U. of Puerto Rico Mayaguez, PR George Sterman

See: "Partons, Factorization and Resummation", hep-ph-9606312 "Handbook of Perturbative QCD", Rev. Mod. Phys. 67 (1995) 157.

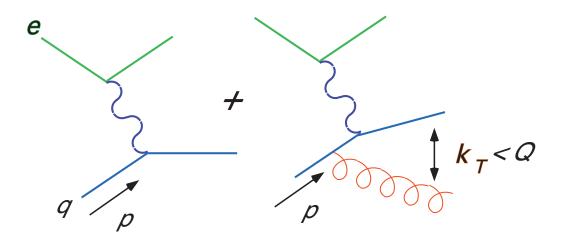
- III. Factorization and Evolution
 - A. Factorization in DIS
 - B. DIS at one loop
 - C. Evolution
 - D. Factorization in hadron-hadron scattering

Appendices: structure of high orders in 1PI; Q_T resummation

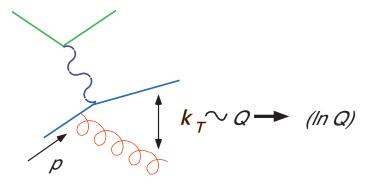
IIIA. Factorization in DIS

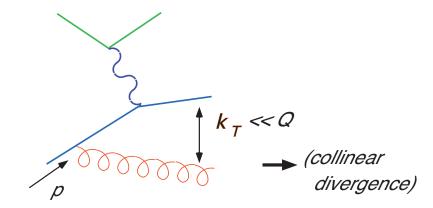
- Challenge: use AF in observables σ (cross sections, also some amplitudes) that are not infrared safe
- Possible if: σ has a short-distance subprocess. Separate IR Safe from IR: this is factorization
- IR Safe part (short-distance) is calculable in pQCD
- Infrared part example: parton distribution measureable and universal
- Infrared safety insensitive to soft gluon emission collinear rearrangements

- For DIS, will find a result ...
- ullet Just like Parton Model except in Parton Model the infrared safe part is $\sigma_{
 m LO} \Rightarrow \phi(x)$ normalized uniquely
- In pQCD must define parton distributions more carefully: the factorization scheme
- Basic observation: virtual states are not truly frozen. Some states fluctuate on scale 1/Q ...



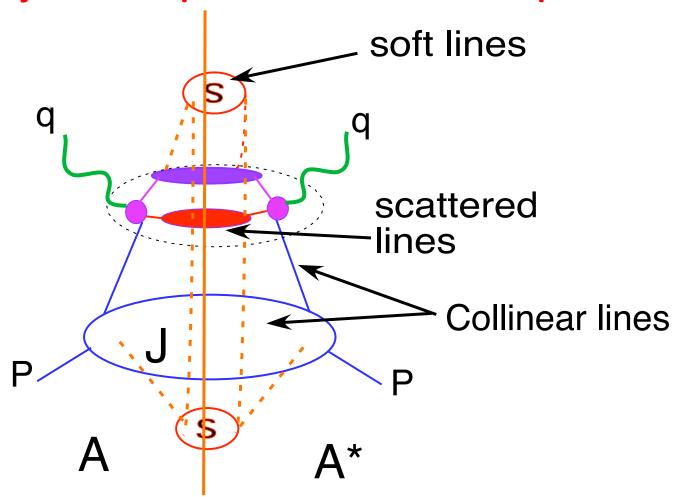
Short-lived states $\Rightarrow \ln(Q)$





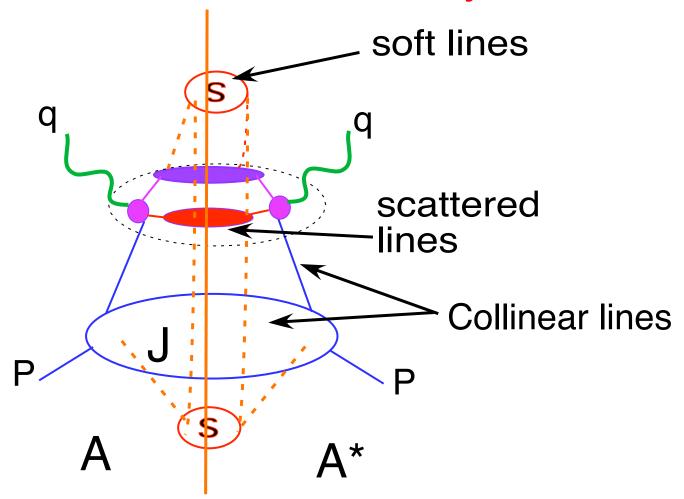
- Longer-lived states ⇒ Collinear Singularity (IR)
- How we systematize to all orders in perturbation theory . . . a taste of "all-orders" proofs in pQCD.

• We can generalize to all IR singularities (logarithms). "Rule": only classical processes with on-shell particles.



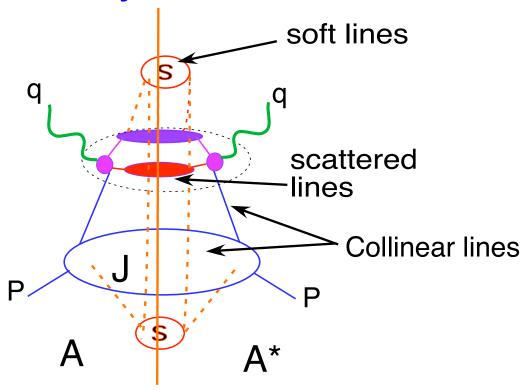
• This is "Cut diagram notation", representing the amplitude and complex conjugate. Adding up all cut diagrams is the same as summing diagrams of A and then taking $|A|^2$.

 Again, the "rule": to produce a singularity, the on-shell lines of a cut diagram have to tell a classical story.



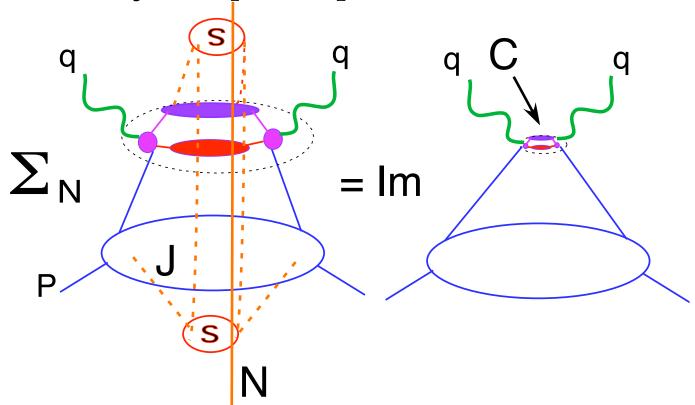
• The classical story: h splits into collinear partons, then one of them scatters, producing jets that recede at speed of light, connected only by "infinite wavelength soft" quanta.

