Deep Inelastic Scattering (DIS)

Ingo Schienbein UGA/LPSC Grenoble

CTEQ School on
QCD and Electroweak Phenomenology

Mayaguez, Puerto Rico, USA
18-28 June 2018

Disclaimer

This lecture has profited a lot from the following resources:

- The text book by Halzen\&Martin, Quarks and Leptons
- The text book by Ellis, Stirling \& Webber, QCD and Collider Physics
- The lecture on DIS at the CTEQ school in 2012 by F. Olness
- The lecture on DIS given by F. Gelis Saclay in 2006

Lecture I

I. Kinematics of Deep Inelastic Scattering
2. Cross sections for inclusive DIS (photon exchange)
3. Longitudinal and Transverse Structure functions
4. CC and NC DIS
5. Bjorken scaling
6. The Parton Model
7. Which partons?
8. Structure functions in the parton model

I. Kinematics of Deep Inelastic Scattering

What is inside nucleons?

- Basic idea: smash a well known probe on a nucleon or nucleus in order to try to figure out what is inside
- Photons are well suited for that purpose because their interactions are well understood
- Deep inelastic scattering: collision between an electron and a nucleon or nucleus by exchange of a virtual photon

- Note: the virtual photon is spacelike: $q^{2}<0$
- Deep: $Q^{2}=-q^{2} \gg M_{N}{ }^{2} \mid G^{2} V^{2}$
- Inelastic: $W^{2} \equiv M_{x}{ }^{2}>M_{N}{ }^{2}$
- Variant: collision with a neutrino, by exchange of a Z^{0} or $W^{ \pm}$

Kinematic variables

- Let's consider inclusive DIS where a sum over all hadronic final states \mathbf{X} is performed:

$$
e^{-}(I)+N(p) \rightarrow e^{-}\left(l^{\prime}\right)+X(p x)
$$

- On-shell conditions: $\mathrm{p}^{2}=\mathrm{M}^{2}, I^{2}=\left.\right|^{2}=\mathrm{m}^{2}$
- Measure energy and polar angle of scattered electron $\left(E^{\prime}, \boldsymbol{\theta}\right)$

- Other invariants of the reaction:
- $Q^{2}=-q^{2}=-\left(l-l^{\prime}\right)^{2}>0$, the square of the momentum transfer,
- $\nu=p \cdot q / M \stackrel{\text { lab }}{=} E_{l}-E_{l^{\prime}}$,
- $0 \leq x=Q^{2} /(2 p \cdot q)=Q^{2} /(2 M \nu) \leq 1$, the (dimensionless) Bjorken scaling variable,
- $0 \leq y=p \cdot q / p \cdot l \stackrel{\text { lab }}{=}\left(E_{l}-E_{l^{\prime}}\right) / E_{l} \leq 1$, the inelasticity parameter,

[^0]
Kinematic variables

- There are two independent variables to describe the kinematics of inclusive DIS (up to trivial φ dependence):

$$
\left(E^{\prime},, \theta\right) \text { or }\left(\mathbf{x}, \mathbf{Q}^{2}\right) \text { or }(\mathbf{x}, \mathbf{y}) \text { or ... }
$$

- Relation between $\mathbf{Q}^{\mathbf{2}}, \mathbf{x}$, and \mathbf{y} :

$$
\begin{aligned}
Q^{2} & =(2 p \cdot l)\left(\frac{Q^{2}}{2 p \cdot q}\right)\left(\frac{p \cdot q}{p \cdot l}\right) \\
& =S x y=2 M E x y
\end{aligned}
$$

$$
\begin{aligned}
S & =2 p \cdot l \\
& =(p+l)^{2}-p^{2}-l^{2}
\end{aligned}
$$

- Invariant mass \mathbf{W} of the hadronic final state \mathbf{X} : (also called missing mass since only outgoing electron measured)

$$
\begin{aligned}
W^{2} & \equiv M_{X}^{2}=(p+q)^{2}=M_{N}^{2}+2 p \cdot q+q^{2} \\
& =M_{N}^{2}+\frac{Q^{2}}{x}-Q^{2}=M_{N}^{2}+\frac{Q^{2}}{x}(1-x)
\end{aligned}
$$

elastic scattering: $\mathbf{W}=\mathbf{M}_{\mathbf{N}}, \mathbf{x}=\mathbf{I}$
inelastic: $\mathbf{W} \geq \mathbf{M}_{\mathbf{N}}+\mathbf{m}_{\pi}, \mathbf{x}<\mathbf{I}$

