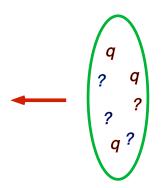
Introduction to the Parton Model and Pertrubative QCD

U. of Puerto Rico Mayaguez, PR George Sterman

- II. From the Parton Model to QCD
 - A. Color and QCD
 - B. Field Theory Essentials
 - C. Infrared Safety and Jets

IIA. From Color to QCD



- Enter the Gluon
- ullet If $\phi_{q/H}(x)=$ probability to find q with momentum xp,
- then,

$$M_q = \sum\limits_{q} \int_0^1 dx \; x \; \phi_{q/H}(x) = ext{total fraction of momentum}$$
 carried by quarks.

Experiment gave

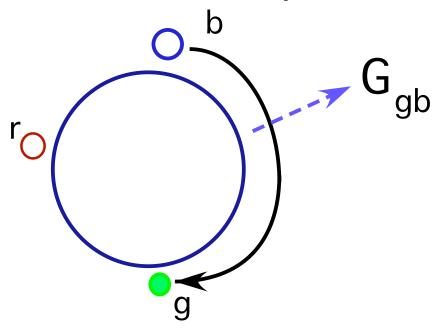
$$M_q \sim 1/2$$

- What else? Quanta of force field that holds H together?
- 'Gluons' but what are they?

- Where color comes from.
- Quark model problem:
 - $-s_q = 1/2 \Rightarrow$ fermion \Rightarrow antisymmetric wave function, but
 - $-\left(uud\right)$ state symmetric in spin/isospin combination for nucleons and
 - Expect the lowest-lying $\psi(ec{x}_m, ec{x}_u, ec{x}_d)$ to be symmetric
 - So where is the antisymmetry?
- Solution: Han Nambu, Greenberg, 1968: Color
- $ullet q
 ightarrow q_i$, i=b, g, r, a new quantum number.

- ullet Here's the antisymmetry: $\epsilon_{ijk}\psi(\vec{x}_u,\vec{x}_{u'},\vec{x}_d)$, (i,j,k)= (b,g,r)
- Observation: $\epsilon_{ijk}u_iu_j'd_k$ is like a triple product of three 3-d "color vectors". Think of $(\vec{u}\times\vec{u}')\cdot\vec{d}$.
- The quantity $\epsilon_{ijk}u_iu_j'$ is a lot like $\vec{u}\times\vec{u}'$, which we can combine with \vec{d} to make a (colorless) "scalar".
- This is sometimes called a "diquark", and it's used sometimes for models of nucleons. In color it's like an antiquark.
- If "tetraquarks" like $(\bar{u}\bar{d}[bb])$, are found, the [bb] system could be a dynamical diquark.

- Quantum Chromodynamics: Dynamics of Color
- A globe with no north pole



- Position on 'hyperglobe'
 ←→ phase of wave function
 (Yang & Mills, 1954)
- We can change the globe's axes at different points in space-time, and 'local rotation' \leftrightarrow emission of a gluon.
- QCD: gluons coupled to the color of quarks

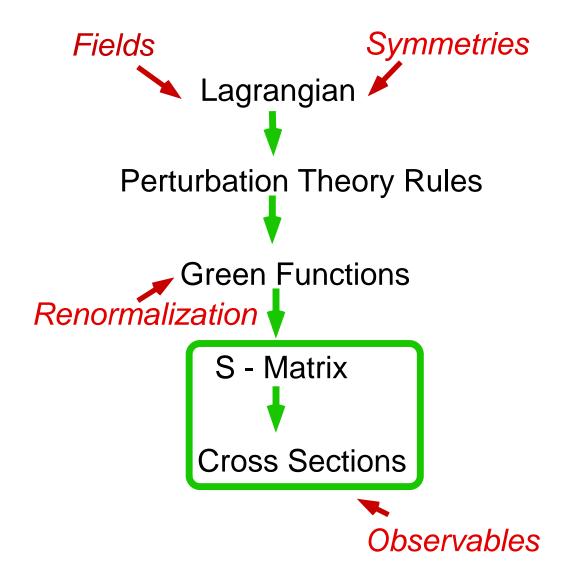
(Gross & Wilczek; Weinberg; Fritzsch, Gell-Mann, Leutwyler, 1973)