 One more time: the structure of on-shell lines in an arbitrary cut diagram. For massless partons, this is the <u>only</u> kind of classical story DIS has to tell.



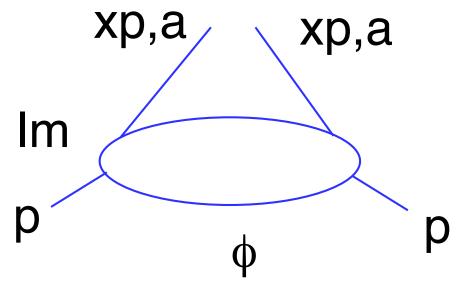
• "Soft collinear effective theory (SCET)" builds this structure into calculations by isolating the parts of the full QCD Lagrangian that give S, J and the "scattered jet". SCET organizes calculations that are equivalent to full QCD when factorization applies.

• Use of the optical theorem – relate the cut diagram to forward scattering. No classical processes are possible, because the scattered quarks must rescatter, and all interactions after the hard scattering collapse to a "short-distance" function C, that depends only on xp and q:



ullet All long-distance logs cancels because of the inclusive sum over states. Soft gluons in S can't see the "tiny" final state.

• The partons on each side of the short distance function C(p,q) must have the same flavor and momentum fraction.



 Definition of parton distribution generates all the same longdistance behavior left in the original diagrams (quark case) after the sum over hadronic final states:

$$\phi_{a/h}(x,\mu_F) = \sum\limits_{ ext{spins }\sigma}\intrac{dy^-}{2\pi}e^{-ixp^+y^-}\;\langle p,\sigma|ar{q}(y^-)\gamma^+q(0)|p,\sigma
angle$$

ullet This matrix element requires renormalization: thus the ' μ_F '.

The result: factorized DIS

$$egin{aligned} F_2^{\gamma h}(x,Q^2) &= \int_x^1 d\xi \; C_2^{\gamma q} \left(rac{x}{\xi},rac{Q}{\mu_R},rac{\mu_F}{\mu_R},lpha_s(\mu_R)
ight) \ & imes \phi_{q/h}(\xi,\mu_F,lpha_s(\mu_F)) \end{aligned} \ &\equiv C_2^{\gamma q} \left(rac{x}{\xi},rac{Q}{\mu_R},rac{\mu_F}{\mu_R},lpha_s(\mu_R)
ight) \otimes \phi_{q/h}(\xi,\mu_F,lpha_s(\mu_F)) \end{aligned}$$

- $\phi_{q/h}$ has $\ln(\mu_F/\Lambda_{\rm QCD})$... with μ_F its independent renormalization scale.
- \bullet C has $\ln(Q/\mu_R)$, $\ln(\mu_F/\mu_R)$

ullet Often pick $\mu_R=\mu_F$ and often pick $\mu_F=Q.$ So often see:

$$F_2^{\gamma h}(x,Q^2) = C_2^{\gamma q}\left(rac{x}{oldsymbol{\xi}},lpha_s(Q)
ight) \;\otimes\; \phi_{oldsymbol{q}/h}(oldsymbol{\xi},Q^2)$$

IIIB. DIS at one loop

- But we still need to specify what we *really* mean by factorization: scheme as well as scale.
- ullet For this, compute $F_2^{\gamma q}(x,Q)$, i.e. the hadron $h=q_f$, a quark say flavor f.
- ullet Keep $\mu=\mu_F$ for simplicity.

"Compute quark-photon scattering" - What does this mean?
 Must use an IR-regulated theory
 Extract the IR Safe part then take away the regularization

- Let's see how it works . . .
- At zeroth order no interactions:

$$C^{\gamma q_f(0)} = e_f^2 \; \delta(1-x/\xi)$$
 (LO cross section; parton model)

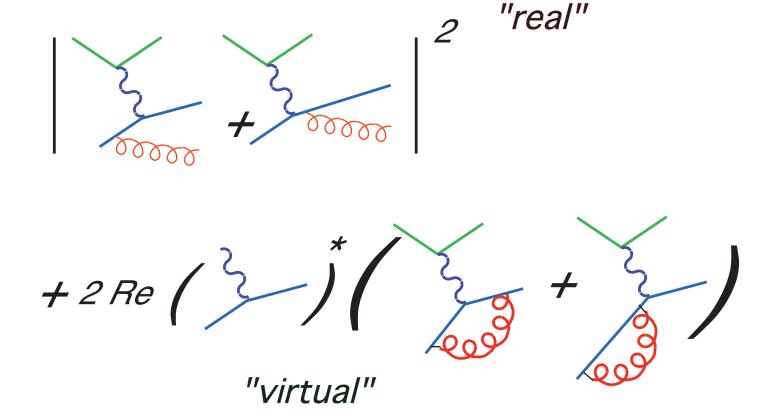
$$\phi_{q_f/q_{f'}}^{(0)}(\xi)=\delta_{ff'}\,\delta(1-\xi)$$
 (at zeroth order, momentum fraction conserved)

$$egin{align} F_2^{\gamma q_f\,(0)}(x,Q^2) &= \int_x^1 d\xi \; C_2^{\gamma q_f\,(0)} iggl(rac{x}{\xi},rac{Q}{\mu_R},rac{\mu_F}{\mu_R},lpha_s(\mu_R) iggr) \ & imes \phi_{q_f/q_f}^{(0)}(\xi,\mu_F,lpha_s(\mu_F)) \ &= e_f^2 \; \int_x^1 d\xi \; \delta(1-x/\xi) \; \delta(1-\xi) \ &= e_f^2 \; x \; \delta(1-x) \ \end{aligned}$$

• On to one loop ...

 \bullet $F^{\gamma q}$ at one loop: factorization schemes

• Start with F_2 for a quark:



Have to combine final states with different phase space ...

