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In these lecture notes, the basic principles of Monte Carlo event generation
and parton showering are explained. The lectures are intended as a primer for
a hands-on tutorial, in which the students will have the opportunity to code
up their own parton shower Monte Carlo for e+e− annihilation entirely from
scratch. An effort is made to cover the basics in great detail, rather than to
give a comprehensive overview of state-of-the-art methods. For more inform-
ation on modern full fledged general purpose event generators, I recommend
references [1–3] and the references therein.

1 The Basic Problem

Monte Carlo event generation is a technique for deriving theory predictions
for observables at collider experiments. Generically, such observables can be
described in a somewhat idealized way by a function O of the final state
particles detected in a collision. If we denote the final state by f and the
corresponding phase space (the momenta of the particles in f) by Φf , we can
write

O(f ; Φf ) . (1)

The exact outcome, i.e. the final f state with its momenta Φf = {p1, . . . , pnf
},

cannot be predicted for any one specific particle collision, even if the exact
initial conditions are known. As a consequence of the principles of quantum
mechanics, only the probability for some final state to be produced during a
collision can be predicted. This probability is proportional to the differential
cross section

dσ(f ; Φf )

d Φf
. (2)
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Provided a theory prediction for the differential cross section, one can make
meaningful predictions for the expectation value of some observable

〈O〉 = L ×
∑
f

∫
dσ(f ; Φf )

d Φf
O(f ; Φf ) d Φf . (3)

Focusing on one specific final state we can drop the corresponding index f
for clarity. The total contribution from several final states can be trivially
obtained by adding them all up. The task of calculating the expectation value
of the observable then boils down to evaluating integrals of the form

〈O〉 = L ×
∫

dσ(Φ)

d Φ
O(Φ) d Φ . (4)

For a process in which two particles a and b with momenta pa and pb annihilate
into n particles with momenta pi with i ∈ {1, . . . , n}, we have, for example

dσ

d Φ
d Φ =

1

F
|M(Φ)|2 d Φ (5)

d Φ = (2π)4δ4(pa + pb −
n∑
i=1

pi)

n∏
i=1

d3 ~pi
(2π)32Ei

(6)

F = 4
√

(papb)2 − (mamb)2 (7)

Both the observable and the scattering matrix elementM can be arbitrar-
ily complex functions, thus rendering the analytical evaluation of the integral
extremely challenging, if at all possible. Numerical methods therefore gener-
ally have to be employed. The Monte Carlo method is the most flexible and
widely used method in particle physics.

2 Monte Carlo Integration

As stated above, calculating the expectation value of a particle collider ob-
servable typically involves complex high dimensional phase space integrals.
Let the quantity of interest generically be an integral I of some function f in
a multi-dimensional variable x

I =

∫
G
f(x) dn x , (8)

where G is the integration region. In the Monte Carlo approach, the integral
I is approximated by drawing a large number N of random phase space points
xi ∈ G with i ∈ {1, . . . , N}

IN =
V

N

N∑
i=1

f(xi) , (9)
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where V is the volume of the integration region G. The law of large numbers
guarantees that

lim
N→∞

IN = I . (10)

Practically, one can of course only generate a finite number of phase space
points and therefore only calculate IN for some finite N as a prediction for
I. The square root of the statistical variance of IN can then be used as
an estimator for the statistical uncertainty ∆ of this prediction. It is fairly
straightforward to show that this quantity is given by

∆(IN ) =
√

Var(IN ) =
V√
N

√
Var(f) . (11)

The variance of f is defined in terms of it’s mean f̄ = I/V as

Var(f) =
1

V

∫
G

(f(x)− f̄)2 dn x . (12)

This demonstrates that the scaling behavior of the uncertainty is essentially
1/
√
N with no dependence on the number of phase space dimensions. This

is one of the advantages compared to other numerical methods, which often
exhibit a problematic scaling with the number of phase space dimensions.

