Higgs II : Higgs at the LHC CTEQ Summer School 2017

Ciaran Williams

- Life of the Higgs : Production mechanisms at the LHC, Heavy top EFT.
- Death of the Higgs: Decays of the Higgs boson.
- Future of the Higgs: Outstanding issues, future measurements and prospects.

Life of the Higgs boson.

At pp colliders gluon fusion is the dominant Higgs production mechanism

Since the gluon is a massless particle, the Higgs couples to it via a virtual top quark loop.

The task is considerably more complicated due to the presence of the top quark loop.

You've probably seen that loop diagrams often generate infinities. Do we expect this process to have these issues? Why?

Lets see how we go about calculating this amplitude.

$\epsilon^{\mu}(p)^{p}$
We can write the amplitude as the following tensor combination.

$$
\mathcal{A} \sim A_{\mu \nu} \epsilon^{\mu}(p) \epsilon^{\nu}(q)
$$

If we were being smart then we would realize that the form of A is constrained since

$$
q_{\nu} \epsilon^{\nu}(q)=0
$$

So we should find,

$$
A^{\mu \nu}=B g^{\mu \nu}+C p^{\nu} q^{\mu}
$$

In fact, the Ward identity completely fixes the tensor structure.

$$
A^{\mu \nu}=B\left(g^{\mu \nu} \frac{m_{H}^{2}}{2}-p^{\nu} q^{\mu}\right)
$$

Note that as required,

$$
A^{\mu \nu} p_{\mu}=A^{\mu \nu} q_{\nu}=0
$$

We can use this to drop the more complicated structure from our calculation (i.e. we calculate B as simply as possible!)

Using the Feynman rules we find that this diagram gives us the following contribution

We define the numerator as follows

$$
\left.\mathcal{N}_{\mu \nu}=\operatorname{Tr}\left((\ell+p)-m_{t}\right) \gamma_{\mu}\left(\ell-m_{t}\right) \gamma_{\nu}\left((\ell-q)-m_{t}\right)\right)
$$

(implicitly defining the momenta as slashed momenta, but dropping the slashes for readability)
And the denominator as follows,

$$
\mathcal{D}=\left((\ell+p)^{2}-m_{t}^{2}\right)\left(\ell^{2}-m_{t}^{2}\right)\left((\ell-q)^{2}-m_{t}^{2}\right)
$$

Lets first look at the denominator, we can use the usual Feynman parameter decomposition

$$
\frac{1}{D_{1} D_{2} D_{3}}=2 \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{\left(x D_{1}+y D_{2}+(1-x-y) D_{3}\right)^{3}}
$$

$$
\begin{aligned}
& \epsilon^{\mu}(p)^{p} \mathbf{0 0 0 0 0 0 0 0 0} \ell+p \\
& \epsilon^{\nu}(q) q r 00000000 \\
& \frac{1}{D_{1} D_{2} D_{3}}=2 \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{i \mathcal{A}=-\left(-i g_{s}\right)^{2} \operatorname{Tr}\left(t^{a} t^{b}\right)\left(\frac{-i m_{t}}{v}\right) \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{\mathcal{N}_{\mu \nu}}{\mathcal{D}} i^{3} \epsilon^{\mu}(p) \epsilon^{\nu}(q)}{\left(x D_{1}+y D_{2}+(1-x-y) D_{3}\right)^{3}}
\end{aligned}
$$

So we can use this trick to group all of the loop momenta dependence into one term (at the cost of additional integrals).

$$
\frac{1}{\mathcal{D}}=2 \int d x d y \frac{1}{\left[\ell^{2}-m_{t}^{2}+2 \ell \cdot(p x-q y)\right]^{3}}
$$