• "Plus Distributions":

$$\int_0^1 dx \, rac{f(x)}{(1-x)_+} \, \equiv \int_0^1 dx \, rac{f(x)-f(1)}{(1-x)} \ \int_0^1 dx \, f(x) iggl(rac{\ln(1-x)}{1-x}iggr)_+ \, \equiv \int_0^1 dx \, \left(f(x)-f(1)
ight) \, rac{\ln(1-x)}{(1-x)} \ .$$

and so on In DIS:

- ullet f(x) will be parton distributions (not constant!)
- ullet f(x) term: real gluon, with momentum fraction 1-x
- ullet f(1) term: virtual, with elastic kinematics
- DGLAP "evolution kernel" = "splitting function"

$$P_{qq}^{(1)}(x) = C_F \; rac{lpha_s}{\pi} \; \left| rac{1 + x^2}{1 - x}
ight|_+$$

Important note: with f constant,

$$\int_0^1 dx \, \left[\frac{\ln^n (1-x)}{1-x} \right]_+ = 0.$$

But for us, f(x) is a parton distribution, and hence not a constant.

• α_s Expansion:

$$egin{aligned} F_2^{\gamma q}(x,Q^2) &= \int_x^1 d\xi \; C_2^{\gamma q} \left[rac{x}{\xi}, rac{Q}{\mu_R}, rac{\mu_F}{\mu_R}, lpha_s(\mu_R)
ight] \ & imes \phi_{q/q}(\xi, \mu_F, lpha_s(\mu_F)) \end{aligned}$$

$$F_2^{\gamma q_f}(x,Q^2) = C_2^{(0)} \; \phi^{(0)} + rac{lpha_s}{2\pi} \; C^{(1)} \; \phi^{(0)} + rac{lpha_s}{2\pi} \; C^{(0)} \; \phi^{(1)} + \dots$$

And result:

$$egin{align} F_2^{\gamma q_f}(x,Q^2) &= e_f^2 \; \{ \; x \; \delta(1-x) \ &+ rac{lpha_s}{2\pi} \; C_F \left[rac{1+x^2}{1-x} \left(rac{\ln(1-x)}{x}
ight) + rac{1}{4} \left(9-5x
ight)
ight]_+ \ &+ rac{lpha_s}{2\pi} \; C_F \int_0^{Q^2} rac{dk_T^2}{k_T^2} \; \left[rac{1+x^2}{1-x}
ight]_+ \; \} \; + \ldots \, . \end{array}$$

$$egin{aligned} F_1^{\gamma q_f}(x,Q^2) &= rac{1}{2x} \left\{ F_2^{\gamma q_f}(x,Q^2) - C_F lpha rac{lpha_s}{\pi^2} \, 2x \,
ight\} \end{aligned}$$

Note: to compare to e^+e^- integrals:

 $k_T^2 \leftrightarrow k^2(1-\cos^2\theta)$, $k \leftrightarrow Q(1-x)$. Real and virtual would cancel here too, if we just integrated over x, but we don't – we multiply times $\phi_{q_f/h}$, which depends on x.

Factorization Schemes

MS (Corresponds to matrix element above.)

$$\phi_{q/q}^{(1)}(x,\mu^2) = rac{lpha_s}{\pi^2} \; P_{qq}(x) \; \int_0^{\mu^2} rac{dk_T^2}{k_T^2}$$

With k_T -integral "IR regulated".

Advantage: technical simplicity; not tied to process.

$$C^{(1)}(x)_{\overline{
m MS}} = (lpha_s/2\pi)\,P_{qq}(x)\ln(Q^2/\mu^2) + \mu$$
-independent

DIS:

$$\phi_{q/q}(x,\mu^2)=rac{lpha_s}{\pi^2}~F^{\gamma q_f}(x,\mu^2)$$

Absorbs all uncertainties in DIS into a PDF.

Closer to experiment for DIS.

$$C^{(1)}(x)_{\overline{DIS}} = (\alpha_s/2\pi) P_{qq}(x) \ln(Q^2/\mu^2) + 0$$

• Using the Regulated Theory to Get Parton Distributions for Real Hadrons . . .

IR-regulated QCD is not REAL QCD

BUT it only differs at low momenta

THUS we can use it for IR Safe functions: $C_2^{\gamma q}$, etc.

THIS enables us to get PDFs from experiment.

ullet Compute $F_2^{\gamma q}$, $F_2^{\gamma G}$...

Define factorization scheme; find IR Safe C's

Use factorization in the full theory

$$F_2^{\gamma h} = \sum\limits_{a=q_f,ar{q}_f,G} C^{\gamma a} \otimes \phi_{a/h}$$

Measure F_2 (h=n,p); then use the known C's to derive $\phi_{a/h}$

NOW HAVE $\phi_{a/h}(\xi,\mu^2)$ AND CAN USE IT IN ANY OTHER PROCESS THAT FACTORIZES.

 Multiple flavors and cross sections complicate technicalities; not logic (Global Fits)

- IIIC. Evolution: Q^2 -dependence
- ullet In general, Q^2/μ^2 dependence still in $C_a\left(x/\xi,Q^2/\mu^2,lpha_s(\mu)
 ight)$ Choose $\mu=Q$

$$m{F_2^{\gamma h}(x,Q^2)} = \sum\limits_a \int_x^1 d\xi \,\, C_2^{\gamma a} \left(rac{x}{\xi},1,lpha_s(Q)
ight) \, m{\phi_{a/h}(\xi,Q^2)}$$

 $Q \gg \Lambda_{\rm QCD} \rightarrow compute C$'s in PT.

$$C_2^{\gamma a}\left(\!rac{x}{oldsymbol{\xi}},1,lpha_s(oldsymbol{Q})\!
ight) = rac{1}{n}\!\left(\!rac{lpha_s(oldsymbol{Q})}{\pi}\!
ight)^{oldsymbol{n}} C_2^{\gamma a(oldsymbol{n})}\left(\!rac{x}{oldsymbol{\xi}}\!
ight)^{oldsymbol{n}}$$

But still need PDFs at $\mu=Q$: $\phi_{a/A}(\xi,Q^2)$ for different Q's.

How evolution works . . .

• A remarkable consequence of factorization.

• Can use $\phi_{a/A}(x,Q_0^2)$ to determine

$$\phi_{a/A}(x,Q^2)$$
 and hence $F_{1,2,3}(x,Q^2)$ for any Q

ullet So long at $lpha_s(Q)$ is still small.

Let's see how it works explicitly in an example.