3 Monte Carlo Event Generation

Monte Carlo event generation is simply the application of the Monte Carlo
method to integrals of the form (4):

〈O〉 = lim
N→∞

L × V

N

N∑
i=1

dσ(Φ)

d Φ

∣∣∣∣
Φ=Φi

O(Φi) (13)

= lim
N→∞

L × V

N

N∑
i=1

wiO(Φi) , (14)

where V is the volume of the integration region. The only ingredients needed
in order to implement (14) are routines that evaluate the differential cross
section dσ/d Φ and the observable O(Φ) for a given phase space point and a
routine that randomly generates phase space points Φi. A fully generic but
simple algorithm for generating valid phase space points (with all particles
on shell and with four-momentum conservation respected) is described in
[4]. Once a set of phase space points has been generated, it can be stored
along with the corresponding values of the differential cross section weights
wi. These phase space points can be interpreted as simulated Monte Carlo
events. They can then be used to calculate any observable O without re-
doing the most complex part of the calculation, i.e. the generation of phase

3



space points and the evaluation of the differential cross section. Herein lies the
flexibility of the method and one of the most important advantages compared
to an analytic observable-specific calculation.

3.1 A simple example

In the tutorials, we will be looking at e + e− → qq̄, where q is any massless
quark. In this simple example, one can show that the phase space can be
simplified as∫

d Φ =
d3 ~pq

(2π)32Eq

d3 ~pq̄
(2π)32Eq̄

=

∫ 2π

0
dφ

∫ +1

−1

d[cos(θ)]

16π
. (15)

Combined with the matrix element M, which can be looked up in [5], this
gives ∫

dσ

d Φ
d Φ =

∫ 2π

0
dφ

∫ +1

−1
d[cos(θ)]

|M(cos θ)|2

64π2E2
cm

(16)

In the tutorial toy Monte Carlo, we therefore have a simple two-dimensional
integration to solve. We achieve this by drawing φ and cos θ from a uniform
distributions in the intervals [0, 2π] and [−1, 1], respectively.

4 Variance Reduction Techniques

Expression (11) for the statistical uncertainty on the Monte Carlo integration
result shows that the method will perform poorly if the integrand has a large
variance, i.e. if the integrand fluctuates a lot. It is often computationally not
feasible to solve this issue by simply increasing the number N of integrand
evaluations. Note that in order to improve the uncertainty by a factor of 10,
one would have to increase N by a factor of 100.
The convergence can, however, be significantly improved by variance reduc-

tion techniques. The methods employed in Monte Carlo codes typically rely
on a biased generation of phase space points x. This can be intuitively under-
stood. Suppose we know that the integrand f(x) is almost zero everywhere
except for small region in phase space where f(x) is large and potentially
fluctuates wildly. Then we can improve the convergence by drawing x in such
a way that most points end up in this region. This bias then has the be
accounted for, otherwise the integration result will of course change. To see
how this work, we re-write (8) as an expectation value with respect to the
constant probability distribution p(x) = 1/V

I = V ×
∫
f(x)

1

V
dx (17)

= V ×
∫
f(x)p(x) dx (18)

= V × E[f, p] , (19)
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where E[f, p] denotes the expectation value of f with respect to the probab-
ility distribution function p. Now it is straightforward to see that

V × E[f, p] = V × E[fg/g, p]

= E[f/g, g] (20)

This means that we can evaluate the function f/g instead of f if we distribute
the phase space points according to g. If the variance of f/g is smaller than
the variance of f , this in turn leads to a better convergence due to (11). We
can re-phase (20) also in terms of an integration variable transformation φ.∫

f(x) dx =

∫
f(φ(t))× φ′(t) d t . (21)

Now we choose φ(t) = G−1(t), where G−1 is the inverse of the primitive
integral of g and find∫

f(x) dx =

∫
f(G−1(t))× [G−1]′(t) d t (22)

=

∫
f(G−1(t))

G′(G−1(t))
d t (23)

=

∫
f(G−1(t))

g(G−1(t))
d t . (24)

As shown in secion 5, this corresponds to drawing t from the probability
distribution g and multiplying with the factor 1/g as described above.
The method outlined above of course relies on the function g being con-

structed in such a way as to minimize the variance of f/g. One can show
that, ideally, g = |f |/I. This is of course not possible without knowing I.
In practice, one therefore constructs an approximate g, either based on some
knowledge about the integrand, or algorithmically by probing the integrand.
The latter approach is taken in the VEGAS method [6]. Both approches can
be combined into very powerful adaptive multichannel algorithms [7].

