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• Introduction to neutrinos  

• Experimental anomalies 

• Investigating anomalies :)   

• Reactor Neutrino Experiments 

• Short Baseline Neutrino program at Fermilab 

• Quick view: Deep Underground Neutrino 
Experiment



David Martinez - IIT

Neutrinos

• Neutrinos are everywhere 

• The universe is filled with neutrinos 

• Apart from photons, there are more 
neutrinos than any other particle 

• Neutrinos only feel the weak force   

• Example: To stop 1 MeV particle  

• For an electron require 10mm of 
lead  (Electromagnetic 
interaction) 

• For a proton require 0.1 mm of 
lead (strong interaction)  

• For a neutrino we need 10 light 
years  of lead (weak interaction )

Info: 1eV ~1.6X 10^-19J ~2X10^-36 Kg
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2in x 2in square

93 million miles

8 minutes

In fact, every star is an incredible 
neutrino factory throughout its lifetime,

including our star, the Sun!

2 sec.    3,400,000,000,000
4 sec.    6,800,000,000,000
6 sec.   10,200,000,000,000
8 sec.   13,600,000,000,000
10 sec.  17,000,000,000,000 

0 sec.                  0
How many neutrinos in 10 seconds?

Neutrinos



Neutrino Sources
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• Many neutrino sources 
and energies, interacting 
via weak force 

• Focus: Two interesting 
sources 

• Reactors: 1-10 MeV  

• Accelerators: 0.1 - 10 
GeV
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Neutrino Sources: Accelerators

6

‘Crazy Fast’

‘Ridiculously Crazy Fast’

‘Fast’‘Really Fast’

200 MeV8 GeV
120 GeV

1 TeV

Start here.

• Fermilab: Masters of Proton Beams! 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps
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Neutrino Sources: Accelerators

‘Crazy Fast’

‘Ridiculously Crazy Fast’

Discovered this guy 
right over here!

‘Fast’‘Really Fast’

200 MeV8 GeV
120 GeV

1 TeV

Start here.

• Fermilab: Masters of Proton Beams! 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps
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Neutrino Sources: Accelerators
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Booster Neutrino Beam

NuMI Neutrino Beam

8 GeV
120 GeV

p → π+ → νμ + μ+ + 😆🙌

• Fermilab: Masters of Proton Beams! 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps 

• Use proton beams to make beams muon-type neutrinos
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Neutrino Sources: Accelerators

energetic protons  
delivered 

by the accelerator

impinge upon a  
fixed target

creates short-
lived 
charged particles

quickly decay 
into neutrinos 

which are focused 
forward by a strong 
magnetic field

νµ

νµ

νµ

νµ

νµ

νµ

We can use an intense beam of 
protons to create an intense beam of 

neutrinos

Fermilab

νµ

νµ
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Neutrino Sources: Accelerators
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Booster Neutrino Energy Spectrum NuMI Neutrino Energy Spectrum

~0.5 - 10 GeV Neutrino Energies



Neutrino Sources: Reactors 
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• Reactor νe : produced in decay  of product 
beta branches 

• More than 99 % of νe are the fission products 

of 235U, 239Pu, 241Pu, 238U. 

•                 fission/second per GWth (~6 νe per 
fission)

HFIR Core
2⇥ 1020
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Neutrino Sources: Reactors
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• Beta branches produced when fission isotopes fission  

• Low enriched (LEU): Many fission isotopes 

• High enriched (HEU): U-235 fission only 

• Overall fission rate described largely by reactor thermal power 
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Why neutrinos?

The SNO Experiment The Super-Kamiokande Experiment

A. McDonaldT. Kajita

• 2015 Physics Nobel prize:    
“for the discovery of neutrino  
oscillations, which shows that  
neutrinos have mass” 
• Not the only one either: 2002, 1995, 1988  

• It’s a very exciting time to be  
studying neutrino physics!
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http://particlezoo.net: Go buy one!!!!

Why Neutrinos?
• Learn more about the least-well-known SM particle! 

• How they interact? 

• How much do they weigh? 

• Related: how much to they oscillate? 