IIB. Field Theory Essentials

- Fields and Lagrange Density for QCD
- $q_f(x)$, f = u, d, c, s, t, b: Dirac fermions (like electron) but extra (i, j, k) = (b, g, r) quantum number.
- $A_a^\mu(x)$ Vector field (like photon) but with extra $a \sim (g\bar{b}\ldots)$ quantum no. (octet).
- £ specifies quark-gluon, gluon-gluon propagators and interactions.

$$egin{aligned} \mathcal{L} &= \sum\limits_{f} ar{q}_{f} \left(\left[i\partial_{\mu} - gA_{\mu m{a}} T_{m{a}}
ight] \gamma^{\mu} - m_{f}
ight) q_{f} - rac{1}{4} \left(\partial_{\mu} A_{
u m{a}} - \partial_{
u} A_{\mu m{a}}
ight)^{2} \ &- rac{g}{2} \left(\partial_{\mu} A_{
u m{a}} - \partial_{
u} A_{\mu m{a}}
ight) C_{m{a}m{b}m{c}} A_{m{b}}^{\mu} A_{m{c}}^{
u} \ &- rac{g^{2}}{4} C_{m{a}m{b}m{c}} A_{m{b}}^{\mu} A_{m{c}}^{
u} C_{m{a}m{d}m{e}} A_{\mu m{d}} A_{
um{e}} \end{aligned}$$

From a Lagrange density to observables, the pattern:



- UV Divergences (toward renormalization & the renormalization group)
- Use as an example

$$\mathcal{L}_{\phi^4} = rac{1}{2}ig((\partial_{\mu}\phi)^2 - m^2\phi^2ig) - rac{\lambda}{4!}\phi^4ig)$$

• The "four-point Green function":

$$\int^\infty rac{d^4k}{(k^2-m^2)((p_1+p_2-k)^2-m^2)} \; \sim \; \int^\infty rac{d^4k}{(k^2)^2} \Rightarrow \infty$$

Interpretation: The UV divergence is due entirely states of high 'energy deficit',

$$E_{ ext{in}} - E_{ ext{state S}} = p_1^0 + p_2^0 - \sum\limits_{i \ \in S} |ec{k}_i^2 - m^2|$$

Made explicit in Time-ordered Perturbation Theory:

$$\int^{\infty} rac{d^4k}{(k^2-m^2)((p_1+p_2-k)^2-m^2)} = \sum_{states} \left[rac{1}{E_{
m in}-E_1} + rac{1}{E_{
m in}-E_1'}
ight]$$

Analogy to uncertainty principle $\Delta E \to \infty \Leftrightarrow \Delta t \to 0$.

- This suggests: UV divergences are 'local' and can be absorbed into the local Lagrange density. Renormalization.
- For our full 4-point Green function, two new "counterterms":

The renormalized 4-point function:

• The combination is constructed to be finite.

How to choose them? This is the renormalization "scheme"

Renormalization:

But what should we choose for these?

$$oldsymbol{A} oldsymbol{B} oldsymbol{C} oldsymbol{D}$$

 \bullet For example: define A+B+C by cutting off $\int d^4k$ at $k^2=\Lambda^2$ (regularization). Then

$$A+B+C=a\lnrac{\Lambda^2}{s}+b(s,t,u,m^2)$$

• Now choose:

$$D = - a \ln \frac{\Lambda^2}{\mu^2}$$

so that

$$A+B+C+D=a\lnrac{\mu^2}{s}+b(s,t,u,m^2)$$

independent of Λ .

- Criterion for choosing μ is a "renormalization scheme": MOM scheme: $\mu=s_0$, some point in momentum space. MS scheme: same μ for all diagrams, momenta
- ullet But the value of μ is still arbitrary. $\mu=$ renormalization scale.
- ullet Modern view (Wilson) We hide our ignorance of the true high-E behavior.
- All current theories are "effective" theories with the same low-energy behavior as the true theory, whatever it may be.