5 Biased Random Number Generation

Essential ingredients for any Monte Carlo event generator are sequences of
random numbers. In practice, one typically relies on pseudorandom numbers
generated by some algorithm. We will not discuss such algorithms here but
simply assume we have an algorithm at hand that is capable of generating a
uniformly distributed random variable r ∈ [0, 1]. Given such an algorithm,
there are several methods to generate numbers for a variable τ ∈ [τ0, τ1] that
is distributed according to some arbitrary probability density function g(τ).
First some notation: let r be a random variable, then we denote by pr

it’s probability distribution function and by Pr its cumulative distribution
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function:

Prob(r0 < r < r1) =

∫ r1

r0

pr(r
′) d r′ = Pr(r1)− Pr(r0) . (25)

For a uniformly distributed variable r in [0; 1], we have for example

pr(r
′) = 1 (26)

Pr(r1) = r1 . (27)

We will now discuss the inverse transform sampling method for generating
values for a random variable that is distributed according to some arbitrary
probability density function g. This method will be heavily used in the tu-
torials. Suppose we know g’s primitive integral G as well as it’s inverse G−1

and suppose that the random variable r is uniformly distributed. Then, as
we will show, the random variable

τ = G−1(r) (28)

is distributed according to g, as desired. Here it is of course crucial that the
primitive G is chosen such that G(τ0) = 0 and G(τ1) = 1. One can show that
(28) indeed yields a variable that is distributed according to g by calculating
the cumulative distribution function of τ :

Pτ (τ1) = Prob(τ < τ1) (29)

= Prob(G−1(r) < τ1) (30)
= Prob(r < G(τ1)) (31)
= Pr(G(τ1)) = G(τ1) (32)
⇒ pτ (τ ′) = g(τ ′) (33)

The technique outlined above can only be applied if one can construct
and invert the function G, which is not always the case. Alternatively, the
hit-and-miss technique can be employed. In this method, τ is generated uni-
formly in [τ0, τ1]. A value of τi genrated in this way is then accepted with
probability g(τi)/gmax, where gmax is the maximum value of g in the inter-
val [τ0, τ1]. This method is computationally expensive in cases where the
function evaluations of g are expensive. Every generated point involves a
function call to g, regardless of whether it will be eventually accepted or re-
jected. Using this method in Monte Carlo event generation, one can however
perform an unweighting of events in a straightforward way by subjecting the
acceptance/rejection procedure to all events according to their weight.

6 Parton Showers

6.1 Parton Fragmentation

With the methods described above we are in principle ready to construct a
Monte Carlo event generator if we have a way to compute differential scat-
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tering cross section. Methods to do that for reactions involving elementary
particles such as electrons, positrons, quarks, and gluons are well established.
In reactions involving QCD partons, the particles eventually hitting the de-
tector are composite hadrons, however. QCD partons do not exist as free
particles, instead they form hadrons in a non-perturbative fragmentation pro-
cess. One can introduce fragmentation functions

Dh
i (ξ) . (34)

similarly to parton distribution functions (PDFs) in order to describe this
process. Such functions would have to be extracted from experiment. They
can be interpreted as the probability for some quark i to fragment into hadron
h carrying a fraction ξ of its energy. We will consider only one hadron in what
follows and therefore drop index h for clarity.
In terms of the fragmentation functions and scattering processes involving

only bare partons, we can for example write down an expression for the
differential energy distribution in hadrons of type h. Imagine measuring the
energy Eh inside such hadrons or, equivalently, the scaled energy

x =
2Eh√
s
∈ [0, 1] . (35)

Now consider the corresponding differential distribution

F (x) =
dσe

+e−→ h+X

dx
=
∑
i

∫ 1

0
d z

∫ 1

0
d ξ Ci(z, µ

2
f )Di(ξ, µ

2
f )δ(zξ − x)

(36)

=
∑
i

∫ 1

x

d z

z
Ci(z, µ

2
f )Di(x/z, µ

2
f ) , (37)

where Ci denotes the partonic inclusive production cross section for e+e− →
i+X. This quantity can be computed in perturbation theory since it involves
only elementary partons. At leading order and we have simply

Ci(z, µ
2
f ) = c0

i δ(1− z) (38)

F (x) =
∑
i

c0
iDi(x) . (39)

where the c0
i = 0 for i = g and c0

q is the leading order cross section σLO(e+e− →
qq̄).