The ep $\rightarrow \mathrm{eX}$ cross section as function of W

Elastic Δ resonance Inelastic peak ep $\rightarrow \mathrm{e} \Delta^{+} \rightarrow \mathrm{ep} \pi^{0}$ region

Halzen\&Martin, Quarks\&Leptons, Fig. 8.6

Data from SLAC; The elastic peak at $\mathbf{W}=\mathbf{M}$ has been reduced by a factor 8.5

- Elastic peak: $\mathbf{W}=\mathbf{M}, \mathbf{x}=\mathbf{I}$ (proton doesn't break up: $\mathbf{e p} \rightarrow \mathbf{e p}$)
- Resonances: $\mathbf{W}=M_{R}, \omega=I / x=I+\left(M_{R}{ }^{2}-M^{2}\right) / \mathbf{Q}^{\mathbf{2}}$ (Note that there is also a non-resonant background in the resonance region!)
- 'Continuum' or 'inelastic region': W>~1.8 GeV complicated multiparticle final states resulting in a smooth distribution in W (Note there are also charmonium and bottonium resonances at $W \sim 3$ and 9 GeV)

Phase Space in $\left(\mathrm{V}, \mathrm{Q}^{2}\right)$ plane

$\mathrm{Q}^{2}=(2 \mathrm{MEx}) \mathrm{y}$
Halzen\&Martin,
Quarks\&Leptons, Fig. 9.3

 Hence: fixed \mathbf{W} curves are parallel to $\mathbf{W}=\mathbf{M}$ curve!

Phase Space in $\left(\mathrm{V}, \mathrm{Q}^{2}\right)$ plane

$\mathrm{Q}^{2}=(2 \mathrm{MEx}) \mathrm{y}$

- The phase space is separated into a resonance region (RES) and the inelastic region at $\mathbf{W} \sim 1.6$... 1.8 GeV (red line)
- The phase space is separated into a deep and a shallow region at $\mathbf{Q}^{\mathbf{2}} \sim \mathbf{I} \mathbf{G e V}^{\mathbf{2}}$ (blue horizontal line)
- In global analyses of DIS data often the DIS cuts $\mathbf{Q}^{\mathbf{2}}>\mathbf{4} \mathbf{G e V}^{2}, \mathbf{W}>3.5 \mathbf{G e V}$ are employed
- The W-cut removes the large x region: $\mathbf{W}^{2}=\mathbf{M}^{2}+\mathbf{Q}^{2} / \mathrm{x}(\mathrm{I}-\mathrm{x})>3.5 \mathrm{GeV}$
- The Q-cut removes the smallest x : $\mathbf{Q}^{\mathbf{2}}=\mathbf{S} \mathbf{x} \mathbf{y} \mathbf{>} \mathbf{4} \mathbf{G e V}^{\mathbf{2}}$

Phase Space in $\left(\mathrm{V}, \mathrm{Q}^{2}\right)$ plane

 $\mathrm{Q}^{2}=(2 \mathrm{MEx}) \mathrm{y}$

Neutrino cross sections at atmospheric V energies

With increasing energy E the deep inelastic region dominates the phase space!