This doesnt look like much of an improvement, however if we make the following shift

$$
\ell \rightarrow \ell-p x+q y=\ell^{\prime}
$$

Then

$$
\frac{1}{\mathcal{D}}=2 \int d x d y \frac{1}{\left[\left(\ell^{\prime}\right)^{2}-m_{t}^{2}+2 p \cdot q x y\right]^{3}}
$$

$$
\epsilon^{\mu}(p)^{p}
$$

We can simplify this even more since $2 p \cdot q=m_{H}^{2}$
So $\frac{1}{\mathcal{D}}=2 \int d x d y \frac{1}{\left[\left(\ell^{\prime}\right)^{2}-m_{t}^{2}+m_{H}^{2} x y\right]^{3}}$
Next we have to express the numerator in terms of the shifted momentum

I'll leave the entire calculation as an exercise and instead use our result that we can get everything from the $p^{\mu} q^{\nu}$ term

$$
N_{\mu \nu}\left(\ell^{\prime}, p_{\nu} q_{\mu}\right)=4(1-4 x y) m_{t} p_{\nu} q_{\mu}
$$

Putting this all together we see that our (partial) diagram can be written as follows

$$
i \mathcal{A}_{p q}=-\delta^{a b} \frac{2 g_{s}^{2} m_{t}^{2}}{v} \int \frac{d^{d} \ell^{\prime}}{(2 \pi)^{d}} \int d x d y \frac{2 p^{\nu} q^{\mu}(1-4 x y)}{\left[\left(\ell^{\prime}\right)^{2}-m_{t}^{2}+m_{H}^{2} x y\right]^{3}} \epsilon^{\mu}(p) \epsilon^{\nu}(q)
$$

Great! Now we want to do the loop momenta integral
You can look this up in your favorite QFT textbook,

$$
\int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{1}{\left(\ell^{2}-\Delta\right)^{3}}=-\frac{i(4 \pi)^{\epsilon}}{32 \pi^{2}} \Gamma(1+\epsilon) \Delta^{-1-\epsilon}
$$

Note that this is finite. (The pole cancellation for the other tensor structure is more intricate).

Finally we can write the whole tensor structure as a finite integral

$$
\mathcal{A}_{p q}=\frac{\alpha_{s} m_{t}^{2}}{\pi v} \delta^{a b} p_{\nu} q_{\mu} \int d x d y\left(\frac{1-4 x y}{m_{t}^{2}-m_{H}^{2} x y}\right) \epsilon^{\mu}(p) \epsilon^{\nu}(q)
$$

Note that we are still some way away from a physical cross section (we need to restore the full tensor structure, include the second diagram (factor of 2), square the amplitude, convolve with PDFs...)

However, we can actually learn a lot from the above expression
If we define

$$
I(s)=\int d x d y\left(\frac{1-4 x y}{1-s x y}\right)
$$

Then

$$
\mathcal{A}_{p q}=\frac{\alpha_{s}}{\pi v} \delta^{a b}(\epsilon(p) \cdot q)(\epsilon(q) \cdot p) I\left(m_{H}^{2} / m_{t}^{2}\right)
$$

Lets look at the ratio of $(l(s) / l(0))^{\wedge} 2$ as a function of s

Lets look at the ratio of $(l(s) / l(0))^{\wedge} 2$ as a function of s

Slowly growing function as a function of s

Lets look at the ratio of $(I(s) / l(0))^{\wedge} 2$ as a function of s

Slowly growing function as a function of s
We see that for the 125 GeV Higgs, the ratio is around 1.05

We see that the effect of the top quark is a small correction to the full result, motivating us to write the amplitude in terms of the s->0 limit.

$$
\mathcal{A}=-\frac{\alpha_{s}}{3 \pi v} \delta^{a b}\left(g^{\mu \nu} \frac{m_{H}^{2}}{2}-p^{\nu} q^{\mu}\right) \epsilon_{\mu}(p) \epsilon_{\nu}(q)
$$

- The amplitude is independent of the top quark mass
- If heavier fermions were present, they would scale linearly with the amplitude

When we take the heavy top limit, we decouple the top quark from the calculation.

This is equivalent to working in an Effective Field Theory in which the top quark is integrated out.
I.e. we could have calculated our amplitude by adding the follow term to our QCD Lagrangian

$$
\mathcal{L}_{\mathrm{eff}}=-\frac{A}{4} H G_{a}^{\mu \nu} G_{\mu \nu}^{a}
$$

Lets look at this a little more.