• The 'nonsinglet' distribution

$$F_a^{\gamma ext{NS}} = F_a^{\gamma p} - F_a^{\gamma n}$$

$$F_2^{\gamma ext{NS}}(x,Q^2) = \int_x^1 d\xi \; C_2^{\gamma ext{NS}}\left(rac{x}{\xi},rac{Q}{\mu},lpha_s(\mu)
ight) \, \phi_{ ext{NS}}(\xi,\mu^2)$$

Gluons, antiquarks cancel

At one loop:
$$C_2^{
m NS}=C_2^{\gamma N}$$

• Basic tool:

'Mellin' Moments and Anomalous Dimensions

$$ar{f}(N)=\int_0^1 dx \; x^{N-1} \; f(x)$$

Reduces convolution to a product

$$f(x)=\int_x^1 dy \; g\left(rac{x}{y}
ight) \; h(y)
ightarrow ar{f}(N)=ar{g}(N) \; ar{h}(N+1)$$

• Moments applied to NS structure function $\mu_F = \mu_R = \mu$:

$$ar{m{F_2^{\gamma ext{NS}}}}(m{N},m{Q^2}) = ar{C}_2^{\gamma ext{NS}}igg(m{N},rac{m{Q}}{m{\mu}},lpha_s(m{\mu})igg) ar{m{\phi}_{ ext{NS}}}(m{N},m{\mu^2})$$

(Note
$$\phi_{
m NS}(N,\mu^2) \equiv \int_0^1 d\xi \xi^N f(\xi,\mu^2)$$
 here.)

 $\bullet \ ar{F}_2^{\gamma ext{NS}}(N,Q^2)$ is Physical

$$\Rightarrow \quad \mu rac{d}{d\mu} \; ar{F}_2^{\gamma ext{NS}}(N,Q^2) = 0$$

'Separation of variables'

$$egin{aligned} & \mu rac{d}{d\mu} \ln ar{\phi}_{ ext{NS}}(N,\mu^2) = -\gamma_{ ext{NS}}(N,lpha_s(\mu)) \ & \gamma_{ ext{NS}}(N,lpha_s(\mu)) = \mu rac{d}{d\mu} \! \ln ar{C}_2^{\gamma_{ ext{NS}}}\left(N,lpha_s(\mu)
ight) \end{aligned}$$

- Because α_s is the only variable held in common.
- $\gamma_{\rm NS}$ an "anomalous dimension", which controls the logarithmic μ dependence.

$$egin{aligned} \mu rac{d}{d\mu} \ln ar{\phi}_{ ext{NS}}(N,\mu^2) &= -\gamma_{ ext{NS}}(N,lpha_s(\mu)) \ \gamma_{ ext{NS}}(N,lpha_s(\mu)) &= \mu rac{d}{d\mu} \ln ar{C}_2^{\gamma_{ ext{NS}}}\left(N,lpha_s(\mu)
ight) \end{aligned}$$

ullet Only need to know C's $\Rightarrow \gamma_N$ from IR regulated theory!

Q-DEPENDENCE DETERMINED BY PT

EVOLUTION

THIS WAS HOW WE FOUND OUT QCD IS 'RIGHT'

AND THIS IS HOW QCD PREDICTS PHYSICS AT NEW SCALES

• γ_{NS} at one loop (5th line is an exercise.)

$$egin{aligned} \gamma_{ ext{NS}}(N,lpha_s) &= \mu rac{d}{d\mu} \, \ln ar{C}_2^{\gamma_{ ext{NS}}}(N,lpha_s(Q)) \ &= \mu rac{d}{d\mu} \, \left\{ \, (lpha_s/2\pi) \, ar{P}_{qq}(N) \ln(Q^2/\mu^2) + \mu \, \, ext{indep.} \,
ight\} \ &= -rac{lpha_s}{\pi} \, \int_0^1 dx \, x^{N-1} \, P_{qq}(x) \ &= -rac{lpha_s}{\pi} \, C_F \, \int_0^1 dx \, \left[\left(x^{N-1} - 1
ight) rac{1 + x^2}{1 - x}
ight] \ &= -rac{lpha_s}{\pi} \, C_F \, \left[\, 4 \, \sum\limits_{m=2}^N rac{1}{m} - 2 rac{2}{N(N+1)} + 1 \,
ight] \ &\equiv -rac{lpha_s}{\pi} \, \gamma_{ ext{NS}}^{(1)} \end{aligned}$$

Hint:
$$(1-x^2)/(1-x) = 1+x\dots(1-x^k)/(1-x) = \sum_{i=0}^{k-1} x^k$$

Solution and scale breaking.

$$\mu rac{d}{d\mu} \, ar{\phi}_{
m NS}(N,\mu^2) = -\gamma_{
m NS}(N,lpha_s(\mu)) \, \, ar{\phi}_{
m NS}(N,\mu^2)
onumber \ ar{\phi}_{
m NS}(N,\mu^2) = ar{\phi}_{
m NS}(N,\mu_0^2) imes \exp \left[\, -rac{1}{2} \, \int_{\mu_0^2}^{\mu^2} \, rac{d\mu'^2}{\mu'^2} \, \gamma_{
m NS}(N,lpha_s(\mu)) \, \,
ight]$$

$$ar{\phi}_{
m NS}(N,Q^2) \; = ar{\phi}_{
m NS}(N,Q_0^2) \; \left[rac{\ln(Q^2/\Lambda_{
m QCD}^2)}{\ln(Q_0^2/\Lambda_{
m QCD}^2)}
ight]^{-2\gamma_N^{(1)}/eta_0}$$

Hint:

$$lpha_s(Q) = rac{4\pi}{eta_0\,\ln(Q^2/\Lambda_{
m QCD}^2)}$$

So also:
$$ar{\phi}_{
m NS}(N,Q^2) = ar{\phi}_{
m NS}(N,Q_0^2) \, \left(rac{lpha_s(Q_0^2)}{lpha_s(Q^2)}
ight)^{-2\gamma_N^{(1)}/eta_0}$$

Qualitatively,

$$ar{\phi}_{
m NS}(N,Q^2) \; = ar{\phi}_{
m NS}(N,Q_0^2) \; \left[rac{lpha_s(Q_0^2)}{lpha_s(Q^2)}
ight]^{-2\gamma_N^{(1)}/eta_0}$$

- Is 'mild' scale breaking, to be contrasted to
- Case of $\alpha_s \to \alpha_0 \neq 0$, get a power Q-dependence:

$$\left(Q^2
ight)^{\gamma^{\left(1
ight)}rac{lpha_{s}}{2\pi}}$$

◆ QCD's consistency with the Parton Model (73-74)

Inverting the Moments.

$$\mu rac{d}{d\mu} \; ar{\phi}_{
m NS}(N,\mu^2) = -\gamma_N(lpha_s(\mu)) \; ar{\phi}_{
m NS}(N,\mu^2)$$

$$\mu rac{d}{d\mu} \; \phi_{m{q}m{q}}(m{x},m{\mu^2}) = \int_x^1 rac{dm{\xi}}{m{\xi}} \; P_{
m NS}(m{x}/m{\xi},lpha_s(\mu)) \; \phi_{
m NS}(m{\xi},m{\mu^2})$$