- μ -dependence is the price we pay for working with an effective theory: The Renormalization Group
- As μ changes, mass m and coupling g (let's think of QCD now) have to change: $m=m(\mu)$ $g=g(\mu)$ "renormalized" but . . .
- Physical quantities can't depend on μ :

$$\left(\mu rac{d}{d\mu} \sigma \left(rac{s_{ij}}{\mu^2}, rac{m^2}{\mu^2}, g(\mu), \mu
ight) = 0 \quad (s_{ij} = (p_i + p_j)^2)$$

- ullet The 'group' is just the set of all changes in μ .
- 'RG' equation and mass dimension, $[\sigma] = d_{\sigma}$ link momenta and couplings:

$$egin{aligned} \left(\murac{\partial}{\partial\mu}+\murac{\partial g}{\partial\mu}rac{\partial}{\partial g}+\murac{\partial m}{\partial\mu}rac{\partial}{\partial m}
ight)\;\sigma\left(rac{s_{ij}}{\mu^2},rac{m^2}{\mu^2},g(\mu),\mu
ight)=0\ \left(\murac{\partial}{\partial\mu}+mrac{\partial}{\partial m}+s_{ij}^{1/2}rac{\partial}{\partial s_{ij}^{1/2}}-d_{\sigma}
ight)\;\sigma\left(rac{s_{ij}}{\mu^2},rac{m^2}{\mu^2},g(\mu),\mu
ight)=0 \end{aligned}$$

The beta function :
$$\beta(g) \equiv \mu \frac{\partial g(\mu)}{\partial \mu}$$

- The Running coupling
- Consider <u>any</u> cross section or amplitude σ ($m=0, d_{\sigma}=0$) with kinematic invariants $s_{ij}=(p_i+p_j)^2$:

$$\mu \frac{d\sigma}{d\mu} = 0 \quad o \quad \mu \frac{\partial \sigma}{\partial \mu} = -\beta(g) \frac{\partial \sigma}{\partial g}$$
 (1)

• in PT:

$$\sigma = g^2(\mu)\sigma^{(1)} + g^4(\mu)\left[\sigma^{(2)}\left(\frac{s_{ij}}{s_{kl}}\right) + \tau^{(2)}\ln\frac{s_{12}}{\mu^2}\right] + \dots (2)$$

• (2) in (1) $\rightarrow g^4 \tau^{(2)} = 2g\sigma^{(1)}\beta(g) + \dots$

$$m{eta}(m{g}) = rac{g^3 au^{(2)}}{2 \sigma^{(1)}} + \mathcal{O}(g^5) \equiv -rac{g^3}{16\pi^2} m{eta}_0 + \mathcal{O}(g^5)$$

- In QCD: $\beta_0 = 11 \frac{2n_f}{3}$
- ullet $-eta_0 < 0
 ightarrow g$ decreases as μ increases.

Asymptotic Freedom: Solution for the QCD coupling

$$\mu \frac{\partial g}{\partial \mu} = -g^3 \frac{\beta_0}{16\pi^2}$$

$$\frac{dg}{g^3} = -\frac{\beta_0}{16\pi^2} \frac{d\mu}{\mu}$$

$$\frac{1}{g^2(\mu_2)} - \frac{1}{g^2(\mu_1)} = -\frac{\beta_0}{16\pi^2} \ln \frac{\mu_2}{\mu_1}$$

$$g^2(\mu_2) = \frac{g^2(\mu_1)}{1 + \frac{\beta_0}{16\pi^2} g^2(\mu_1) \ln \frac{\mu_2}{\mu_1}}$$

ullet Vanishes for $\mu_2 o \infty$. Equivalently,

$$lpha_s(\mu_2) \equiv rac{g^2(\mu_2)}{4\pi} = rac{lpha_s(\mu_1)}{1 + rac{eta_0}{4\pi}lpha_s(\mu_1) \ln rac{\mu_2}{\mu_1}}$$

- ullet Dimensional transmutation: Λ_{QCD}
 - Two mass scales appear in

$$lpha_s(\mu_2) = rac{lpha_s(\mu_1)}{1 + rac{eta_0}{4\pi} lpha_s(\mu_1) \ln rac{\mu_2}{\mu_1}}$$

but the value of $\alpha_s(\mu_2)$ can't depend on choice of μ_1 .