This term has mass dimension 5

$$
\mathcal{L}_{\mathrm{eff}}=-\frac{A}{4} H G_{a}^{\mu \nu} G_{\mu \nu}^{a}
$$

So A has to have an inverse mass dimension, we can get A from our calculation.

$$
A=\frac{\alpha_{s}}{3 \pi v}\left(1+\mathcal{O}\left(\alpha_{s}\right)\right)
$$

We have matched our EFT operator to the full theory calculation. We can now use this Lagrangian to calculate other quantities.

We can expand the field strength contributions to get the Feynman rules for the coupling of the Higgs to two, three and four gluons.

The benefit of the EFT is that it allows us to extend the reach of perturbation to higher orders.

For Higgs production this is essential, e.g. expanding the cross section to NNLO we see that

$$
\sigma^{N N L O}(g g \rightarrow H)=12.937 \times(1+1.28+0.77) \mathrm{pb}
$$

The benefit of the EFT is that it allows us to extend the reach of perturbation to higher orders.

For Higgs production this is essential, e.g. expanding the cross section to NNLO we see that

$$
\sigma^{N N L O}(g g \rightarrow H)=12.937 \times(1+1.28+0.77) \mathrm{pb}
$$

LO cross section (we just looked at this (almost))

The benefit of the EFT is that it allows us to extend the reach of perturbation to higher orders.

For Higgs production this is essential, e.g. expanding the cross section to NNLO we see that

$$
\sigma^{N N L O}(g g \rightarrow H)=12.937 \times(1+1.28+0.77) \mathrm{pb}
$$

LO cross section (we just looked at this (almost))

NLO corrections are more than 100\%!

The benefit of the EFT is that it allows us to extend the reach of perturbation to higher orders.

For Higgs production this is essential, e.g. expanding the cross section to NNLO we see that

$$
\sigma^{N N L O}(g g \rightarrow H)=2.937 \times(1+1.28+0.77 \mathrm{pb}
$$

LO cross section (we just looked at this (almost))

NLO corrections are more than 100\%!

NNLO Corrections are also huge!

The benefit of the EFT is that it allows us to extend the reach of perturbation to higher orders.

For Higgs production this is essential, e.g. expanding the cross section to NNLO we see that

$$
\sigma^{N N L O}(g g \rightarrow H)=2.937 \times(1+1.28+0.77 \mathrm{pb}
$$

LO cross section (we just looked at this (almost))

NLO corrections are more than 100% !

NNLO Corrections are also huge!
Can you imagine what would have happened without higher order QCD corrections?.....

Cutting edge of QCD

Impressively we now have predictions for Higgs production accurate to N3LO.

Given how large the NNLO coefficient is, this correction was critical to understand for the LHC program.

Anastasiou et al. 1602.00695

Anastasiou et al. 1602.00695

We see that finally the perturbative expansion is under control, and that the previous order lies within the uncertainty band of the NNLO one.

We saw that we could derive an EFT in which we made the top mass infinitely heavy. Is this always a good approximation?

No! If we probe scales near the top mass we see deviations from the EFT result.

We can achieve this by looking at the Higgs at high transverse momentum

$$
p_{T} \sim m_{t} \Longrightarrow \hat{s} \sim 2 m_{t}^{2}
$$

So we have to be a little more careful when we study the Higgs at finite momentum (e.g. in differential distributions)

The state of the art for a differential Higgs is to have $\mathrm{H}+\mathrm{j}$ at NNLO in the EFT, reweighed by the LO Full theory ratio.

Some progress towards NLO in the full theory (Neumann, CW 1609.00367)

Chen et al.1607.08817

Subleading production

The second largest Higgs production mechanism corresponds to Vector Boson Fusion.

Complementary to gg fusion, since VBF probes couplings to vector bosons (versus top quark)

Know to NNLO in QCD (Cacciari et al 1506.02660)

Death of the Higgs boson.

Firstly, lets recall the notation used for unstable particles in QFT.

Firstly, lets recall the notation used for unstable particles in QFT.