Splitting function ↔ **Anomalous dimensions**

$$\int_0^1 dx \; x^{N-1} \; P_{qq}(x,lpha_s) = \gamma_{NS}(N,lpha_s)$$

Singlet (Full) Evolution

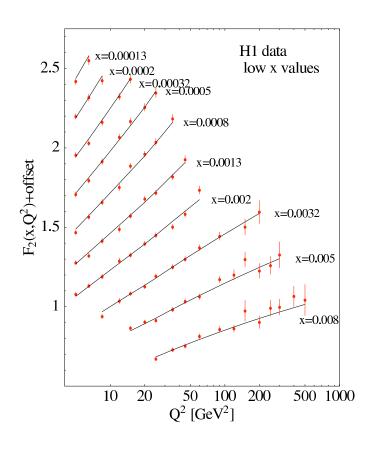
$$\mu rac{d}{d\mu} \, \phi_{b/A}(x,\mu^2) = \sum\limits_{b=q,ar{q},G} \int_x^1 rac{d\xi}{\xi} \, P_{ab}(x/\xi,lpha_s(\mu)) \, \phi_{b/A}(\xi,\mu^2)$$

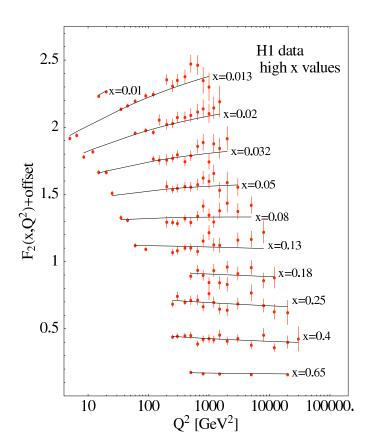
The Physical Context of Evolution

- Parton Model: $\phi_{a/A}(x)$ density of parton a with momentum fraction x, assumed independent of Q
- PQCD: $\phi_{a/A}(x,\mu)$: same density, but with transverse momentum $\leq \mu$

- ullet If there were a maximum transverse momentum Q_0 , each $\phi_{a/h}(x,Q_0)$ would freeze for $\mu \geq Q_0$.
- Not so in renormalized PT.
- Scale breaking measures the change in the density as maximum transverse momentum increases.
- Cross sections we compute still depend on our choice of μ through uncomputed "higher orders" in C and evolution.

• Evolution in DIS (with CTEQ6 fits)





IIID. Factorization in hadron-hadron scattering

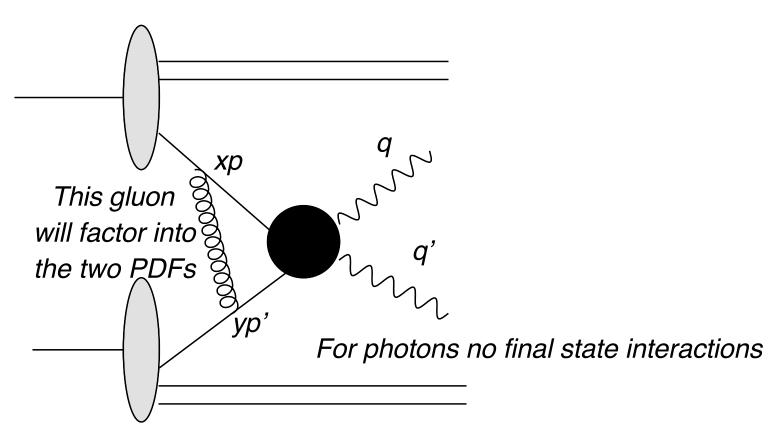
• General relation for hadron-hadron scattering for a hard, inclusive process with momentum transfer M to produce final state F+X: $(\mu_F=\mu_R=\mu)$

$$egin{aligned} d\sigma_{
m H_1H_2}(p_1,p_2,M) = \ & \sum\limits_{a,b} \int_0^1 d\xi_a \, d\xi_b d\hat{\sigma}_{ab
ightarrow F+X} \left(\xi_a p_1, \xi_b p_2, M, \mu
ight) \ & imes \phi_{a/H_1}(\xi_a,\mu) \, \phi_{b/H_2}(\xi_b,\mu), \end{aligned}$$

- Factorization proofs justify of the universality of the parton distributions.
- Also underly a range of generalizations of evolution: resummations (see appendix slides for an example).

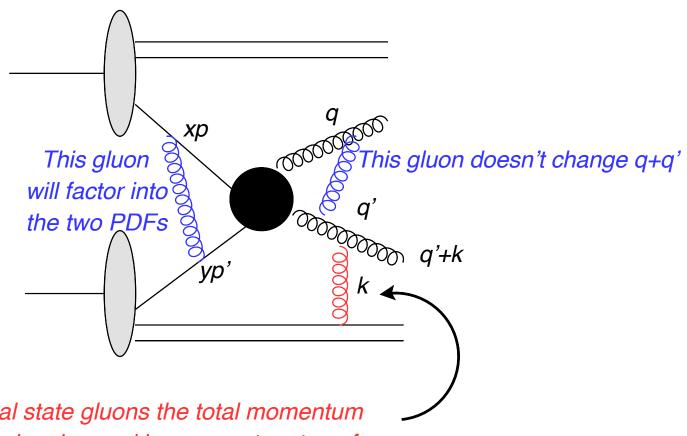
• Two examples that illustrate the application and limitations of factorization in hadron-hadron scattering.

1.
$$p+p \rightarrow \gamma + \gamma$$
:



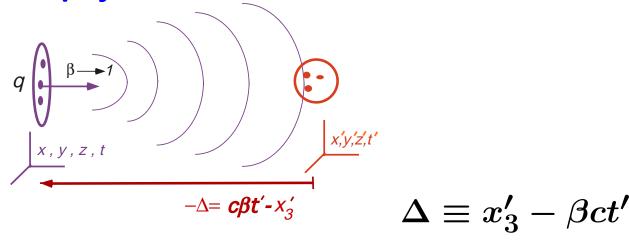
Factorization for measured (q+q')^2 and (q+q')T

2. $p + p \rightarrow g(jet) + g(jet)$:



For final state gluons the total momentum may be changed by momentum transfers of order 1/(proton size)

Doesn't matter much for (q+q')^2 But really affects (q+q')T • The physical basis: classical fields



Why a classical picture isn't far-fetched . . .