Paschos,JYY,PRD65(2002)033002

- Resonance production (RES)

- Deep inelastic scattering (DIS)

- Quasi-elastic scattering (QE)

Homework Problems

I. Recap that the allowed kinematic region for ep $\rightarrow \mathrm{eX}$ is $\mathbf{0} \leq \mathbf{x} \leq I$ and $0 \leq \boldsymbol{y} \leq I$. Construct the phase space in the ($\mathbf{v}, \mathbf{Q}^{2}$)-plane yourself. [Ex. 8.II in Halzen]
2. Show that $\mathbf{Q}^{2}=2 E E^{6}(I-\cos (\theta))=4 E E^{6} \sin ^{2}(\theta / 2)$ neglecting the lepton mass. Here, the z -axis coincides with the incoming lepton direction and θ is the polar angle of the outgoing lepton with respect to the z-axis
3. Show that in the target rest frame $\mathbf{x}=\left[2 \mathrm{E} \mathrm{E}^{6} \sin ^{2}(\theta / 2)\right] /\left[M\left(E-E^{\prime}\right)\right]$ still neglecting the lepton mass and the energies E, E ' are now in the target rest frame

II. Cross section for inclusive DIS (photon exchange)

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

- Let's consider inclusive DIS where a sum over all hadronic finall states \mathbf{X} is performed:

$$
e^{-}(I)+N(p) \rightarrow e^{-\left(l^{\prime}\right)}+X(p x)
$$

- The amplitude (A) is proportional to the interaction of a leptonic current (j) with a hadronic current (J):

$$
A \sim \frac{1}{q^{2}} j^{\mu} J_{\mu}
$$

- The leptonic current is well-known perturbatively in QED:
- The hadronic current is non-pert. and depends on the multi-particle final

$$
J^{\mu}=\langle X, \text { spins }| \hat{J}^{\mu}\left|p, s_{p}\right\rangle
$$ state over which we sum:

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

The cross section which is proportional to the amplitude squared can be factored into a leptonic and a hadronic piece:

$$
d \sigma \sim|A|^{2} \sim L_{\mu \nu} W^{\mu \nu}
$$

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

$$
\left.d \sigma=\left.\sum_{X} \frac{1}{F}\langle | A_{X}\right|^{2}\right\rangle_{\operatorname{spin}} d Q_{X} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}=\frac{1}{F}\left[\frac{e^{4}}{\left(q^{2}\right)^{2}} L_{\mu \nu} W^{\mu \nu} 4 \pi\right] \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}
$$

- With the Møller flux:

$$
F=4 \sqrt{(l \cdot p)^{2}-l^{2} p^{2}}=4 \sqrt{(l \cdot p)^{2}-m^{2} M^{2}} \simeq 2 S
$$

- The phase space of the hadronic final state \mathbf{X} with $\mathbf{N}_{\mathbf{x}}$ particles:

$$
d Q_{X}=(2 \pi)^{4} \delta^{(4)}\left(p+q-p_{X}\right) \prod_{k=1}^{N_{X}} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}}=(2 \pi)^{4} \delta^{(4)}\left(p+q-p_{X}\right) d \Phi_{X}
$$

- The amplitude with final state \mathbf{X} :

$$
A_{X}=\frac{e^{2}}{q^{2}}\left[\bar{u}\left(l^{\prime}\right) \gamma^{\mu} u(l)\right]\langle X| J_{\mu}(0)|N(p)\rangle \quad A_{X}^{*}=\frac{e^{2}}{q^{2}}\left[\bar{u}(l) \gamma^{\nu} u\left(l^{\prime}\right)\right]\langle N(p)| J_{\nu}^{\dagger}(0)|X\rangle
$$

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

$$
\left.d \sigma=\left.\sum_{X} \frac{1}{F}\langle | A_{X}\right|^{2}\right\rangle_{\text {spin }} d Q_{X} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}=\frac{1}{F}\left[\frac{e^{4}}{\left(q^{2}\right)^{2}} L_{\mu \nu} W^{\mu \nu} 4 \pi\right] \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}
$$

The hadronic tensor is defined as:

$$
\left.4 \pi W_{\mu \nu}=\sum_{\text {states } X} \int d \Phi_{X}(2 \pi)^{4} \delta^{(4)}\left(p+q-p_{X}\right)\left\langle\langle N(p)| J_{\nu}^{\dagger}(0) \mid X\right\rangle\langle X| J_{\mu}(0)|N(p)\rangle\right\rangle_{\text {spin }}
$$

Note that the factor 4π is a convention. In this case the hadronic tensor is dimensionless (Exercise!). Halzen\&Martin, for example, use a factor $4 \pi \mathrm{M}$ and the hadronic tensor has dimension mass ${ }^{-1}$.