• Related: do neutrinos and antineutrinos  
OSCILLATE differently?

http://particlezoo.net
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• Message: We detect neutrinos based on their interactions 

• Targets should be massive amounts of complex materials  

• Beams are mainly muon neutrinos and antineutrinos, so we expect to observe 
the lepton associated with the incoming neutrino (for this particular case 
muons) 

• There are primary two kinds of high energy reactions 

• Quasi-elastic scattering (nucleons in nuclei) 

• Deep Inelastic Scattering (quarks in nucleons)

15

Neutrinos:
Cross Sections

Phys.Rev.Lett. 111, 022502
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Neutrinos:
Cross Sections

• Exercise: Find the event rate in per one tonne of target and 
a neutrino flux of 10^6/cm^2/sec (i.e MINERvA neutrino 
scattering experiment) 

• First: Calculate the number of targets 

• Ntargets = (10^6g)(6.023*10^23/g) ~ 10^30 

• Rate  = Ntargets X Flux X Cross Section  

• Rate = 10^30 X 10^6 X 10^-37 

• Rate = 0.1/sec!!!   

• Messages:  

• Neutrino detectors 

• Must be huge!!  

• Must be able to discriminate different particles 

• Neutrino Fluxes 

• Must be intense

16
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Neutrinos:
Oscillations

• Neutrino oscillations occur because the flavor 
(weak) eigenstates do not coincide with the mass 
eigenstates.  

• The neutrinos interacts as a flavor state, but 
propagate as a superposition of the three mass 
states  

• Over a distance L, changes in the relative phases 
of the mass states (1,2,3) may induce neutrino 
flavor change.

17
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Neutrinos:
Oscillations

• In the two flavor case the mixing and survival probability are 

18

• In this case, oscillations are described by one mixing angle           
and one mass squared difference (mass splitting) 

• The neutrino energy E and propagation length L are 
experimental parameters 

• For the 3 flavor case, we have the 3X3 PMNS  mixing matrix:

• Measured by atmospheric and accelerator experiments (\theta_23 ~ 45)

• Measured by reactors and accelerators experiments (\theta_13 ~ 9)

• Measured by solar experiment (\theta_12 ~ 34 )

✓
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Neutrinos:
3 flavor oscillations 

• Everything carries through the same as for two flavors but uses 
the 3X3 PMNS (Pontecorvo-Maki-Nakawa-Sakata) matrix, 
instead of the 2X2 

• BUT, there is mathematical distinction that fundamentally 
affects the physics and has implications for the UNIVERSE 
LOL! 

• Whereas the 2X2 matrix has one free parameter i.e theta, the 
3X3 matrix has four free parameters theta12, theta23, theta13, 
delta 

• With 3 flavors of neutrinos, there are two independent mass-
squared differences 

• If the parameter delta is non-zero, then neutrinos can exhibit 
CP violation. That is, neutrino reactions have different cross 
sections than antineutrino reactions 

• Question: Could be this the basis of the so-called “matter-
antimatter asymmetry” of the Universe?

19

Great progress last two decades!
We still do not know:

The sign of 
is       non zero?

is U unitary?

�m32

�cp
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Neutrinos:
Oscillations

Begin with mono-
energetic να

Many detectors and 
measure the content 

να / νβ  

Message: 

Nice idea but $$$ 

Fixed 
energy E 
 Variable 

L

�20
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Begin with 
broad energy 

spectrum beam of  
να

L
Measure να / νβ 

energy spectrum at 
origin and again 
after traveling a 

distance L

Fixed L 
Energy 

variable E

Neutrinos:
Oscillations
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Experimental Anomalies

22
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Experimental anomalies: LSND
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LSND used neutrinos from stopped pions to search for  
neutrino oscillations with Δm2 ~ 1eV2.  

For two-state mixing: 

The detector was 30 m from the source and <Eν>~ 30 MeV. 

800 MeV proton beam produces π+ that produce neutrinos

Searched for                        

via Inverse 
Beta Decay (IBD)  
      

• LSND (at 30 m) observed an excess of  87.9+/-22.4+/-6.0 events 
(3.8 sigma) 

LSND anomaly
PRD 64 (2001) 112007 



David Martinez - IIT

• Similar L/E as LSND 

• MiniBooNE ~500 m / 500 MeV 

• LSND ~30m/ 30 MeV 

• Different systematics i.e.  different flux, event signatures, backgrounds 

• 800 ton mineral oil Cherenkov detector 

• Horn polarity determine neutrino or antineutrino mode 

• Great flux monitor for the short baseline neutrino program at Fermilab!