6.2 Scale Dependence of Fragmentation Functions

Now consider NLO corrections to Cq where q is a massless quark. One can
show that the real-emission corrections from gluon emissions off the quarks
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e+e− → qq̄g factorize in the limit where the gluon is collinear to either of
them. In the region where the gluon is collinear to the quark, we have

dσ(e+e− → qq̄g) ≈ dσ(e+e− → qq̄)× αs
2π
P̂qq(z)

d t

t
d z (40)

where t is the virtuality (invariant mass) of the intermediate quark and z is
the energy fraction transferred from the intermediate quark to the final state
quark. The splitting kernel P̂qq is given by

P̂qq(z) = Cf
1 + z2

1− z
. (41)

The splitting kernel is singular in the region z = 1, where the gluon becomes
soft. This singularity is canceled by virtual corrections, which can be absorbed
into a regularized splitting kernel Pqq:

Pqq(z) = Cf

[
1 + z2

1− z

]
+

(42)

= Cf

[
1 + z2

[1− z]+
+

3

2
δ(1− z)

]
(43)

The plus distribution is typically defined in terms of its properties as an
integration kernel:∫ 1

0
[g(z)]+f(z) d z =

∫ 1

0
[g(z)f(z)− g(z)f(1)] d z . (44)

A more intuitive understanding can be obtained from a limiting procedure:∫ 1

0
[g(z)]+f(z) d z = lim

ε→0

∫ 1

0
gε(z)f(z) d z , (45)

where

gε(z) = Θ(1− ε− z)g(z)− Θ (z − (1− ε))
ε

∫ 1−ε

0
g(z′) d z′ . (46)

Applied to a splitting kernel with a soft singularity at z = 1, the first term can
be interpreted as the real-emission contribution resolved above energy frac-
tions ε of the gluon. The second term corresponds to virtual loop corrections
and unresolved contributions below ε.
In terms of the regularized kernel (42) involving the plus prescription, we

have at NLO

Cq(z) = c0
q

[
δ(1− z) +

∫ Q2

0

d t

t

αs
2π
Pqq(z)

]
, (47)
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whereQ2 = s is the center-of-mass energy of the collider. The integral over t is
logarithmically divergent as t→ 0. For now we will regularize this divergence
with a lower bound, imposing t > κ2.

Cq(z) = c0
q

[
δ(1− z) +

αs
2π

log

(
Q2

κ2

)
Pqq(z)

]
(48)

The divergence at κ2 = 0 is not subject to cancellations with virtual correc-
tions. It comes from collinear splittings partons involving small momentum
transfers and should thus be considered part of the fragmentation process de-
scribed by the fragmentation function rather than the partonic cross section.
The divergent part up to some arbitrary factorization scale µf is therefore
absorbed into a renormalized fragmentation function as follows

Dq(x, µ
2
f ) =

∫ 1

x

d z

z

[
δ(1− z) +

αs
2π

log

(
µ2
f

κ2

)
Pqq(z)

]
Dq(x/z) (49)

= Dq(x) +
αs
2π

log

(
µ2
f

κ2

)∫ 1

x

d z

z
Pqq(z)Dq(x/z) . (50)

In terms of this renormalized fragmentation function we now have up to terms
of order α2

s

F (x) =

∫ 1

x

d z

z
c0
q

[
δ(1− z) +

αs
2π

log

(
Q2

µ2
f

)
Pqq(z)

]
Dq(x/z, µ

2
f ) , (51)

which is independent of the regulator κ. This regulator can now be safely
removed. The singularity is of course still present in the relation between
the renormalized and the unrenormalized fragmentation function, but the
former is not observable. The “bare” fragmentation functions without scale
dependence disappear entirely from our expressions if written in terms of
the renormalized scale dependent fragmentation functions. In that sense, the
bare functions are only intermediate objects.
A consequence of this is that we cannot compute the renormalized frag-

mentation functions themselves using their definition in (50). Only their
dependence on the factorization scale can be extracted from (50). It reads

t
∂

∂t
Dq(ξ, t) =

αs
2π

∫ 1

ξ

d z

z
Pqq(z)Dq(ξ/z, t) (52)

With Dq(ξ, t) measured at some value of t, the evolution equation (62) can be
used to obtain Dq(ξ, t) at any other value of t. This corresponds to changing
the amount of radiation that is absorbed into the fragmentation function.
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6.3 The Sudakov Form Factor

Given a measurement of Dq(ξ, t) at some value t, equation (62) allows us
to perturbatively predict the value of Dq at some other value t′. As will be
shown, it is useful for practical purposes to re-write this equation in terms of
a quantity called the Sudakov form factor