The hadronic tensor and structure functions

- $\mathbf{W}_{\mu \mathrm{v}}(\mathrm{p}, \mathbf{q})$ cannot be calculated in perturbation theory. It parameterizes our ignorance of the nucleon.
- Goal: write down most general covariant expression for $\mathbf{W}_{\mu \nu}(\mathbf{p}, \mathbf{q})$
- Other symmetries (current conservation, parity, time-reversal inv.)
 have to be respected as well, depending on the interaction
- All possible tensors using the independent momenta \mathbf{p}, \mathbf{q} and the metric \mathbf{g} are:

$$
\begin{array}{rr}
g_{\mu \nu}, & p_{\mu} p_{\nu}, \quad q_{\mu} q_{\nu}, \\
\epsilon_{\mu \nu \rho \sigma} p^{\rho} q_{\nu}+p_{\nu} q_{\mu} & p_{\mu} q_{\nu}-p_{\nu} q_{\mu}
\end{array}
$$

- For a (spin-averaged) nucleon, the most general covariant expression for $\mathbf{W}_{\mu v}(\mathbf{p}, \mathbf{q})$ is:

$$
\begin{aligned}
W^{\mu \nu}(p, q)= & -g^{\mu \nu} W_{1}+\frac{p^{\mu} p^{\nu}}{M^{2}} W_{2}-i \epsilon^{\mu \nu \rho \sigma} \frac{p_{\rho} q_{\sigma}}{M^{2}} W_{3} \\
& +\frac{q^{\mu} q^{\nu}}{M^{2}} W_{4}+\frac{p^{\mu} q^{\nu}+p^{\nu} q^{\mu}}{M^{2}} W_{5}+\frac{p^{\mu} q^{\nu}-p^{\nu} q^{\mu}}{M^{2}} W_{6}
\end{aligned}
$$

- The structure functions $\mathbf{W}_{\mathbf{i}}$ can depend only on the Lorentz-invariants $\mathbf{p}^{\mathbf{2}}=\mathbf{M}^{\mathbf{2}}, \mathbf{q}^{\mathbf{2}}$, and $\mathbf{p} \cdot \mathbf{q}$

The hadronic tensor and structure functions

$$
\begin{aligned}
& W^{\mu \nu}(p, q)=-g^{\mu \nu} W_{1}+\frac{p^{\mu} p^{\nu}}{M^{2}} W_{2}-i \epsilon^{\mu \nu \rho \sigma} \frac{p_{\rho} q_{\sigma}}{M^{2}} W_{3}
\end{aligned}
$$

- Instead of $\mathbf{p} . \mathbf{q}$ use \mathbf{V} or \mathbf{x} as argument: $\mathbf{W}_{\mathrm{i}}=\mathbf{W}_{\mathrm{i}}\left(\mathbf{v}, \mathbf{q}^{\mathbf{2}}\right)$ or $\mathbf{W}_{\mathrm{i}}=\mathbf{W}_{\mathrm{i}}\left(\mathbf{x}, \mathbf{Q}^{\mathbf{2}}\right)$
- \mathbf{W}_{6} doesn't contribute to the cross section! $\operatorname{No}\left(\|_{\mu} \mathbf{q}_{v}=I_{V} \mathbf{q}_{\mu}\right)$ in the leptonic tensor
- \mathbf{W}_{4} and \mathbf{W}_{5} terms are proportional to the lepton masses squared in the cross section since $\mathbf{q}^{\mu} \mathbf{L}_{\mu v} \sim \mathbf{m}_{\mathbf{I}}{ }^{2}$. Only place where they are relevant is charged current $\mathbf{V}_{\mathbf{T}}$-DIS.
- Parity and Time reversal symmetry implies $\mathbf{W}_{\mu \nu}=\mathbf{W}_{\nu \mu}$
- $\quad \mathbf{W}_{3}=\mathbf{0}$ and $\mathbf{W}_{\mathbf{6}}=\mathbf{0}$ for parity conserving currents (like the e.m. current)

