})$
 - Look at " E_T^{miss} " for each solution. See which $v + \overline{v} E_x$, E_y best corresponds to reco E_T^{miss}
 - Which solution maximises the weight, w?
 - Used to assign $\nu,\,\overline{\nu}$ to t, that
- Not always successful...
 - Redo assuming mismeasurements of objects
 - Smearing
 - If all else fails
 - Count is as inefficiency in reconstruction
 - e.g. 20% for signal in Eur. Phys. J. C77 (2017) 299

 $w = \exp\left(\frac{-\Delta E_x^2}{2\sigma_r^2}\right) \cdot \exp\left(\frac{-\Delta E_y^2}{2\sigma_r^2}\right),$

n(v)

57

W

 $\eta(v)$

$t\bar{t}$: dilepton – II cross section in a fiducial phase space at 13TeV

- Measure fundamental parameters of SM
 - $\sigma_{\text{single-top}} \sim |V_{\text{tb}}|^2 \rightarrow \text{CKM}$ and unitarity
 - ➡ V_{tb} measured at LHC, Tevatron: ~2-10%
- Bkg in Higgs and SUSY searches. Sensitive to new physics?

ONE MEASUREMENT IN SOME DETAIL...

- LO: (V-A), massless b is L-H so W can only be L,O
- Two Wtb vertices in each ttbar event:
 - can be studied with leptonic or hadronic analysers

Probing the Wtb vertex: W polarisation in ttbar events - II

Differential cross section of analyser (*l* or d-like):

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0$$
$$+ \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_\mathrm{L} + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_\mathrm{R}$$

- New physics could modify the structure of the Wtb vertex
- Structure of Wtb vertex can be expressed in a more general form using left- and righthanded vector (V_L, V_R) and tensor couplings (g_L, g_R) giving the Lagrangian:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\overline{b} \gamma^{\mu} (\mathbf{V}_{\mathrm{L}}\mathbf{P}_{\mathrm{L}} + \mathbf{V}_{\mathrm{R}}\mathbf{P}_{\mathrm{R}}) \operatorname{t} \mathbf{W}_{\mu}^{-} - \frac{g}{\sqrt{2}}\overline{b}^{i}$$

- V_L (= $V_{tb} \sim 1$ in SM) and V_R, g_L, g_R anomalous couplings (=0 in SM)
- ➡ Dimension-six operators, introduced in effective field theories can lead to non-zero values of V_R, g_L, g_R

- Selection efficiency ε different for each polarisation state, determines the number of selected events n_i
- Likelihood of sum of templates to data: get n_{bkg} and N_i

$$n_{\exp} = n_0 + n_L + n_R + n_{W+light} + n_{W+c} + n_{W+bb/cc} + n_{fake} + n_{rem. bkg}$$

W polarisation in ttbar events at $\sqrt{s}=8TeV - II$

-0.2

-0.4

-0.2

0.0

eptonic

0.2

0.4 Re(g_∟)

Various combinations of simultaneous fits of 4 categories with two analysers: best results

<u> </u>

Summary of previous helicity-fraction measurements

Top mass: one example

- m_t is a fundamental parameter: m_W , m_t , m_H together test the consistency of the SM
- Many techniques to extract m_t
 - Template method from dilepton events: $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell^+\ell^-\nu\bar{\nu}b\bar{b}$
- Exactly two opposite-sign leptons (ee, eμ, μμ) with at least two jets (one of them b-tagged)
- Templates: reconstructed m_{lb} of MC signal events for different m_t values (interpolate between points) and for backgrounds
- Unbinned LH fit to data with only m_t as the free parameter

• $m_t = 172.99 \pm 0.41 (stat) \pm 0.74 (sys)$ [±0.84(tot)], dominated jet-energy-scale uncertainties

Combined with 7TeV results (including correlations), which reduces uncertainty to 0.70GeV

Top-quark mass averages (Aug 2016)