24

Experimental anomalies: MiniBooNE
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• Cherenkov detector see 
Cherenkov light rings generated 
by charged particles 

• Looking for: 

• Backgrounds come from small 
intrinsic electron neutrino rate in 
the beam and any muon 
neutrino interactions that leave  
a single reconstructed photon in 
the final state 

• Cherenkov detector can not 
distinguish electron from single 
gamma 

Experimental anomalies: MiniBooNE

⌫µ ! ⌫e

⌫̄µ ! ⌫̄e
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Experimental anomalies: MiniBooNE
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 Designed to test LSND , same L/E, but with <E>~ GeV, L=541 m 

Searched for:

Observed an excess below 500 MeV 
Observed no excess above 500 MeV 
To explain both LSND and MiniBooNe by 
oscillations possibly suggest a fourth sterile 
neutrino requiring a mass on the 1eV2 scale

3.4 sigma excess!

2.8 sigma excess!

MiniBooNE anomaly
PRL 102 (2009) 101802 
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Experimental anomalies: New MiniBooNE
Results 

arXiv:1805.12028

E. Chuan Huang
Neutrino 2018
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Experimental Anomalies: Reactors
• Hints of beyond standard model neutrinos? 

• Deficit of neutrinos at short distances from nuclear reactors  

• Could result from a high frequency (1 m /MeV) oscillation 

• New oscillation experiments could provide compelling experimental proof 
of physics beyond the standard model!

28

Daya Bay, Chin. Phys. C 41(1) (2017)
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Anomalies in neutrino physics 
at Short Baseline experiments

• Different experiments studying neutrinos on baselines less than 1 km have reported 
anomalies varying in significance 

• Common interpretation: Could be evidence of high mass squared neutrino oscillations 
and the existence of one or more “sterile” neutrino states with masses ~ 1 eV 

• Tons of global fits to the data (both with signal and null results) in literature that fit 
the data to 3+1, 3+2, 3+3 (Conrad et al, Giunti et al, …) 

• All these signals could be hinting at important new physics that requires further 
exploration!

29

New
MiniBooNE

results
4.8 sigma

(neutrino + antineutrino)
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Experimental anomalies

• Testing the “sterile neutrino” hypothesis by different fronts: 

• Measuring the reactor neutrino flux evolution at 
Daya Bay

• Testing accelerator νe appearance within Fermilab 
Short Baseline Neutrino (SBN) program

30
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Reactor Neutrino 
Experiments 

Main focus: Daya Bay

31



Daya Bay Experiment

• Info about what experiment is / how it works

9/3/13! Spectral Measurement of Antineutrino Oscillation at Daya Bay! 5!

A Powerful Neutrino Source at an Ideal Location�

Mountains shield detectors!
from cosmic ray background�

Ling Ao II NPP!
2 ×2.9 GWth�

Daya Bay NPP!
2 2.9 GWth�

Ling Ao I 
NPP!
2 ×2.9 GWth�

Entrance to Daya Bay!
experiment tunnels�

x

x

X
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Daya Bay Layout
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• Original concept with  
8 ‘identical’ detectors: 
• Near detectors  

constrain flux. 
• Far detectors see if  

any neutrinos have  
disappeared.  

• Daya Bay has ideal  
features for doing this!

! ! ! !Reactor![GWth] !Target![tons] ! !Depth![m.w.e]!
!

Double!Chooz! !!!8.6! ! ! !!!16!(2!×!8) ! !300,!120!(far,!near)!
RENO ! ! !16.5! ! ! !!!32!(2!×!16) ! !450,!120!
Daya!Bay! ! !17.4! ! ! !160!(8!×!20) ! !860,!250!!

Large Signal! Low Background!
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The Daya Bay antineutrino detector
• Detect inverse beta decay (IBD) with liquid scintillator. 

• Coincidence of the prompt scintillation from the 
positron and the delayed neutron capture on 
Gadolinium provides a distinctive νe  signature. 

• IBD positron is direct proxy for antineutrino energy

34

0.1% Gd
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The Daya Bay antineutrino detector
3 calibration units per detector.

3 sources per unit:
Ge68 (1.02 MeV)
Co60 (2.5 MeV)

Am241-C13(8 MeV)

35
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IBD Selection

36

• Muon Veto (Cosmogenic 
backgrounds) 

• Apply time coincidence and energy 
cuts.  