– Reduce it to one by defining $\Lambda \equiv \mu_1 \, e^{-\beta_0/\alpha_s(\mu_1)}$, independent of μ_1 . Then for any μ :

$$lpha_s(\mu) = rac{4\pi}{eta_0 \ln rac{\mu^2}{\Lambda^2}}$$

• Asymptotic freedom strongly suggests a relationship to the parton model, in which partons act as if free at short distances. But how to quantify this observation?

IIC. Infrared Safety and Jets

- To use perturbation theory, would like to choose μ 'as large as possible to make $\alpha_s(\mu)$ as small as possible.
- But how small is possible?
- ullet A "typical" cross section, , define $Q^2=s_{12}$ and $x_{ij}=s_{ij}/Q^2$,

$$egin{aligned} \sigma\left(rac{Q^2}{\mu^2},x_{ij},rac{m_i^2}{\mu^2},lpha_s(\mu),\mu
ight) = \sum\limits_{n=1}^\infty a_n\left(rac{Q^2}{\mu^2},x_{ij},rac{m_i^2}{\mu^2}
ight) \,lpha_s^n(\mu) \end{aligned}$$

with m_i^2 all fixed masses – external, quark, gluon (=0!)

• Generically, the a_n depend <u>logarithmically</u> on their arguments, so a choice of large μ results in large logs of m_i^2/μ^2 .

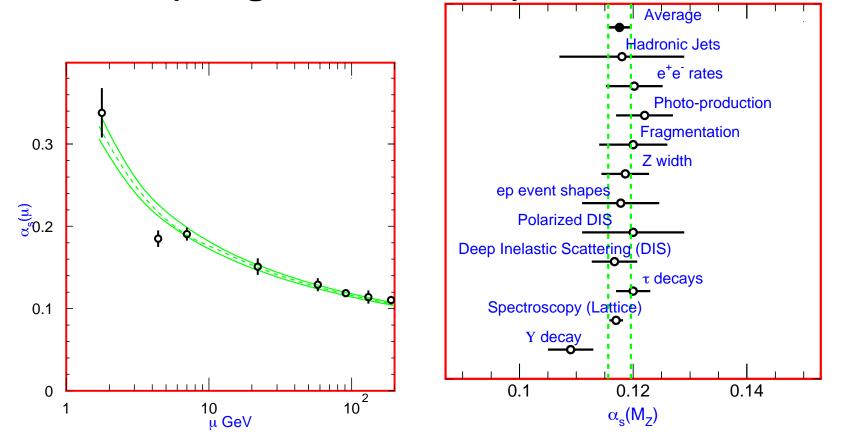
ullet But if we <u>could</u> find quantities that depend on $m_i's$ only through powers, $(m_i/\mu)^p, p>0$, the large- μ limit would exist.

$$egin{aligned} \sigma\left(rac{Q^2}{\mu^2},x_{ij},rac{m{m_i^2}}{\mu^2},lpha_s(Q),\mu
ight) &= \sigma\left(rac{Q}{\mu},x_{ij},rac{m{m_i^2}}{\mu^2},lpha_s(\mu),\mu
ight) \ &= \sum\limits_{n=1}^\infty a_n\left(rac{Q}{\mu},x_{ij}
ight) \,lpha_s^n(\mu) + \mathcal{O}\left(\left[rac{m{m_i^2}}{\mu^2}
ight]^p
ight) \end{aligned}$$

- Such quantities are called infrared (IR) safe.
- Measure $\sigma \to \text{solve for } \alpha_s$. Allows observation of the running coupling.
- Most pQCD is the computation of IR safe quantities.
- Parton distributions are not IR safe but they factor(ize) from IR safe quantities.