ATLAS+CMS Preliminary	LHC top WG	m _{top} summary, √s = 7-8 1	TeV Aug 2016]
World Comb. Mar 2014, [stat total uncertainty	7 Includes Te	vatron		
m _{top} = 173.34 ± 0.76 (0.3	6 ± 0.67) GeV	m _{top} ± total (stat ± syst)	16 Ref.	
ATLAS, I+jets (*)		172.31± 1.55 (0.75±	1.35) 7 TeV [1]	
ATLAS, dilepton (*)		173.09 ± 1.63 (0.64 ±	: 1.50) 7 TeV [2]	
CMS, I+jets	┠╾┼╼┼╌┨	173.49 ± 1.06 (0.43 ±	: 0.97) 7 TeV [3]	
CMS, dilepton		172.50 ± 1.52 (0.43 ±	: 1.46) 7 TeV [4]	
CMS, all jets	┠╌┼╾╋╶┼╾┥	173.49 ± 1.41 (0.69 ±	: 1.23) 7 TeV [5]	
LHC comb. (Sep 2013)	⊢ † 	173.29 ± 0.95 (0.35 :	± 0.88) 7 TeV [6]	
World comb. (Mar 2014)		173.34 ± 0.76 (0.36 :	± 0.67) 1.96-7 TeV [7]	
ATLAS, I+jets		172.33 ± 1.27 (0.75 ±	: 1.02) 7 TeV [8]	
ATLAS, dilepton		173.79 ± 1.41 (0.54 ±	: 1.30) 7 TeV [8]	
ATLAS, all jets		175.1±1.8 (1.4±1.2) 7 TeV [9]	
ATLAS, single top		172.2 ± 2.1 (0.7 ± 2.0) 8 TeV [10]	
ATLAS, dilepton	⊢∔ ● ≣ − I	172.99 ± 0.85 (0.41±	0.74) 8 TeV [11]	
ATLAS, all jets		173.80 ± 1.15 (0.55 ±	: 1.01) 8 TeV [12]	
ATLAS comb. (June 2016)	⊨ ∖≂¦ ‡I	172.84 ± 0.70 (0.34 :	± 0.61) 7+8 TeV [11]	
CMS, I+jets	Held	172.35 ± 0.51 (0.16 ±	: 0.48) 8 TeV [13]	
CMS, dilepton		172.82 ± 1.23 (0.19 ±	: 1.22) 8 TeV [13]	
CMS, all jets	⊢⊣ ●∔- I	172.32 ± 0.64 (0.25 ±	: 0.59) 8 TeV [13]	
CMS, single top		172.60 ± 1.22 (0.77 ±	: 0.95) 8 TeV [14]	
CMS comb. (Sep 2015)	⊢∺ -I	172.44 ± 0.48 (0.13 :	± 0.47) 7+8 TeV [13]	Uncertainty ~0.5GeV
(*) Superseded by results shown below the line	LTA [1] LTA [5] TBM, [5] LTA [5] Lau[1] [4]	ks-COMF-3813-645 [6] A TLAB-COMF-381 ks-COMF-3813-677 [7] arX0x:1480.4427 12 (2012):166 [8] Buc-Phys.J.075 (2 myss.J.072 (2012):2282 [9] Buc-Phys.J.075 (2 myss.J.072 (2012):2282 [9] Buc-Phys.J.075 (2	3-162 [11] xX1x-1906.02179 [12] xTLAD-CONF-3916-964 [15] 300 [13] Phys.Rec.DB3 (2016) 072096 9151 358 [14] CMB-PAB-TOP-15-001 164055 [14] CMB-PAB-TOP-15-001	
				J
165 170	17:	5 180	185	
	m _{top}	[GeV]		68

BEVERAGES

pp collisions...

How to measure a cross section?

Single-boson production:

- Importance of various kinematic variables
- Orders and generators
- V+jets, γ+jets
- W,Z production vs η & impact on PDFs
- Z-production angular coefficients
- W mass

Multiboson production:

- diboson cross sections: WZ, ZZ
- aTGCs: WZ, WW, Zγ
- aQGCs: WWW, Ζγγ
- vector-boson scattering

· DESSERTS ·

Top-quark production and decay:

- Comparisons at different \sqrt{s}
- dilepton ttbar
- single top
- W polarisation in ttbar (Wtb vertex)
- top mass from dilepton

· FRUIT ·

Lots of pedagogical back-up slides...

 How to measure lumi, definitions, pileup, MB, UE...

Back up...

Proton-proton collisions

Proton-proton cross section: $\sigma^{pp}_{tot}(s) = \sigma_{elastic}(s) + \sigma_{inelastic}(s)$ At centre-of-mass energy $\sqrt{s} = 14$ TeV (LHC): • σ^{pp}_{tot} (s) \approx 100mb • $\sigma_{\text{elastic}}(s) \approx 20 \text{mb}$ • $\sigma_{\text{inelastic}}(s) \approx 80 \text{mb}$ Note: 1 millibarn (mb) = $10^{-31}m^2$ = 10^{-27} cm² (i.e. units of area) Orders of magnitude of event rates for various physics channels for $L=10^{34}$ cm⁻²s⁻¹: Inelastic: 10⁹ Hz 10² Hz $W \rightarrow |v|$: 10¹ Hz tt production : 1 Hz Higgs

Inelastic collisions per bunch crossing

- Extract number of inelastic collisions per bunch crossing (BC)
 μ σ
 Δ ε
- LHC: $\langle \mu \rangle = \sim 70-80 \text{ mb x } 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ x } 25 \text{ ns } / 0.8 = 20-25$
 - On average, there are >20 simultaneous collisions per bunch crossing at high luminosity
- Big change compared to recent machines:

•	LEP:	$\Delta t = 22 \text{ ms}$	and	<µ> << 1
•	SppS:	$\Delta t = 3.3 \text{ ms}$	and	$<\mu>$ \approx 3
•	HERA:	$\Delta t = 96 \text{ ns}$	and	<µ> << 1

• Tevatron: $\Delta t = 0.4 \text{ ms}$ and $\langle \mu \rangle \approx 2$
How do you measure the luminosity? - Part I

- Bunch-by-bunch luminosity
 - Dedicated lumi monitor (LUCID), beam conditions monitor (BCM), inner tracking detector to count the number of primary vertices
- Bunch blind:
 - Currents in the calorimeters
- Should all give consistent results!