∆q(t, t0) = exp

[
−
∫ t

t0

d t̄

t̄

∫ 1−ε

0

αs
2π
P̂qq(z̄) d z̄

]
, (53)

where ε is an infrared regulator that precisely corresponds to the ε in the
plus-prescription as defined in (46), as will be shown later.
We note that the Sudakov form factor ∆q(t, t0) as a function of the second

argument can be interpreted as a probability, since ∆(t, t0) ∈ [0, 1] for t0 ∈
[t, 0]. We will for now not interpret this probability but merely note that the
corresponding probability density p(t′) can be found by differentiation of the
form factor:

p(t′) = ∆q(t, t
′)

1

t′

∫ 1−ε

0

αs
2π
Pqq(z̄) d z̄ . (54)

6.4 Parton Shower Evolution

Solving the evolution equation (62) numerically is not entirely straightforward
because the splitting kernel Pqq is irregular at z = 1 due to the divergence
which is subtracted at exactly z = 1 through the plus prescription that ef-
fectively adds contributions from virtual corrections. Writing out the plus
prescription explicitly, we have

t
∂

∂t
Dq(ξ, t) =

αs
2π

∫ 1

ξ

d z

z
Pqq(z)Dq(ξ/z, t) (55)

=
αs
2π

∫ 1

0
d zP̂qq(z)

[
1

z
Dq(ξ/z, t)−Dq(ξ, t)

]
(56)

=
αs
2π

∫ 1

x

d z

z
P̂qq(z)Dq(ξ/z, t)−

αs
2π

∫ 1

0
d zP̂qq(z)Dq(ξ, t) (57)

≈ αs
2π

∫ 1−ε

ξ

d z

z
P̂qq(z)Dq(ξ/z, t)−

αs
2π

∫ 1−ε

0
d zP̂qq(z)Dq(ξ, t) ,

(58)

where we set Dq(ξ, t) = 0 for ξ > 1 in order to be able to extend the integ-
ration region down to z = 0. In the last step we have used the definition of
the plus distribution given in (46).
We can now re-write equation (58) in terms of the Sudakov form factor
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introduced in (53) as follows

t
∂

∂t
Dq(ξ, t) +

αs
2π

∫ 1−ε

0
d zP̂qq(z)Dq(ξ, t) =

αs
2π

∫ 1−ε

ξ

d z

z
P̂qq(z)Dq(ξ/z, t)

(59)

t
∂

∂t

Dq(ξ, t)

∆q(t, t0)
=
αs
2π

∫ 1−ε

ξ

d z

z
P̂qq(z)Dq(ξ/z, t)

(60)

This differential equation can now be integrated, giving

Dq(ξ, t) = ∆q(t, t0)Dq(ξ, t0) +

∫ t

t0

d t′

t′
∆q(t, t

′)

∫ 1−ε

ξ

d z

z

αs
2π
P̂qq(z)Dq(ξ/z, t

′)

(61)

Equation (61) now explicitly gives Dq(x, t) in terms of an integral involving
Dq(x, t

′) at all t′ < t. More importantly, it can be interpreted probabilistically
as we will show.
We imagine a quark being produced with initial virtuality t of the order

of the scale of the hard process (Q2 in e+e− collisions). Then we imagine
the quark being able to emit a gluon and thereby split. This gives rise to
a virtuality t′ of the intermediate quark which would be limited to values
below the hard initial scale t. We imagine the value of the virtuality t′ in the
splitting being distributed according to (54). The probability for the splitting
not to occur in the interval [t, t0] i.e. the probability of no splitting above the
scale t0 is then given by the Sudakov form factor (53).
We can then interpret the first term in (61) as contributions to the frag-

mentation from quarks that were produced at t and then do not produce any
emission above t0 (hence the factor ∆q(t, t0)). These quarks deposit their en-
ergy into the hadron according to Dq(x, t0), i.e. the fragmentation function
that can be thought of as absorbing all emissions below t0.
The second term in (61) then adds contribution from quarks which un-

dergo a splitting at some intermediate scale t′, distributed according to (54).
Correspondingly, the fragmentation function is evaluated at t′. The first ar-
gument of the fragmentation function is ξ/z because the energy transferred in
the fragmentation of the final quark must be larger by a factor of 1/z due to
the energy lost in the splitting. Equation (61) then recursively applies again
to Dq(ξ/z, t