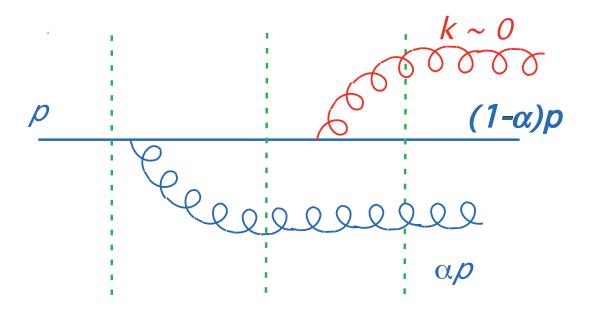
ullet Consistency of $lpha_s(\mu)$ found as above at various momentum scales

Each comes from identifying an IR safe quantity, computing it and comparing the result to experiment. (Particle Data Group)



• To find IR safe quantities, need to understand where the lowmass logs come from.

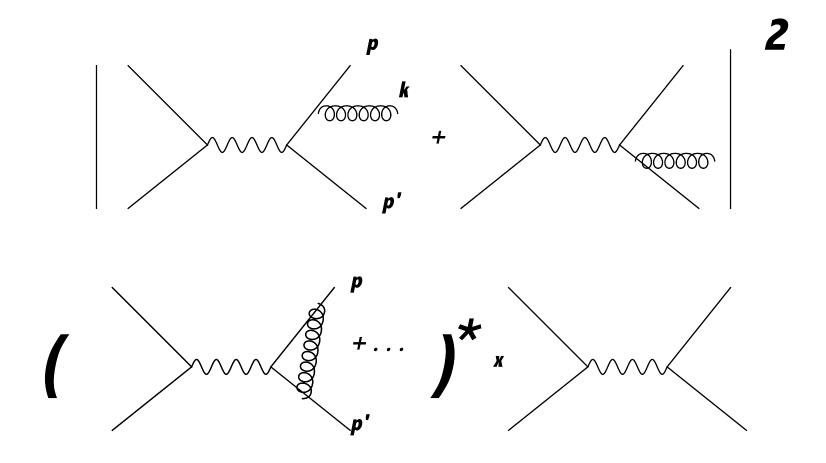
- ullet To analyze diagrams, we generally think of m o 0 limit in m/Q. Gives "IR" logs.
- Generic source of IR (soft and collinear) logarithms:



- IR logs come from degenerate states: Uncertainty principle $\Delta E \to 0 \Leftrightarrow \Delta t \to \infty$.
- For soft emission and collinear splitting it's "never too late". But these processes don't change the flow of energy . . . Problems arise if we ask for particle content.

- For IR safety, sum over degenerate final states in perturbation theory, and don't ask how many particles of each kind we have. To organize things, we introduce another regularization, this time for IR behavior. (This is usually done, but (as we'll see) it's not absolutely necessary.)
- The IR regulated theory is like QCD at short distances, but is better-behaved at long distances.
- IR-regulated QCD not the same as QCD except for IR safe quantities.
- \bullet For simplicity, consider e^+e^- annihilation. No PDFs, and fewer diagrams, but illustrates the point.

Diagrams at order α_s :



The gluon can be collinear to either outgoing quark or antiquark or may be soft.

For hadron-hadron scattering, more diagrams and gluon can be parallel to an incoming line.

At order α_s , the kind of integral we encounter, for both virtual and real gluon is:

$$4p \cdot p' \int rac{d^3k}{2k} \, rac{1}{2p_0k(1-\cos heta_{pk})} \, rac{1}{2p_0'k(1-\cos heta_{p'k})}$$

For virtual gluon, go to overall c.m., where $\vec{p}=-\vec{p}'$ are back-to-back. Then $(Q\equiv p_0)$:

virtual:
$$= -\int_0^Q \frac{dk}{2k} \int_{-1}^1 \frac{2\pi \, d\cos\theta}{(1 - \cos^2\theta_{pk})}$$

For the real gluon, \vec{p} and $\vec{p}'=-\vec{p}-\vec{k}$ are back-to-back when \vec{k} is collinear to either \vec{p} or \vec{p}' or soft, so:

real:
$$= + \int_0^Q \frac{dk}{2k} \int_{-1}^1 \frac{2\pi d \cos \theta}{(1 - \cos^2 \theta_{pk})} + \text{finite}$$

Singularities cancel even without IR regularization.