•        : time difference between the 
prompt and delayed signals 

• 1 <      < 200 us  �t

�t
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IBD Selection
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• Reject PMT Flashers 

• Muon Veto 

• Prompt and delayed energy 
cuts 

• Neutron capture time cut 

After this selection on 1230 days  
of data, we get 2.5 million candidates;  
2.2 million from 4 Near Site detectors.
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Backgrounds

38

• Backgrounds make up <2% of  
Near Site IBD candidates 

• Primary background: accidentally  
coincident triggers 
• 1.3% of near-site signal;  
• Other backgrounds ~0.5%.

Daya Bay, PRD 95 (2017)

Daya Bay, PRD 95 (2017)
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• Accidental coincidence between prompt and delayed signals ~1% 

• During detector operation it was found that neutrons from the 241 Am-13 C 
calibration sources within the ACUs occasionally introduced several γ rays, 
correlated in time, to the detector. Contamination from this background was 
estimated to be  ≲0.1% 

• Fast neutrons: Muon interactions in the environment near the detector 
generated energetic, or fast neutrons <0.1% 

• 9Li/8He b-n followers produced by cosmic muon spallation. 0.3-0.4%

39

Backgrounds
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IBD candidate rates

40

• ~ 400-800 IBDs in each near site antineutrino detector per day (x4 ADs) 
• Can see when reactors are turned on and off

Info:
1230-day dataset  
goes to July 2015

Daya Bay, Chin. Phys. C 41(1) (2017)

In
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Daya Bay: Fuel evolution analysis

• DO NOT time integrate: instead,  
look at reactors’ fission fractions 

• % of fissions from 235U 239Pu, 238U, 241Pu 

• Calculate ‘effective fission fraction’  
observed by each detector: 

•  

41

Weight for each of the 6 
reactor cores 

Basically weight’s each reactor’s fission  
fraction by distance, power, and oscillation

D
ay

a 
B
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01
7)Simulation of a complete refueling cycle 
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• We have fission fractions 
and IBDs versus time 

• Let’s compare IBDs 
from periods of 
differing effective 
fission fractions! 

• Doing this by combining 
periods of common  
fission fraction. 

• We choose 8 bins 
in 239 Pu effective  
fission fraction, F239

42

Daya Bay: Fuel evolution 
analysis
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From IBD/day to IBD/fission     

• IBD/day depends on many time-
dependent quantities: 

• Reactor status and thermal power 

• Power released per fission 

• Detector livetime 

• Show final results in terms of IBD/
fission 

• Basically take IBD/day and divide 
out all these variable quantities on a 
week-by-week basis

43

�f

Fi :Effective fission fraction for 
 each isotope 

IBD yield  from 
 each isotope 

�i :
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Results: Flux Evolution
• When plotting IBD/fission versus 

F239, we see a slope in data

• Very clear that flux is changing with 
changing fission fraction. 

• Not too surprising; models predict 
239Pu makes fewer νe 

• Seen before in previous 
experiments: Rovno (90’s); 
SONGS (00’s)

44

ROVNO

SONGS
J. Appl. Phys. 105 064902

Atomic Energy Vol 76 No 2 (1994)

Daya Bay
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Result: Flux evolution

• Measured slope is different than model prediction by 3.1 σ
• Could mean a couple things: 

• 239Pu prediction is too low 
• 235U prediction is too high 
• Something is WAY off with 238U, 241Pu

45Isotope

IB
D

/f
is

si
on

 (
x1

0
-4

3
) 238U

10.1

235U
6.7

241Pu
UPPP!

True Fluxes

239Pu
4.4
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• Could mean a couple things: 
• 239Pu prediction is too low 
• 235U prediction is too high 
• Something is WAY off with 238U, 241Pu

46Isotope

IB
D

/f
is

si
on

 (
x1

0
-4

3
) 238U

10.1

241Pu
6.0

239Pu
4.4

True Fluxes

235U
DOWN

Result: Flux evolution

Blue line is actually  
way up here! scaled to  

account for the difference 
in total yield between data 

and prediction

Mostly 235U 

Mostly 239Pu 
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• More complicated scenarios still allowed: 239Pu UP + sterile neutrino. 

• Giunti et al. JHEP10(2017)143

• Whatever the case reactor flux models must be wrong in some way. 
• To truly rule out sterile neutrinos, direct tests of L/E with SBL reactor 

experiments are required.

Results: Flux Evolution
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Result: Fitting For Individual Isotopes

• Use this data to explicitly fit IBD/
fission for 235U, 239Pu 

• Assume loose (10%) uncertainties 
on sub-dominant 238U, 241Pu 

• Dominant uncertainties: 

• Statistics 

• IBD absolute detection efficiency 

• The explanation of 235U only being 
wrong fits the data well. 