The hadronic tensor and structure functions

$$
\begin{aligned}
& W^{\mu \nu}(p, q)=-g^{\mu \nu} W_{1}+\frac{p^{\mu} p^{\nu}}{M^{2}} W_{2}-i \epsilon^{\mu \nu \rho \sigma} \frac{p_{\rho} q_{\sigma}}{M^{2}} W_{3}
\end{aligned}
$$

- Current conservation at the hadronic vertex requires $\mathbf{q}^{\mu} \mathbf{W}_{\mu \nu}=\mathbf{q}^{\nu} \mathbf{W}_{\mu \nu}=\mathbf{0}$ implying

$$
W_{5}=-\frac{p \cdot q}{q^{2}} W_{2}, \quad W_{4}=\left(\frac{p \cdot q}{q^{2}}\right)^{2} W_{2}+\frac{M^{2}}{q^{2}} W_{1}
$$

- With current conservation+parity symmetry we are left with 2 independent sfs:

$$
W^{\mu \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) W_{1}+\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) W_{2}
$$

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

$$
\begin{gathered}
d \sigma=\frac{1}{F}\left[\frac{e^{4}}{\left(q^{2}\right)^{2}} L_{\mu \nu} W^{\mu \nu} 4 \pi\right] \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \\
L_{\mu \nu}=2\left[l_{\mu} l_{\nu}^{\prime}+l_{\nu} l_{\mu}^{\prime}-g_{\mu \nu}\left(l \cdot l^{\prime}-m^{2}\right)\right] \\
W^{\mu \nu}=-g_{\perp}^{\mu \nu} W_{1}+\frac{1}{M^{2}} p_{\perp}^{\mu} p_{\perp}^{\nu} W_{2} \\
g_{\perp}^{\mu \nu}=g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}, p_{\perp}^{\mu}=p^{\mu}-\frac{q \cdot p}{q^{2}} q^{\mu}
\end{gathered}
$$

Show that $(\mathrm{m}=0): \quad L_{\mu \nu} W^{\mu \nu}=4\left(l \cdot l^{\prime}\right) W_{1}+\frac{2}{M^{2}}\left[2(p \cdot l)\left(p \cdot l^{\prime}\right)-M^{2} l \cdot l^{\prime}\right] W_{2}$
Giving in the nucleon rest frame: $\quad L_{\mu \nu} W^{\mu \nu}=4 E E^{\prime}\left[2 \sin ^{2}(\theta / 2) W_{1}+\cos ^{2}(\theta / 2) W_{2}\right]$

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

$$
\frac{d^{2} \sigma}{d E^{\prime} d \Omega^{\prime}}=\frac{\alpha_{\mathrm{em}}^{2}}{M 4 E^{2} \sin ^{4}(\theta / 2)}\left[2 W_{1}\left(x, Q^{2}\right) \sin ^{2}(\theta / 2)+W_{2}\left(x, Q^{2}\right) \cos ^{2}(\theta / 2)\right]
$$

The cross section for inclusive ep $\rightarrow \mathrm{eX}$

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

$$
\frac{d^{2} \sigma}{d E^{\prime} d \Omega^{\prime}}=\frac{\alpha_{\mathrm{em}}^{2}}{M 4 E^{2} \sin ^{4}(\theta / 2)}\left[2 W_{1}\left(x, Q^{2}\right) \sin ^{2}(\theta / 2)+W_{2}\left(x, Q^{2}\right) \cos ^{2}(\theta / 2)\right]
$$