- See how IR safety emerges with IR regularization: total e^+e^- annihilation cross section to order α_s . Lowest order is $2 \to 2, \sigma_2^{(0)} \equiv \sigma_{LO}$, σ_3 starts at order α_s .
 - Gluon mass regularization: $k^2
 ightarrow (k^2-m_G^2)$

$$egin{aligned} \sigma_3^{(m_G)} &= \sigma_{ ext{LO}} rac{4lpha_s}{3\,\pi} iggl(2\ln^2rac{Q}{m_g} - 3\lnrac{Q}{m_g} - rac{\pi^2}{6} + rac{5}{2} iggr) \ \sigma_2^{(m_G)} &= \sigma_{ ext{LO}} iggl[1 - rac{4lpha_s}{3\,\pi} iggl(2\ln^2rac{Q}{m_g} - 3\lnrac{Q}{m_g} - rac{\pi^2}{6} + rac{7}{4} iggr) iggr] \end{aligned}$$

which gives

$$\sigma_{
m tot} = \sigma_2^{(m_G)} + \sigma_3^{(m_G)} = \sigma_{
m LO} \left[1 + rac{lpha_s}{\pi}
ight]$$

- Pretty simple! (Cancellation of virtual (σ_2) and real (σ_3) gluon diagrams.)

– Dimensional regularization: change the area of a sphere of radius R from $4\pi R^2$ to $(4\pi)^{(1-\varepsilon)} \frac{\Gamma(1-\varepsilon)}{\Gamma(2(1-\varepsilon))} R^{2-2\varepsilon}$ with $\varepsilon=2-D/2$ in D dimensions.

$$egin{aligned} \sigma_3^{(arepsilon)} &= \sigma_{ ext{LO}} rac{4lpha_s}{3\,\pi} \left[rac{(1-arepsilon)^2}{(3-2arepsilon)\Gamma(2-2arepsilon)} \left[rac{4\pi\mu^2}{Q^2}
ight]^arepsilon \ & imes \left[rac{1}{arepsilon^2} - rac{3}{2arepsilon} - rac{\pi^2}{2} + rac{19}{4}
ight] \ &\sigma_2^{(arepsilon)} &= \sigma_{ ext{LO}} \left[1 - rac{4lpha_s}{3\,\pi} \left[rac{(1-arepsilon)^2}{(3-2arepsilon)\Gamma(2-2arepsilon)}
ight] \left(rac{4\pi\mu^2}{Q^2}
ight)^arepsilon \ & imes \left[rac{1}{arepsilon^2} - rac{3}{2arepsilon} - rac{\pi^2}{2} + 4
ight]
ight] \end{aligned}$$

which gives again

$$\sigma_{
m tot} = \sigma_2^{(m_G)} + \sigma_3^{(m_G)} = \sigma_0 \left[1 + rac{lpha_s}{\pi}
ight].$$

• This illustrates IR Safety: σ_2 and σ_3 depend on regulator, but their sum does not.

