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Abstract

These are lecture notes presented at the 2017 CTEQ Summer School at the Uni-
versity of Pittsburgh. The title is a reference to [1] and introduces perturbative QCD
and its application to jet substructure from a bottom-up perspective based on the ap-
proximation of QCD as a weakly-coupled, conformal field theory. Using this approach,
a simple derivation of the Sudakov form factor with soft gluon emission modeled as a
Poisson process is presented. Applications to the identification and discrimination of
quark- versus gluon-initiated jets is also discussed.
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It is extremely challenging to introduce any subject in one hour, and the field of jet
substructure is especially challenging because its purview now encompasses much or most
of the physics program of the Large Hadron Collider (Higgs, beyond the Standard Model,
Standard Model measurements, fragmentation, heavy flavor, heavy ions, etc. See [2–6] for
reviews.). So, this lecture will be narrow in scope and ignore much or most of the applications
of this extremely exciting field. While you have probably been introduced to QCD from the
gauge principle, analogies with electromagnetism, and finally its (high-energy) Lagrangian, I
want to take a different approach here. Jet substructure, at its most fundamental, is a study
of QCD in the near-soft (low-energy) and collinear (small-angle) limits, and the Lagrangian
of QCD isn’t a natural starting point for studying this. Instead of a “top-down” approach, I
want to emphasize a “bottom-up” approach, starting from some natural, simple assumptions
about the behavior of QCD at high energies. We’ll see that this will be remarkably powerful.

To proceed, we need to make two reasonable assumptions. These are important enough
that I will call them axioms, for the purposes of this lecture.

Axiom 1: At high energies, the coupling of QCD, αs, is small. Therefore, quarks
and gluons are good quasi-particles.

This axiom essentially means that the perturbation theory of QCD (defined by Feynman
diagrams, for example) is a good approximation. It is sensible to describe final states in
terms of quarks and gluons as corrections to this picture are small because αs is small.

Axiom 2: At high energies, QCD has no intrinsic scales. Quarks and gluons
are massless, and so QCD is (approximately) a conformal, or scale-invariant,
quantum field theory.

We know that this axiom strictly isn’t true. While quarks and gluons may be very low
mass or massless, hadrons are massive. Also, the coupling αs runs with energy, spoiling true
scale invariance. Nevertheless, because αs is small (by axiom 1), these deviations from scale
invariance can be though of as corrections. This is how we will treat them in this lecture,
and I will discuss how to fix-up this picture later.

With these axioms established, I would like to do some simple calculations. Let’s calculate
the probability for a quark to emit a gluon:

P (q → qg) =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

. (1)

We will express this probability in terms of the phase space variables of the final state (the
quark and the gluon). What are these phase space variables? For two particles, two-body
phase space is two-dimensional. Each particle has a four-vector momentum which is required
to be on-shell and massless. Additionally, the sum of those four-vector momenta is the total
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initial momentum. This leaves two degrees of freedom, or two phase space variables. We
will choose these phase space variables to be the energy of the gluon, Eg, and the invariant
mass of the final quark and gluon, m2. Then,

P (Eg,m
2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Eg

m2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

. (2)

Note that m2 = 2pq · pg = 2EqEg(1− cos θqg).
What can this probability be? Our assumption of scale-invariance helps us out. Scale

invariance means that the probability is unchanged if the energy or mass scales are multiplied
by a factor λ > 0:

P (λEg, λ
2m2) d(λEg) d(λ2m2) = P (Eg,m

2) dEg dm
2 . (3)

What could this function be? The simplest function that one can write down is

P (Eg,m
2) dEg dm

2 =
αsCF
π

dEg
Eg

dm2

m2
. (4)

Before continuing, I should say a couple things about this expression. First, the overall factor
of αsCF/π is the strength to which a gluon couples to a quark; CF is the color factor that
represents the amount of color that the quark carries (called the fundamental representation
Casimir). We’ll come back to this later. Note also that we could multiply this expression by
any function of E2

g/m
2 and still maintain scale-invariance. This will be important for detailed

studies, but there is a well-defined approximation in which we can ignore such terms. This
is called the “double-logarithmic approximation” or DLA.

With this DLA probability in hand, let’s change variables to dimensionless quantities,
as they are a bit nicer to work with. Let’s express the probability in terms of the gluon’s
energy fraction, z, and the angle θqg ≡ θ between the quark and the gluon:

z =
Eg

Eq + Eg
, 1− cos θ =

m2

2EqEg
. (5)

Then, the probability becomes

P (z, cos θ) dz d cos θ =
αsCF
π

dz

z

d cos θ

1− cos θ
. (6)

Let’s even go one step further and work in the small angle limit, θ � 1. Then,

P (z, θ2) dz dθ2 → αsCF
π

dz

z

dθ2

θ2
. (7)
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This expression tells us a huge amount of physics. Note that the probability diverges when
either z → 0 or θ → 0, in the soft and/or collinear limits. It seems weird for a probability
to diverge, but we just have to reinterpret it.

Consider, for example, the soft limit, z → 0. If the energy of the gluon Eg → 0, then
what distinguishes that final state from just the quark, with no gluon?

q

q

z ! 0

vs.

q

q

z ! 0

?

Is there a measurement we can do to distinguish these systems? The answer is no! They
become degenerate in the z → 0 limit. Indeed, Feynman diagram perturbation theory is
degenerate perturbation theory, which is why the probability diverges in the z → 0 limit.
There is no measurement we can do to distinguish a system with no gluons, one 0 energy
gluon, two 0 energy gluons, three 0 energy gluons, etc. Results and predictions in degenerate
perturbation theory are only finite when we sum up all degenerate states as guaranteed by
the Kinoshita-Lee-Nauenberg theorem [7, 8]. We will see how to do this in a second. As
z → 0, we should not interpret P (z, θ2) dz dθ2 as a probability, but rather as an expectation
value of the number of soft/low energy gluons emitted from the quark.