The correspondence principle is the key to to IR divergences.

An accelerated charge must produce classical radiation, and an infinite numbers of soft gluons are required to make a classical field.

Transformation of a scalar field:

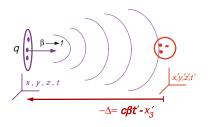
$$\phi(x) = \frac{q}{(x_T^2 + x_3^2)^{1/2}} = \phi'(x') = \frac{q}{(x_T^2 + \gamma^2 \Delta^2)^{1/2}}$$

From the Lorentz transformation:

$$x_3 = -\gamma (eta ct' - x_3') \equiv \gamma \Delta.$$

Closest approach is at $\Delta=0$, i.e. $t'=rac{1}{eta c}x_3'$.

The scalar field transforms "like a ruler": At any fixed $\Delta \neq 0$, the field decreases like $1/\gamma = \sqrt{1-\beta^2}$.



ullet The "gluon" $ec{A}$ is enhanced, yet is a total derivative:

$$A^{\mu} = q rac{\partial}{\partial x'_{\mu}} \; \ln \left(\Delta(t', x'_3)
ight) + \mathcal{O}(1-eta) \sim A^-$$

ullet The "large" part of A^{μ} can be removed by a gauge transformation!

- \bullet The "force" \vec{E} field of the incident particle does not overlap the "target" until the moment of the scattering.
- "Advanced" effects are corrections to the total derivative:

$$\left[1-eta \ \sim \ rac{1}{2} \left[\sqrt{1-eta^2}
ight]^2 \ \sim \ rac{m^2}{2E^2}$$

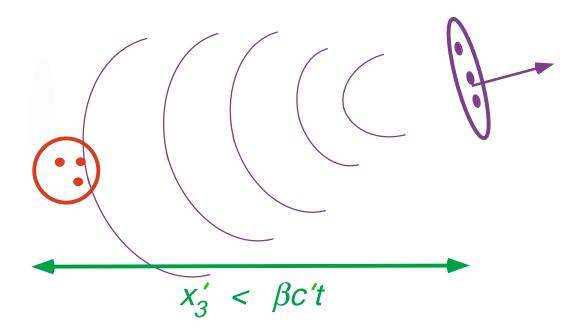
- Power-suppressed! These are corrections to factorization.
- At the same time, a gauge transformation also induces a phase on charged fields:

$$q(x) \Rightarrow q(x) e^{i \ln(\Delta)}$$

Cancelled if the fields are well-localized $\Leftrightarrow \sigma$ inclusive

- Initial-state interactions decouple from hard scattering
- Summarized by multiplicative factors: the parton distributions.
 - ⇒ Cross section for inclusive hard scattering is IR safe, with power-suppressed corrections.
- Factorizing dynamics at short and long distance can be built into effective field theories based on the QCD Lagrangian: in particular "soft-collinear effective field theory" (SCET) can streamline many applications.
- What about cross sections where we observe specific particles in the final state? Single hadrons, dihadron correlations, etc?

Much of the same reasoning holds:

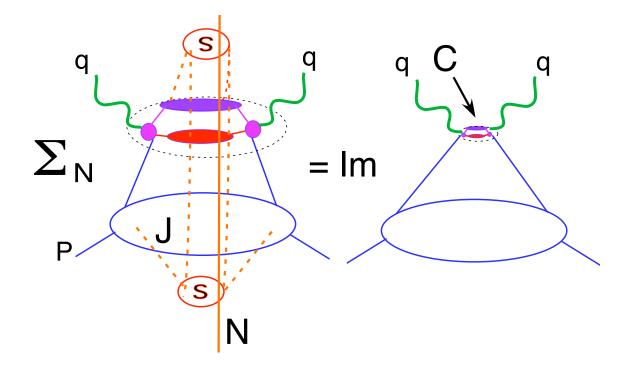


• For single-particle inclusive . . .

Interactions after the scattering are too late to affect large momentum transfer, creation of heavy particle, etc.

The fragmentation of partons to jets is too slow to know details of the hard scattering: factorization of fragmentation functions.

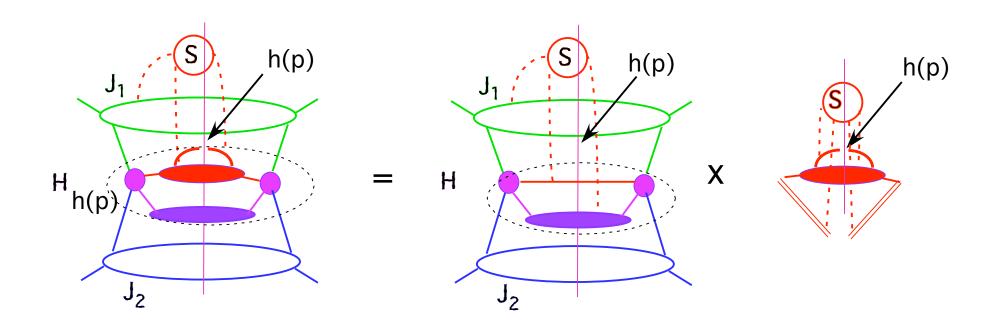
- Conclude with a few comments . . .
- Factorization, although powerful, is brittle. To apply it, we must define our cross sections to be "sufficiently inclusive". We have to be able to apply an analog of the optical theorem as in DIS, recall:



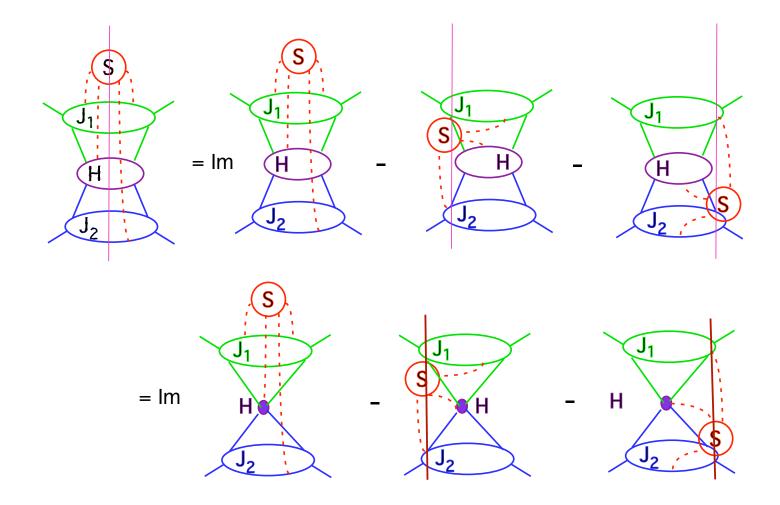
- \bullet How this works out for 1PI cross sections is sketched in the "appendix" slides. Also in appendix basics of Q_T resummation from a factorization point of view.
- Event generators for showering depend on the physics of factorization: each sequential branching (gluon emission, pair creation) is independent. A series of "mini-factorizations".
- The key to applications of perturbative QCD is to avoid uncontrolled dependence of long-distance physics. It must either cancel or be factorized from calculable quantities.
- pQCD will give sensible answers if you ask the right questions.