The rate for each decay is called a partial width.

$$
\sim \overbrace{b \bar{b}}^{\sim}[\sqrt{ }+]
$$

Firstly, lets recall the notation used for unstable particles in QFT.

Summing over all the partial widths yields the total width.

Firstly, lets recall the notation used for unstable particles in QFT.

Finally, the branching ratio defines the relative fraction for a particular decay.

$$
B R(H \rightarrow X)=\frac{\Gamma_{X}}{\Gamma_{t o t}}
$$

The 125 GeV Higgs is one of the most interesting to study

Phenomenologically the diboson and bb decays are most relevant

We can jump straight to the matrix element squared here,

$$
\left|\mathcal{M}_{H \rightarrow b\left(p_{1}\right) \bar{b}\left(p_{2}\right)}\right|^{2}=\frac{N_{c} g_{W}^{2} m_{b}^{2}}{4 m_{W}^{2}}\left(4 p_{1} p_{2}-4 m_{b}^{2}\right)
$$

The partial width is obtained from Fermi's Golden Rule $\quad \Gamma=\frac{\left|\mathbf{p}_{\mathbf{2}}\right|}{8 \pi m_{H}^{2}}|\mathcal{M}|^{2}$

So that

$$
\Gamma_{H \rightarrow b \bar{b}}=g_{W}^{2} N_{c} \frac{m_{b}^{2} m_{H}}{32 \pi m_{W}^{2}}\left(1-\frac{4 m_{b}^{2}}{m_{H}^{2}}\right)^{3 / 2}
$$

Here the matrix element is given by (on-shell W's)

$$
\left|\mathcal{M}_{H \rightarrow W^{+}\left(p_{1}\right) W-\left(p_{2}\right)}\right|^{2}=g_{W}^{2} m_{W}^{2}\left(2+\frac{\left(p_{1} p_{2}\right)^{2}}{m_{W}^{4}}\right)
$$

With a partial width given by
$\Gamma_{H \rightarrow W W}=g_{W}^{2} \frac{m_{H}^{3}}{64 \pi m_{W}^{2}}\left(1-\frac{4 m_{W}^{2}}{m_{H}^{2}}\right)^{1 / 2}\left(1-4 \frac{m_{W}^{2}}{m_{H}^{2}}+12 \frac{m_{W}^{4}}{m_{H}^{4}}\right)$

We see that approximately the widths scale like

$$
\Gamma_{H \rightarrow b \bar{b}} \sim\left(\frac{m_{b}^{2}}{m_{W}^{2}}\right) \Gamma_{H \rightarrow W W}
$$

So in the regime where bb dominates (before WW becomes on-shell) the Higgs width is suppressed by the
 lightness of the b quark.

In the region in which WW dominates the Higgs width is much larger (and more like the W/Z bosons)

Future of the Higgs boson

We are beginning to get to know the Higgs quite well (see Bruce's talks)

In order to test the Higgs mechanism we want to see the coupling promotional to the mass of the particles

Each decay mode is measured and cross sections are determined using the Narrow width approximation,

$$
\sigma_{i \rightarrow H \rightarrow f}=\sigma_{i \rightarrow H} \times B R_{H \rightarrow f} \propto \frac{\sigma_{i \rightarrow H} \sigma_{H \rightarrow f}}{\Gamma_{H}}
$$

Ultimately we want to extract information regarding the Higgs coupling to SM particles, which is a difficult task since.

$$
\sigma_{i \rightarrow H \rightarrow f} \propto \frac{g_{i}^{2} g_{f}^{2}}{\Gamma_{H}} \sim \frac{g_{i}^{2} g_{f}^{2}}{\sum_{j} g_{j}^{2}}
$$

such that global fits are required to determine the couplings.

In the resonance region the "onshell" cross section is dominated by the width.

$$
\sigma_{i \rightarrow X \rightarrow f}^{o n} \sim \frac{g_{i}^{2} g_{f}^{2}}{\Gamma_{X}}
$$

Away from the resonance region, the "off-shell" cross section does not depend on the width.

$$
\sigma_{i \rightarrow X \rightarrow f}^{o f f} \sim g_{i}^{2} g_{f}^{2}
$$

So if we are able to measure the off shell cross section, we can isolate process specific couplings.