Similar arguments follow for the collinear limit, θ2 → 0, but I won’t discuss that in detail.
Let’s rewrite the probability in an enlightening way:

P (z, θ2) dz dθ2 =
αsCF
π

dz

z

dθ2

θ2
=
αsCF
π

d(log z) d(log θ2) . (8)

That is, emissions of soft/collinear gluons are uniformly distributed in the (log z, log θ2)
plane! There’s a very nice way to visualize this, in what is called a “Lund diagram” [9]. This
is:

log
1

z

log
1

✓2

soft

"
! sof

t & col
line

ar

! collinear

Here, each • denotes another gluon emission off of the quark, and the emissions are uniformly
distributed in the plane. This is a semi-infinite plane and depending on how we approach
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∞, we are sensitive to a different singular limit. Moving vertically in the plane is the soft
limit, horizontally is the collinear limit, and diagonally is the soft and collinear limit.

At this point, I should emphasize that this uniform distribution of emissions is special to
our approximations. Including a running coupling, higher-order effects, hadronization (which
cuts off this picture at some point), etc., will change this picture. Nevertheless, there is a
sense in which all of those things are corrections to this simple picture. Additionally, filling
out this plane is the goal of Monte Carlo parton shower programs, like Pythia [10,11] and
Herwig [12, 13]. They each employ different methods for doing so, but their fundamental
goal is the same.

We could stop here, but I want to do a now-trivial calculation since we have set up
this framework. Let’s calculate the distribution of the ratio of the invariant mass of the
quark-gluons system to its total energy:

τ =
m2

E2
. (9)

In our phase space coordinates and with our assumptions, the observable τ is:

τ =
∑

i=gluon

ziθ
2
i , (10)

where zi is the energy fraction of the ith gluon and θi is the angle of the ith gluon to the quark.
(I use the symbol τ for this observable because it is identical to thrust [14] in the soft and/or
collinear limits.) The sum runs over all emitted gluons/• emissions in the (log z, log θ2) plane.
We will calculate the cumulative probability distribution, P (x < τ); that is, the probability
the measured value of this observable is less than some value τ .

To do this, note that the emissions are uniformly distributed in (log z, log θ2). This means
that in “real” space (z, θ2), emissions are exponentially far apart! This will help dramatically
simplify our task. Because of this observation, there is a single emission that dominates the
value of τ , and all others provided tiny corrections. So, with emissions in the plane as:

log
1

z

log
1

✓2
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there will be one that dominates the value of τ : τ = zθ2. Note that a fixed value of τ on
this plane corresponds to a line:

log τ = log z + log θ2 . (11)

This line then corresponds to

log
1

z

log
1

✓2

Forbidden

log
1

⌧

log
1

⌧

All emissions above the line are tiny corrections, there is one emission on the line, and no
emissions below the line. If there were emissions below the line, then the measured value
of τ would have increased. So, for calculating the cumulative probability, we must calculate
the probability that there were no emissions below the line.

This probability is easy to calculate. We can imagine breaking up the forbidden triangle
into many regions:

The probability for emission into any one region is proportional to the area of the region:

P (emit in region i) =
αsCF
π
· (Area of region i) . (12)

Therefore, the probability of no emissions is 1 minus this:

P (no emit in region i) = 1− αsCF
π
· (Area of region i) . (13)

6



If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2

log2 τ

N
, (14)

because the area of the triangle is 1
2

log2 τ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =

(
1−

αs

π
CF

2
log2 τ

N

)N

. (15)

Taking the limit as N →∞, this transmogrifies into an exponential:

P (no emissions) = exp

[
−αs
π

CF
2

log2 τ

]
. (16)

This is just equal to the cumulative probability

P (x < τ) = exp

[
−αs
π

CF
2

log2 τ

]
. (17)

Note that this is exponentially suppressed as τ → 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just differentiate:

p(τ) =
d

dτ
exp

[
−αs
π

CF
2

log2 τ

]
= −αsCF

π

log τ

τ
exp

[
−αs
π

CF
2

log2 τ

]
. (18)

We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for τ → 0.

Before concluding, I want to connect this to a fundamental problem in jet physics: dis-
crimination of quark-initiated jets from gluon-initiated jets. We can perform the same exer-
cise for gluon jets, and we find the cumulative distribution:

Pg(x < τ) = exp

[
−αs
π

CA
2

log2 τ

]
. (19)

The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of τ for the quark
and gluon jets look like:

qu
ar

k

glu
on

⌧

p(⌧)
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The ratio between the average values of these distributions is controlled by the ratio of CA
to CF .

To separate quarks from gluons, we can make a cut on τ , and only keep those events to
the left of the cut. The fraction kept is just given by the appropriate cumulative distribution:

Pq(x < τ) = exp

[
−αs
π

CF
2

log2 τ

]
(20)

Pg(x < τ) = exp

[
−αs
π

CA
2

log2 τ

]
= [Pq(x < τ)]CA/CF .

That is, the fraction of gluons kept is found by raising the fraction of quarks kept to the
CA/CF power!

We can nicely display this information in a receiver operating characteristic (ROC) plot:q

q

z ! 0

fraction of
quarks

gl
u
on

s
fr

ac
ti

on
of

1 (1, 1)

1

y = xCA/CF

This plot just displays the quark versus gluon efficiencies with this cut. In QCD, CF = 4/3
and CA = 3 and so the ROC curve for quark/gluon discrimination is:

y = x9/4 . (21)

This can be improved somewhat by designing better observables or including higher-order
effects, but is a benchmark for expectation.

We’ve gotten a lot of mileage out of our two simple axioms!
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