•
239Pu also matches model well. 

• Future Highly Enriched Uranium 
(HEU) and  Daya Bay measurements  
will be necessary for improvements.

48

✔

✗

Results suggests that  235U  being the main contributor of 
the Reactor Antineutrino Anomaly. 

 PRL. 118, 251801
Editor’s Suggestions 

and Physics Viewpoint
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Results: Spectrum Evolution

• What if we add IBD energy into the mix? 

• Examine evolution in 4 separate 
energy ranges 

• Slope is different  
for different energy 
ranges. 

• Put another way: IBD 
spectrum is changing 
with F239  

49

• This is the first 
unambiguous measurement 
of this behavior

• Highly relevant to      based 
nuclear non-proliferation

⌫e
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Important:  An experimental 
demonstration of reactor 
monitoring

• Theory-based case-studies of Iranian, North 
Korean nuclear reactors: P. Huber et al 
arXiv[1403.7065],  arXiv[1312.1959] 

• Unambiguous monitoring of reactor’s 239Pu 
content utilizing a reactor’s antineutrino spectrum  

• Daya Bay spectrum evolution result validate 
these theoretical studies.  Looks like this should 
be possible :) 

50

P.Huber et al, Phys. Rev. Lett. 113, 042503

Results: Spectrum Evolution
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PROSPECT Experimental Layout
• HEU Reactor: HFIR 85 MW 

• Segmented liquid scintillator  
target region: ~4 tons for 
near detector (Phase I) 

• 154 segments, 119 cm X 15 cm X 15 cm 

• Moveable: 7-12 m baselines 

• Measure 
235

U spectrum while directly  
probing sterile oscillations independent of reactor 
models

51

Sub-cell conceptual design

HFIR core shape and 
relative size comparison

Near detector conceptual design

PMT
Light Guide
Separator
LiLS

PROSPECT deployment at HFIR

Phase II:  
far detector

moveable Phase I
near detector
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PROSPECT Experimental Layout
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• 33 days of reactor on 

• 28 days of reactor off 

• ~24000 IBDs (750/day) 

• Compare spectra from 
different baselines to 
measured full detector 
spectrum  

• Null-oscillation will give a flat 
ratio for all baselines

53

PROSPECT: Results

Baseline dependent
oscillation illustration

arxiv: 1806.02784
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• Covariance matrices 
captures all uncertainties and 
energy/baseline correlations 

• 95% exclusion curve based 
on 33 days of data  

• First oscillation analysis on 
data disfavor the Reactor 
Antineutrino Anomaly (RAA) 
best fit at 2.3 sigma!

54

PROSPECT: Results

95% CL Exclusion Curve 

2−10 1−10 1
14θ22sin

1−10

1

10

]2
 [e

V
412

m
∆

PROSPECT Exclusion, 95% CL

PROSPECT Sensitivity, 95% CL

SBL + Gallium Anomaly (RAA), 95% CL

T. Langford
Neutrino 2018

RAA best fit
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The Short Baseline Neutrino 
Program

55
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The Short Baseline Neutrino (SBN) program
Liquid Argon TPC Technology

• Booster Neutrino Beam 

• Muon neutrinos produced from protons at 8 GeV on a Beryllium target 

• 3 Liquid Argon Time Projection Chambers (LArTPCs): Short Baseline Near Detector 
(SBND), MicroBooNE, ICARUS T-600 

• SBND (110 m, 112 tons), MicroBooNE ( 470 m, 89 tons), ICARUS ( 600 m, 476 tons)

56
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Liquid Argon TPC
How it works?

57
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SBN program: Why LArTPC?

• Why liquid argon? Large 
interaction rate 

• Scalability: Argon is 
affordable (low cost :) ) 

• High spatial resolution: able 
to characterize complicated 
events (multiplicity) 

• Excellent energy resolution: 
electron/gamma separation

58
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SBN program: Physics goals
MicroBooNE-> SBND -> SBN

• MicroBooNE (taking data since late 2015!) and SBND data will be 
crucial for: 

• Measuring neutrino argon interactions with high statistics  

• nu-Ar interaction cross sections will be crucial for making 
neutrino oscillation measurements. 