Energy	$\sigma_{\text {peak }}^{H}$	$\sigma_{\text {off }}^{H}$
7 TeV	0.203	0.044
8 TeV	0.255	0.061

* Since $\Gamma_{\mathrm{H}} / \mathrm{M}_{\mathrm{H}}=1 / 30,000$ one might expect off-shell corrections to be very small.
* However this is not the case in decays to VV , there is a sizable contribution to the total cross section away from the peak.
* This arises from the proximity of the two VV threshold, and is further enhanced by the threshold at twice the top mass.

$$
\begin{aligned}
& i\left[\eta^{\mu \nu}\left(g m_{W}+g_{h w w}^{(1)} p_{2} \cdot p_{3}+g_{h w w}^{(2)}\left(p_{2}^{2}+p_{3}^{2}\right)\right)\right. \\
& \left.\quad-g_{h w w}^{(1)} p_{2}^{\nu} p_{3}^{\mu}-g_{h w w}^{(2)}\left(p_{2}^{\nu} p_{2}^{\mu}+p_{3}^{\nu} p_{3}^{\mu}\right)-\epsilon^{\mu \nu \rho \sigma} \tilde{g}_{h w w} p_{2 \rho} p_{3 \sigma}\right]
\end{aligned}
$$

The SM has some problems, its not natural!

A natural theory would thus predict a (very) heavy Higgs.

Naturalness can be restored if we add in some new contributions!

The search for the question of whether we live in a natural world is one of the driving questions of particle physics.

$$
V=\frac{m_{h}^{2}}{2} h^{2}+\lambda_{3} v h^{3}+\frac{\lambda_{4}}{4} h^{4},
$$

We recall the form of the Higgs potential

$$
V=\frac{m_{h}^{2}}{2} h^{2}+\lambda_{3} v h^{3}+\frac{\lambda_{4}}{4} h^{4}
$$

And in the SM we completely fix the couplings once we know the mass

$$
\lambda_{3}=\lambda_{4}=m_{h}^{2} /\left(2 v^{2}\right)
$$

Deviations from this would thus imply new physics.

Precision Higgs Couplings

\Rightarrow Measurements will built on, complement, and supersede LHC results

Markus Klute

Higgs Precision Measurements

\Rightarrow Recoil method unique to lepton collider
\Rightarrow Tag Higgs event independent of decay mode
\Rightarrow Provides precision and model independent measurements of
○ $\sigma(\mathrm{ee} \rightarrow \mathrm{ZH}) \propto \mathrm{g}_{\mathrm{Hzz}}{ }^{2}$

- m_{H}
\Rightarrow Key input to Γ_{H}

22

Michelangelo Mangano
 Why Higgs at 100 TeV ?

- W/Z discovered in '83. Still discussing today how to improve the measurement of their properties! Hadron colliders played, are playing and will continue playing a key role in this game
- reasonable to expect the same will be true for the Higgs 30-40 yrs after 2012, with the measurement of Higgs properties intertwined with the testing for SM anomalies
- Great improvement in precision will arise from $\mathrm{e}^{+} \mathrm{e}^{-}$colliders [see later talks by D'Enterria (FCC-ee), Ruan (CEPC), Lukic (CLIC), Strube (ILC)].
- Depending on the configuration (linear vs circular) and energy (ILC vs CLIC), there will nevertheless still remain a need for complementary input, which could be provided by a 100 TeV pp collider:
- direct probe of EW interactions and EWSB at scales > I TeV
- exploration of extended Higgs sectors
- precise measurement of rare Higgs decays and tests of rare production mechanisms
- precise determination of top-Higgs coupling and Higgs self-couplings (if ECM of e ${ }^{+} \mathrm{e}^{-}$colliders will stay below the TeV)
- At the LHC, the Higgs is already an analysis tool, if not a background, in searches of new particles (like W/Z and like the top quark). This will be even more true at 100 TeV!!