• Generalized IR safety: sum over all states with the same flow of energy into the final state. Introduce IR safe weight " $e(\{p_i\})$ "

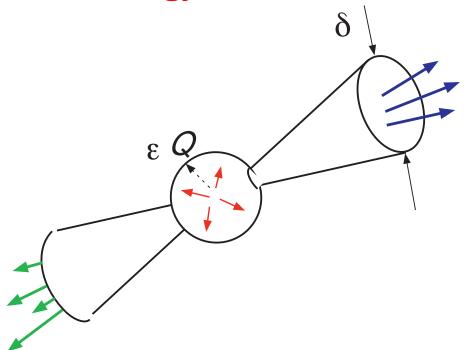
$$rac{d\sigma}{de} = \sum\limits_{n} |p_{S(n)}| M(\{p_i\})|^2 \delta\left(e(\{p_i\}) - w
ight)$$

with

$$e(\dots p_i \dots p_{j-1}, \alpha p_i, p_{j+1} \dots) = \\ e(\dots (1+\alpha)p_i \dots p_{j-1}, p_{j+1} \dots)$$

• Neglect long times in the initial state for the moment and see how this works in e^+e^- annihilation: event shapes and jet cross sections.

- "Seeing" Quarks and Gluons With Jet Cross Sections
- Simplest example: cone jets in e^+e^- annihilation. All but fraction ϵ of energy flows into cones of size δ .



 Intuition: eliminating long-time behavior ⇔ recognize the impossibility of resolving collinear splitting/recombination of massless particles At order α_s : the virtual has the same integral as for the total cross section:

$$ext{virtual:} \;\; = \; - \int_0^Q rac{dk}{2k} \int_{-1}^1 d\cos heta \; rac{2\pi}{(1 \; - \; \cos^2 heta_{pk})} \; .$$

Now the phase space for a real gluon is smaller, but still includes all regions where \vec{p} and $\vec{p}' = -\vec{p} - \vec{k}$ are back-to-back when \vec{k} is collinear to either or soft:

$$egin{array}{lll} {
m real:} & \sim \ + \int_0^{arepsilon Q} rac{dk}{2k} \int_{-1+\delta^2/2}^{1-\delta^2/2} rac{2\pi \, d \cos heta}{(1 \, - \, \cos^2 heta_{pk})} \ & + \ \int_0^Q rac{dk}{2k} \left(\int_{1-\delta^2/2}^1 + \int_{-1}^{-1+\delta^2/2}
ight) rac{2\pi \, d \cos heta}{(1 \, - \, \cos^2 heta_{pk})} \end{array}$$

Again singularities cancel even without IR regularization.

• No factors Q/m or $\ln(Q/m)$ Infrared Safety.

• In this case,

$$egin{align} \sigma_{2J}(Q,\delta,\epsilon) &= rac{3}{8}\sigma_0(1+\cos^2 heta) \ & imes \left[1-rac{4lpha_s}{\pi}igg[4\ln\delta\lnarepsilon+3\ln\delta+rac{\pi^2}{3}+rac{5}{2}igg]
ight) \end{aligned}$$

- Perfect for QCD: asymptotic freedom $\to d\alpha_s(Q)/dQ < 0$.
- No unique jet definition.
 ← Each event a sum of possible histories.
- Relation to quarks and gluons always approximate but corrections to the approximation computable.

• The general form of an e⁺e⁻ annihilation jet cross section:

$$\sigma_{ ext{jet}} = \sigma_0 \sum\limits_{n=0}^{\infty} c_n(y_i, N, C_F) lpha_s^n(Q)$$

- ullet Dimensionless variables y_i include direction and information about the 'size' and 'shape' of the jet:
- \bullet δ , cone size as above
- To specify the jet direction, may use a Shape variable, e.g. thrust

$$T = rac{1}{s} \mathrm{max}_{\hat{n}} \,\,_{\stackrel{\scriptstyle \Sigma}{i}} |\hat{n} \cdot ec{p}_i| = rac{1}{s} \mathrm{max}_{\hat{n}} \,\,_{\stackrel{\scriptstyle \Sigma}{i}} E_i \, |\cos heta_i|$$

with θ_i the angle of particle i to the "thust" axis, which we can define as a jet axis.

 $\bullet T = 1$ for "back-to-back" jets.

$$T = rac{1}{s} ext{max}_{\hat{m{n}}} \,\,_{i}^{\sum} E_{m{i}} \, |\cos heta_{m{i}}|$$

- The thrust is IR safe precisely because it is insensitive to collinear emission (split energy at fixed θ_i) and soft emission ($E_i=0$).
- Once jet direction is fixed, we can generalize thrust to any smooth weight function:

$$au[f] = \sum_{ ext{particles } i ext{ in jets}} E_i f(heta_i)$$

• Using thrust to define a jet axis is useful mostly to describe two, back-to-back, jets (no wide-angle gluon emission – the majority, but by no means all events in e^+e^-).