• Dominant systematics for Deep Underground Neutrino 
Experiment (DUNE)

• Understanding how the neutrinos interact with Argon  

• Nuclear effects change the final state topology and 
kinematics

• SBN will measure neutrino oscillations in the Booster Neutrino 
Beam (BNB) 

• Experimental anomalies have been observed in short baseline 
neutrino experiments ( <1 km) 

• SBN: Sensitivity to sterile neutrinos in the 1eV^2 mass region 
from same beam as MiniBooNE (BNB)

59
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MicroBooNE experiment
• Largest operational LArTPC in US! 

• Same neutrino beam and same distance (nearly) as MiniBooNE 

• TPC: 2.3 m X 2.5 m X 10.4 m 

• 8192 Wires, 3 mm pitch  

• Light collection system: 32 PMTs  

• Cosmic Ray Tagger 

• Collecting beam data since October 2015 

• Identify the nature of the low energy excess (differentiate between 
electrons and photons)

60
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MicroBooNE experiment
Event Reconstruction

• Variety of techniques developed 

• Essential for SBN program and DUNE

61

Starts with 2D
patterns to get 3D reconstruction

Employ recent computer vision
advances

Tomographic approach to turn
2D charge info in 3D charge.
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• Cross section measurements on argon are important for the flagship low 
energy excess analysis and future liquid argon experiments i.e DUNE 

• Liquid argon TPCs are great to study final state topologies and inform 
theoretical models  

• Study the charged particle multiplicity (CPM) in muon neutrino 
interactions 

• Useful to validate generators, models!

62

MicroBooNE experiment
Neutrino Interactions 

- arXiv:1805.06887, submitted to PRD (2018)
- A. Rafique W&C Seminar. Fermilab, June 2018

simulation agrees with data at 2 sigma level
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• Inclusive muon neutrino charged current 
interactions has been measured by other 
experiments, NOW we need to measure 
on argon! 

• Comparison to GENIE with different 
models 

• Relevant to DUNE muon neutrino charged 
current signal

63

MicroBooNE experiment
Neutrino Interactions 

public note: MicroBooNE-NOTE-1045-PUB
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• Important for the low energy excess  

• Challenge: Require track and low energy reconstruction 

• Demonstration of shower reconstruction being used to analyze 
LArTPC data  

• Shower reconstruction and validation of shower resolution 

• First time                        measurement on Argon

64

MicroBooNE experiment
Neutrino Interactions 

⌫µCC1⇡0

Measurement is consistent within 1.6 sigma with prediction of both models!
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• Working in different channels to 
investigate the low energy excess 

• Important: we want to test the 
different hypothesis of the excess 
( not only sterile neutrinos :) ) 

65

MicroBooNE experiment
Towards Low Energy Excess

Selected

data events
⌫e

T. Wongjirad
Users Meeting 
Fermilab 2018
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Short Baseline Neutrino Program
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Short Baseline Neutrino Program
• We expect to have an answer to the short baseline 

anomalies in next 5 years!

67

R. Guenette
Neutrino 2018
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Deep Underground Neutrino Experiment 
DUNE

68
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DUNE

• Intense beam of νmu or νmu fired 1300 km at a large detector 

• Muon neutrinos/antineutrinos from high power proton beam ~ 1.2 MW  

• Large underground (~1500 m)  Liquid Argon Time Projection Chambers 

• 4 X 17 kton (fiducial mass > 40 kton) 

• Near detector to characterize the beam  

• Maybe if we compare neutrinos and antineutrino's  oscillation behavior we'll find a clue as to how the two can behave 
differently, and possibly lead to matter's apparent domination :)

69

Not an experimental anomaly, but 
a more UNIVERSAL anomaly: 

Where is the antimatter?

Video: DUNE

https://www.youtube.com/watch?v=AYtKcZMJ_4c
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• LBNF Beam 

• 60-120 GeV proton beam  

• 1.2 MW upgradeable to 2.4 MW 

• Horn-focused neutrino beamline 
optimized for CP Violation. 

• Neutrino Forward Horn Current 
(FHC) and antineutrino (RHC) 
modes
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DUNE

E. Worcester
Neutrino 2018
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DUNE
TIMELINE
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• Neutrino oscillation physics 

• Discover CP Violation in the leptonic 
sector  

• Proton decay: constrain grand unified 
theories 

• Supernova bursts physics and astrophysics 

• Galactic core collapse supernova, 
sensitivity to νe 

• In argon (uniquely) the largest 
sensitivity is to νe
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DUNE
Science Goals

Expected measured event 
spectrum using SNoWGlobes in 40 kt

liquid argon detector for electron capture
 supernova at 10 kpC
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Recap: 
Sterile neutrino mystery 
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• Lets think a bit in future, and MicroBooNE has released their low energy excess 
result 

• Will definitely test MiniBooNE excess by measuring the same neutrinos with a 
more sensitive detection technique 

• What might show 

• Electron-like excess 

• Photon-like excess 

• No excess? 