How do you measure the luminosity? - Part II

- Beam-separation scan to get the absolute lumi calibration
- Peak luminosity is a convolution of the beam widths

$$\mathcal{L}_{peak} = f_r n_1 n_2 \iint_{\substack{\rho_1(x, y) \\ \rho_2(x, y) \\ \rho_2(x, y) \\ \rho_2(x, y) \\ dx \\ dy \\ = f_r n_1 n_2 \frac{1}{2\pi \Sigma_x \Sigma_y}$$
Bunch population product Convoluted beam widths

- Method assumed that you can factorise scan into x and y components
 - Not totally true

How do you measure the luminosity? - Part II

How do you measure the luminosity? - Part II

- Example of σ_{vis} measured in 2011 using the LUCID detector
 - Two different scans (VII, VIII) as a function of which beam crossing (BCID) where you perform the scan

Luminosity uncertainty: 2011 data: 1.8%, 2012: 1.9%, 2015: 2.1%

Jet kinematics: η

 Angular separations in θ are not invariant under longitudinal boosts: a given set of hadrons will appear more collimated depending on the boost. To treat equivalently partons with same p_T but different boost → use rapidity y

- y is additive under Lorentz transformation, corresponding to a boost in the z direction: rapidity differences are boost invariant
- In practice, use pseudorapidity variable η , as this is what is measured in the detector. y and η coincide in the limit m $\rightarrow 0$

$$\eta \equiv -\ln\left(\tan\frac{\theta}{2}\right)$$
$$\eta = 0; \ \theta = 90 \qquad \eta = 1; \ \theta \sim 40$$
$$\eta = 2.5; \ \theta \sim 10 \quad \eta = 5; \ \theta \sim 0.8$$

The underlying event (UE)

- Underlying event (UE): is the soft part associated with the hard scattering
 - Everything except the two outgoing hard scattered jets but has some correlations with the hard scatter
 - Contains hard components: e.g. initial/final state radiation, additional parton interactions (becomes significant at LHC)
 - Contains soft components: Beam-beam remnants
- UE: cannot be described by pQCD
 - Phenomenological models, tuned with LHC data

The underlying event (UE)

- Must understand the UE as it is an important "background" to jets and missing transverse energy E_T^{miss} (=negative of the vector sum of the calorimeter E_T)
 - generates E_T flow around the hard scatter (shifting up the signal)
 - generates fake jets not related to the hard scatter
 - distorts the E_T^{miss} resolution
- Can study UE by looking at region transverse to the hard scatter axis
 - Tune Monte Carlo event generators to data

Avg P_T^{sum} for stable particles per unit area in η - ϕ in transverse region as a function of p_T (lead)

<u>Eur.Phys.J. C71 (2011) 1636</u>

<u> </u>

The inelastic term

- Recall: $\sigma^{pp}_{tot} = \sigma_{elastic} + \sigma_{inelastic}$
- Can express inelastic term as:
 - $\sigma_{\text{inelastic}} = \sigma_{\text{single diffractive,sd}} + \sigma_{\text{double diffractive,dd}} + \sigma_{\text{non-diffractive,nd}}$
- Single (double) diffractive:
 - $pp \rightarrow pX$ (XX)
- Diffractive events: show clear gap
- Non-diffractive:
 - $pp \rightarrow X$
- Non-diffractive: gaps which naturally occur between 2 systems moving in opposite directions filled by particles moving in the central region

Minimum bias events (MB)

- What is a minimum bias event?
 - What a theorist might say: any non-diffractive inelastic event
 - What an experimentalist might say: anything that triggers my minimum bias trigger!

- This effectively is any non-single diffractive (nsd) inelastic event
- Minimum bias cross section not that different from total inelastic cross section: $\sigma_{inelastic}{\sim}80{-}85mb,~\sigma_{nsd}{\sim}65{-}70mb$
- Governed by the same non-perturbative QCD physics as the underlying event (but has no correlation to the hard scatter)
- Depends on instantaneous luminosity
 - Number of MB per bunch crossing μ ~25 at L=10³⁴, ~2.5 at L=10³³, ~0.025 at L=10³¹

Impact of minimum bias events

pile-up (in-time)

- Protons are not point-like objects!
- Protons are really small! 10⁻¹⁵ m
 - Collide many protons simultaneously in the hopes that one or more collide
- Every time the beams cross, more than just one pair of protons can interact!

Mean # of interactions per beam crossing

Collins-Soper frame (PRD16 (1977) 2219)

Definition of θ , ϕ measured in the experiment: CS frame

- z-axis: in Z rest frame, external bisector of angle between the two protons
 - +z: direction of positive longitudinally-polarised Z in lab frame
- y-axis: normal to plane spanned by the two incoming protons
- x-axis: right-handed cartesian system
- Polar θ_{CS} and azimuthal ϕ_{CS} angles: calculated with respect to negatively charged lepton