′).
Parton shower branching algorithms explicitly simulate this probabilistic

process and thus implement (61). Starting at the hard scale of the process,
final state partons undergo a branching with the value of virtuality in the next
splitting distributed according to (54). The lower bound t0 on the virtuality
is where the parton shower algorithm stops.
In the discussion above we have only considered one type of splitting in

which q → qg. The generalization to the case in which all splittings are
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considered reads

t
∂

∂t
Di(ξ, t) =

∑
j

αs
2π

∫ 1

ξ

d z

z
Pji(z)Dj(ξ/z, t) (62)

where the full set of regularized splitting functions is given by

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(63)

Pgq(z) = CF

[
1 + (1− z)2

z

]
(64)

Pgg(z) = CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]
× 2 + δ(1− z)

11CA − 4NfTR
6

(65)

Pqg(z) = TR
[
z2 + (1− z)2

]
(66)

For parton shower evolusion we use the generalization of (61), which reads

Di(x, t) = ∆i(t, t0)Di(x, t0) +
∑
j

∫ t

t0

d t̄

t̄
∆i(t, t̄)

∫ 1−ε

0

d z

z

αs
2π
P̂ji(z)Dj(x/z, t̄) ,

(67)

with the Sudakov form factor

∆i(t, t0) = exp

−∑
j

∫ t

t0

d t̄

t̄

∫ 1−ε

0
d z̄

αs
2π
P̂ji(z̄)

 (68)

and the unregularized splitting kernels

Pqq(z) = CF

[
1 + z2

1− z

]
Pgq(z) = CF

[
1 + (1− z)2

z

]
Pgg(z) = CA

[
z

(1− z)
+

1− z
z

+ z(1− z)
]

Pqg(z) = TR
[
z2 + (1− z)2

]
(69)

6.5 Soft evolution

A parton shower algorithm as described above does not only express frag-
mentation functions evaluated at some large scale in terms of fragmentation
functions at smaller scales. In addition, it explicitly adds the collinear emis-
sions that are absorbed into the functions at high scales back to the physical
picture through the branching process. This process correctly captures the
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physics of collinear emissions, which are enhanced due to the 1/t singularities
of in the corresponding cross section in (40).
In addition to the singularities in the collinear region, there are singular-

ities whenever a gluon becomes soft, i.e. when it’s energy becomes small.
These singularities are manifest as divergences in the unregularized splitting
function, for example in Pqq at z = 1. If a gluon becomes soft without being
collinear to any other parton, then (40) is not valid anymore, however. This is
because gluon emissions off all hard parton in a process contribute with a soft
divergence. The interference terms between emissions off the quark and anti-
quark therefore cannot be neglected anymore. The correct soft factorization
formula for the cross section reads

dσ[e+e− → qq̄g] ≈ dσ[e+e− → qq̄]× αs
2π

pqpq̄
(pqk)(pq̄k)

E dE
d Ω

2π
, (70)

where k denotes the gluon momentum and E it’s energy component. The
expression above implies three-particle correlations between the quark, the
anti-quark, and the emitted gluon which turn out to be important in the
description of data. One can still capture these effects in terms of a branching
algorithm. In dipole-like showers, not one particle splits into two, but two
particles i, j split into three. The two emitting particles i, j can be interpreted
as an emitting “color dipole” [8, 9].
In the tutorials, you will have the chance to build a dipole-like shower. It

is based on dipole factorization of Catani and Seymour [10]. In their method,
the eikonal factor in equation (70) is rearranged as follows

pqpq̄
(pqk)(pq̄k)

=
1

pqk

pqpq̄
(pq + pq̄)q

+
1

pq̄k

pqpq̄
(pq + pq̄)q

. (71)

The factors 1
pqk

and 1
pq̄k

correspond to the factor 1
t in (40) and hence to the

intermediate virtuality when the gluon splits off the quark or the anti-quark,
respectively. The remaining factor is singular only in the region where the
gluon becomes soft and can be interpreted as a splitting function. The two
terms on the right hand side of (71) therefore have the same structure as
(40). One can now construct splitting kernels that reduce to the DLGAP
kernels (69) in the collinear limit, but capture correctly the soft correlations
implied by (70) away from the collinear limit. The only conceptual difference
to the plain collinear evolution algorithm described in section 6.4 is that the
splitting functions depend on an additional “spectator” parton, i.e. pq̄ in the
first term on the right hand side of (71) and pq in the second term on the
right hand side of (71). The explicit form of the splitting functions used in
the tutorials is given in [3].
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