• Excess in both channels? 

• ? :O ? 

• Lets investigate this scenarios in detail 
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Electron-Like Excess: Differences
• How will the electron-like  

result look different than 
MiniBooNE? 

• Gamma-related backgrounds should 
be way smaller in this stack.

• TPC-external beam backgrounds  
might look different: more of them, 
but also new rejection methods.

• There will likely be a new (small) color in here from cosmogenic backgrounds 

• You might see a totally different x-axis metric: instead of CCQE, maybe 
lepton+vertex energy, or maybe something else! 

• You might also see a different range on this plot: no Cherenkov thresholds and 
excellent 3D position information could enable a lowered threshold. 

• So more than just an improvement in e/Ɣ  separation.
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Electron-Like Excess: Scenarios
• If we see an electron-like excess, this would be AWESOME! 

• SBND would collect statistics quickly at its shorter baseline, giving 
very convincing confirmation of the nue appearance interpretation. 

• Full SBN would then provide the precision measurement of this 
oscillation. 

• Must be diligent in our proper estimation of TPC-external beam 
backgrounds and cosmic backgrounds.
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Photon-Like Excess: Scenarios
• A big question in this case: where is the excess? 

• If excess picks up at lowest 
energies, this could point an  
issue with π0s: 

• Issues with neutrino NC π0  
mis-identification estimates? 

• Improper estimation of external  
single-gammas-from-π0 ? 

• Excess at low-energy, but not TOO low: additional single-gamma processes… 

• Massive uptick at very low energies could come from cosmic mis-estimation. 

• In all these scenarios, subsequent SBND measurement is crucial 

• If it’s ‘BITE’- or cosmic-related, SBND’s signature will look totally different. 

• If it’s a neutrino cross-section thing, SBND, ICARUS will provide very valuable 
high-statistics measurements for…
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DUNE Impacts
• Crucial for DUNE that MicroBooNE  

(and the rest of SBN) tell us what 
is causing the excess. 

• If electrons: 

• We must correct our predictions for the 
existence of a new short-baseline oscillation! 

• If photons: 

• We must properly re-configure our background  
estimates; particularly valuable for properly  
understanding the 2nd oscillation maximum 

• If both electron and photon excess,  
ditto, for same reasons as above. 

• If no excess in MicroBooNE:  

• Still extremely important to address sterile  
phase space in full to properly interpret DUNE  
results — i.e. DUNE would still need SBN
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LBNE,  
arXiv: 1307.7335 

R. Gandhi et al,  
arXiv:1508.06275
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Summary
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• SBN neutrino program at Fermilab and reactor neutrino experiments 
(i.e. Daya Bay) will continue providing crucial input to precisely test 
the sterile neutrino hypothesis! 

• Great research opportunities within the long baseline and short 
baseline neutrino experiments in the coming decade! 

• DUNE physics program will be a game-changing in neutrino physics!
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Thanks!
Gracias!
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image A. Obando (http://arturobando.blogspot.com)

http://arturobando.blogspot.com
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BACKUP
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PROTODUNE

81
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Single Phase

82
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Dual Phase
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PROTODUNE
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• Dual phase 3 X 3 X 1 m ^3 prototype ran from June to November 
2017 

• Succesful demonstration of dual phase LArTPC concept
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PROTODUNE
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What about the systematics: Reactor

• Uncertainties from 
various inputs to  
our Fi definition are 
not too large 

• Reactor power:  
small (0.5%), ~ constant in 
time, 
reactor-uncorrelated 

• Energy per fission: 
very small, time-constant 

• oscillations, baselines: 
very small, time-constant ;)
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Systematics: Detector

• How does a detector 
change over time? 

• Reconstructed energy 
scales are extremely 
time-stable (<0.1% 
variation) 

• Most inefficient IBD 
cuts are energy-based: 
also time-stable 
(<0.1% variation) 

• IBD Absolute detection 
efficiency uncertainty: 
1.9%
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nH Capture

Daya Bay, PRD 95 (2017)