Appendix III.1: high orders in factorization proofs for 1PI cross sections

- How it works in pQCD, with pictures as in DIS:
- Separation of soft quanta from fragmenting partons because soft radiation cannot resolve collinear-moving particles.



• The all-orders cancellation of soft singularities that connect initial and final states for single-particle inclusive and other short-distance cross sections in hadron-hadron scattering:



all terms on RHS are power-suppressed

Appendix III.2: the Classic Case: Drell-Yan "Homework"

ullet Start with the Drell-Yan transverse momentum distribution at order $lpha_s$

$$q(p_1) + ar{q}(p_2)
ightarrow \gamma^*(Q) + g(k)$$

ullet Treat this 2 o 2 process at lowest order $(lpha_s)$ "LO" in factorized cross section, so that ${
m k}_T=-{
m Q}_T$

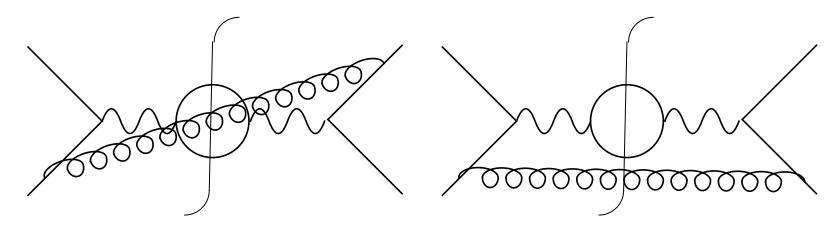
Here Q_T is defined in the center-of-mass frame, where \vec{p}_1 and \vec{p}_2 are along the z axis.

• Factorized cross section at fixed Q_T :

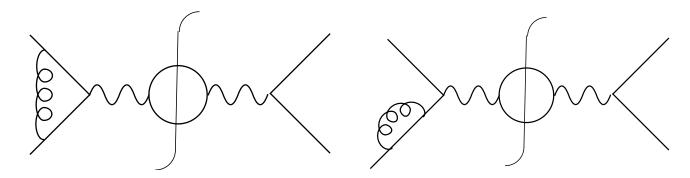
$$egin{aligned} rac{d\sigma_{NN o \mu^+ \mu^- + X}(Q, p_1, p_2)}{dQ^2 d^2 \mathrm{Q}_T} \ &= \int_{\xi_1, \xi_2} \sum_{a = qar{q}}^{\sum} rac{d\hat{\sigma}_{aar{a} o \mu^+ \mu^- (Q) + X}(Q, \mathrm{Q}_T, \xi_1 p_1, \xi_2 p_2, \mu)}{dQ^2 d^2 \mathrm{Q}_T} \ & imes f_{a/N}(\xi_1, \mu) \, f_{ar{a}/N}(\xi_2, \mu) \end{aligned}$$

• μ is the factorization scale that separates IR (f) from UV $(d\hat{\sigma})$ in quantum corrections.

ullet The diagrams at order $lpha_s$. Finite for ${
m Q}_T
eq 0 \dots$ Gluon emission contributes at $Q_T
eq 0$



Virtual corrections contribute only at $Q_T=0$



$$egin{split} rac{d\hat{\sigma}_{qar{q}
ightarrow\gamma^*g}^{(1)}}{dQ^2\,d^2\mathrm{Q}_T} &= \sigma_0 rac{lpha_s C_F}{\pi^2} iggl[1 - rac{4\mathrm{Q}_T^2}{(1-z)^2 \xi_1 \xi_2 S} iggr]^{-1/2} \ & imes iggl[rac{1}{\mathrm{Q}_T^2} rac{1+z^2}{1-z} - rac{2z}{(1-z)Q^2} iggr] \end{split} egin{split} (*) \end{split}$$

 σ_0 is the Born cross section for $q \bar q o \gamma^* g$.

At fixed Q_T it gives the LO differential cross section, as long as $Q_T \neq 0$, $z = Q^2/\xi_1 \xi_2 S \neq 1$.

The
$$Q_T$$
 integral $ightarrow rac{\ln(1-z)}{1-z}$; z integral $ightarrow rac{\ln \mathrm{Q}_T^2}{\mathrm{Q}_T^2}$.

Using dimensional regularization, this can be integrated over \mathbf{Q}_T then convoluted with parton distributions to get the NLO correction to the total DY cross section.

The leading singularity in Q_T

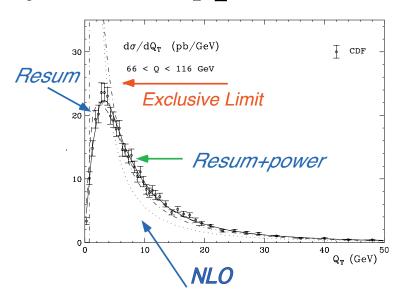
• z integral: If Q^2/S not too big, PDFs nearly constant:

$$\left[rac{1}{{
m Q}_T^2} \int_{1-Q^2/S}^{1-{
m Q}_T^2/Q^2} rac{dz}{1-z} = rac{1}{{
m Q}_T^2} \, \ln \left[rac{Q^2}{{
m Q}_T^2}
ight]$$

 \Rightarrow Prediction for Q_T dependence:

$$egin{aligned} rac{d\sigma_{NN
ightarrow \mu^+ \mu^- + X}(Q, \mathrm{Q}_T)}{dQ^2 d^2 \mathrm{Q}_T} &= rac{lpha_s C_F}{\pi} rac{1}{\mathrm{Q}_T^2} \ln \left[rac{Q^2}{\mathrm{Q}_T^2}
ight] \ & imes rac{\sum_{a=qar{q}} \int_{ar{\xi}_1 ar{\xi}_2} rac{d\hat{\sigma}_{aar{a}
ightarrow \mu^+ \mu^- (Q) + X}(Q, \mu)}{dQ^2} \ & imes f_{a/N}(ar{\xi}_1, \mu) \, f_{ar{a}/N}(ar{\xi}_2, \mu) \end{aligned}$$

ullet Compare to: Z p_T (from Kulesza, G.S., Vogelsang (2002))



- ullet $\ln Q_T/Q_T$ works pretty well for large Q_T
- ullet But at smaller Q_T reach a maximum, then a decrease near "exclusive" limit (parton model kinematics)
- ullet Most events are at "low" $Q_T \ll Q = m_Z$.

ullet Getting to $Q_T \ll Q$: Transverse momentum resummation (Logs of $Q_T)/Q_T$ to all orders

How? Variant factorization and separation of variables q and \bar{q} "arrive" at point of annihilation with transverse momentum of radiated gluons in initial state.

q and \bar{q} radiate independently (fields don't overlap!).