• The distribution as seen at high energies, compared to experiment (Davison & Webber, 0809):

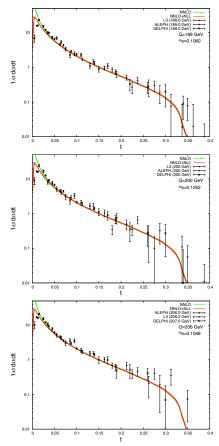


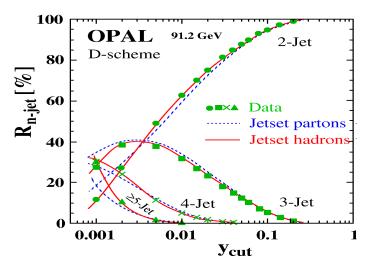
Fig. 3. Fixed-order (NNLO), resummed (NNLO+NLL) and experimental thrust distributions: Q=189-207 GeV.

ullet Strongly peaked near, but not at, T=1, due to radiation.

- For possibly multi-jet events, "cluster algorithms".
- $y_{\rm cut}$ Cluster Algorithm: Combine particles i and j into jets until all $y_{ij} > y_{\rm cut}$, where (e.g., "Durham alogrithm" for ${\rm e^+e^-}$):

$$oldsymbol{y_{ij}} = 2 ext{min} \, \left(oldsymbol{E_i^2}, oldsymbol{E_j^2}
ight) \left(1 - \cos heta_{ij}
ight)$$

• The number of jets depends on the variable $y_{\rm cut}$, and the dependence on the number of jets was an early application of jet physics. (Reproduced from Ali & Kramer, 1012)



• To anticipate: for hadronic collisions, jets are only well-defined away from the beam axis, so (instead of energy, E_i) use kinematic variables defined by the beam directions: transverse momentum, azimuthal angle and rapidity:

$$egin{aligned} m{k_t} \ m{\phi} \ & & & & & & & & & & & & & \ m{y} = rac{1}{2} \, \ln \left(rac{m{E} + m{p_3}}{m{E} - m{p_3}}
ight) \end{aligned}$$

• The beams define the '3-axis'.

Cluster variables for hadronic collisions:

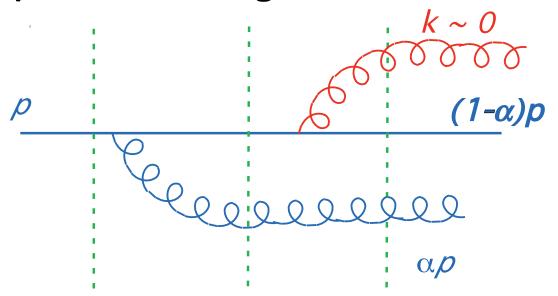
$$d_{ij} = \min\left(k_{ti}^{2p}\,,\,k_{tj}^{2p}
ight)rac{\Delta_{ij}^2}{R^2}$$

 $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$. R is an adjustable parameter.

- The "classic" choices:
 - -p=1 " k_t algorithm:
 - -p = 0 "Cambridge/Aachen"
 - -p=-1 "anti- k_t "
- Each step in a clustering process is IR safe, so can "groom" jets by calculating jet properties in terms of only energetic clusters. Such constructions are actually more inclusive in soft radiation. "Mass drop" is one such technique.

Summarize: what makes a cross section infrared safe?

Independence of long-time interactions:



More specifically: should depend on only the flow of energy into the final state. This implies independence of collinear re-arrangements and soft parton emisssion.

But if we prepare one or two particles in the initial state (as in DIS or proton-proton scattering), we will always be sensitive to long time behavior inside these particles. The parton model suggests what to do: factorize. This is the subject of Part III.