Final-state QCD radiation too late to affect cross section

$$rac{d\sigma_{NN
ightarrow\mu^+\mu^-+X}(Q,\mathrm{Q}_T)}{dQ^2d^2\mathrm{Q}_T}$$

Summarized by: Q_T -factorization:

$$egin{aligned} rac{d\sigma_{NN o QX}}{dQd^2Q_T} &= \int d\xi_1 d\xi_2 \,\,\,d^2 \mathrm{k}_{1T} d^2 \mathrm{k}_{2T} d^2 \mathrm{k}_{sT} \ & imes H(\xi_1 p_1, \xi_2 p_2, Q, n)_{aar{a} o Q+X} \ & imes \mathcal{P}_{a/N}(\xi_1, p_1 \cdot n, k_{1T}) \,\, \mathcal{P}_{ar{a}/N}(\xi_2, p_2 \cdot n, k_{2T}) \ & imes U_{aar{a}}(k_{sT}, n) \,\delta \,\, (Q_T - k_{1T} - k_{2T} - k_{sT}) \end{aligned}$$

The $\mathcal{P}'s$: new Transverse momentum-dependent PDFs

Also need U: "soft function" for wide-angle radiation

Symbolically:

$$egin{aligned} rac{d\sigma_{NN
ightarrow QX}}{dQd^2Q_T} = \ H imes \mathcal{P}_{a/N}(\xi_1,p_1\cdot n,k_{1T})\,\mathcal{P}_{ar{a}/N}(\xi_2,p_2\cdot n,k_{2T}) \ \otimes_{\xi_i,k_{iT}} U_{aar{a}}(k_{sT},n) \end{aligned}$$

We will solve for the k_T dependence of the \mathcal{P} 's.

New factorization variables: n^{μ} apportions gluons k:

$$p_i \cdot k < n \cdot k \Rightarrow k \in \mathcal{P}_i$$
 $p_a \cdot k, p_{\bar{a}} \cdot k > n \cdot k \Rightarrow k \in U$

Convolution in $k_{i,T}$ s \Rightarrow Fourier $\mathrm{e}^{i\vec{Q}_T\cdot\vec{b}}$

The factorized cross section in "impact parameter space":

$$egin{aligned} rac{d\sigma_{NN
ightarrow QX}(Q,b)}{dQ} &= \int d\xi_1 d\xi_2 \; H(\xi_1 p_1, \xi_2 p_2, Q, n)_{aar{a}
ightarrow Q+X} \ imes \mathcal{P}_{a/N}(\xi_1, p_1\cdot n, b) \; \mathcal{P}_{ar{a}/N}(\xi_2, p_2\cdot n, b) \; U_{aar{a}}(b, n) \end{aligned}$$

Now we can resum by separating variables!

the LHS independent of $\mu_{\rm ren}$, $n \Rightarrow$ two equations

$$\mu_{
m ren} rac{d\sigma}{d\mu_{
m ren}} = 0 \quad n^lpha rac{d\sigma}{dn^lpha} = 0$$

Method of Collins and Soper, and Sen (1981)

Change in jet must cancel change in (UV) H and (IR) U:

$$p \cdot n \, rac{\partial}{\partial p \cdot n} \, \ln \, \mathcal{P}(p \cdot n/\mu, b \mu) = G(p \cdot n/\mu) + K(b \mu)$$

G matches H, K matches U. Renormalization indep. of n^{μ} :

$$\mu \, rac{\partial}{\partial \mu} \left[\, G(p \cdot n/\mu) + K(b\mu) \,
ight] = 0$$

$$\mu \, rac{\partial}{\partial \mu} \, G(p \cdot n/\mu) \; = \; A(lpha_s(\mu)) \; = \; - \, \mu \, rac{\partial}{\partial \mu} \, K(b\mu)$$

Solve this one first. μ in α_s varies (& α_s need not be small).

$$G(p \cdot n/\mu) + K(b\mu) = G(p \cdot n/\mu) + K(\mu/p \cdot n)$$

The consistency equation for the jet becomes

$$p \cdot n \, rac{\partial}{\partial p \cdot n} \, \ln \, \mathcal{P}(p \cdot n/\mu, b\mu) = G(p \cdot n/\mu) + K(\mu/p \cdot n) \ - \int_{1/b}^{p \cdot n} rac{d\mu'}{\mu'} \, A(lpha_s(\mu'))$$

Integrate $p \cdot n$ and get double logs in $b o lpha_s^{n \ln^{2n-1}(Q/Q_T)}$.

Transformed solution back to Q_T : all the (Logs of Q_T)/ Q_T , Which fits the data; (viz. RESBOS; Yuan, Nadolsky et al.)

$$egin{split} rac{d\sigma_{NN{
m res}}}{dQ^2d^2ec{Q}_T} &= \sum\limits_{m{a}} H_{aar{a}}(lpha_s(Q^2)) / rac{d^2b}{(2\pi)^2} e^{iec{Q}_T \cdot ec{b}} \, e^{m{E}_{aar{a}}^{
m PT}(b,Q,\mu)} \ & imes \sum\limits_{a=qar{q}} \int_{m{\xi}_1m{\xi}_2} rac{d\hat{\sigma}_{aar{a} o \mu^+\mu^-(Q)+X}}{dQ^2} \, f_{a/N}(m{\xi}_1,1/b) \, f_{ar{a}/N}(m{\xi}_2,1/b) \end{split}$$

"Sudakov" exponent links large and low virtuality:

$$E_{aar{a}}^{ ext{PT}} = - extstyle rac{Q^2}{1/b^2} rac{dk_T^2}{k_T^2} \, \left[2 A_q(lpha_s(k_T)) \, \ln \left[rac{Q^2}{k_T^2}
ight] + 2 B_q(lpha_s(k_T))
ight]$$

With $B = 2(K + G)_{\mu = p \cdot n}$, and lower limit: 1/b (NLL)