It is customary to define "scaling" structure functions:

$$
\left\{F_{1}, F_{2}, F_{3}\right\}=\left\{W_{1}, \frac{Q^{2}}{2 x M^{2}} W_{2}, \frac{Q^{2}}{x M^{2}} W_{3}\right\}
$$

Change of variables $\left(E^{\prime}, \Omega^{\prime}\right) \rightarrow(\mathbf{x}, \mathbf{y})$ and $\mathbf{W}_{\mathrm{i}} \rightarrow \mathrm{F}_{\mathrm{i}}$:

$$
\begin{equation*}
\text { Show that } \quad \frac{d^{2} \sigma}{d x d y}=\frac{2 \pi M y}{1-y} \frac{d^{2} \sigma}{d E^{\prime} d \Omega^{\prime}} \tag{I9.I}
\end{equation*}
$$

The DIS cross section in terms of Lorentz-invariants \mathbf{x}, \mathbf{y} (photon exchange, neglecting m):

$$
\frac{d^{2} \sigma}{d x d y}=\frac{4 \pi \alpha_{\mathrm{em}}^{2} S}{Q^{4}}\left[x y^{2} F_{1}\left(x, Q^{2}\right)+\left(1-y-x y M^{2} / S\right) F_{2}\left(x, Q^{2}\right)\right]
$$

Homework Problems

I. Show that the phase space for the outgoing lepton takes the following form in the variables \mathbf{x} and \mathbf{y} (without any approximation), where \mathbf{F} is the flux and $\mathbf{S}=\mathbf{2} \mathbf{p . l}$:

$$
\frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}=\frac{2 S^{2} y}{(4 \pi)^{2} F} d x d y
$$

2. Derive the following general expression for the doubly differential cross section:

$$
\frac{d^{2} \sigma}{d x d y}=\frac{2 S^{2} y}{(4 \pi)^{2} F^{2}}\left[\frac{e^{4}}{Q^{4}} L_{\mu \nu} W^{\mu \nu} 4 \pi\right]=\frac{4 S^{2}}{F^{2}} \frac{2 \pi \alpha^{2}}{Q^{4}} y L_{\mu \nu} W^{\mu \nu}
$$

(Note that the factor $\mathbf{4 S} \mathbf{S}^{\mathbf{2}} / \mathbf{F}^{\mathbf{2}}=\mathbf{I}+\mathbf{O}\left(\mathbf{m}^{\mathbf{2}} / \mathbf{S} * \mathbf{M}^{\mathbf{2}} / \mathbf{S}\right)$ and the mass term is negligibly small for incoming neutrinos, electrons, and muons even if the nucleon mass is taken into account.)
3. Show that the hadronic tensor in terms of the structure functions $\mathbf{F}_{1}, \mathbf{F}_{\mathbf{2}}$ is given by:

$$
W^{\mu \nu}=-g_{\perp}^{\mu \nu} F_{1}\left(x, Q^{2}\right)+\frac{1}{p \cdot q} p_{\perp}^{\mu} p_{\perp}^{\nu} F_{2}\left(x, Q^{2}\right)
$$

Homework Problems

Show that the hadronic tensor can be brought in the following forms:

$$
\begin{aligned}
4 \pi W_{\mu \nu} & \left.=\sum_{\text {states } X} \int d \Phi_{X}(2 \pi)^{4} \delta^{(4)}\left(p+q-p_{X}\right)\left\langle\langle N(p)| J_{\nu}^{\dagger}(0) \mid X\right\rangle\langle X| J_{\mu}(0)|N(p)\rangle\right\rangle_{\text {spin }} \\
& \left.=\sum_{\text {states } X} \int d \Phi_{X} \int d^{4} y e^{i q y}\left\langle\langle N(p)| J_{\nu}^{\dagger}(y) \mid X\right\rangle\langle X| J_{\mu}(0)|N(p)\rangle\right\rangle_{\text {spin }} \\
& \left.=\int d^{4} y e^{i q y}\left\langle\langle N(p)| J_{\nu}^{\dagger}(y) J_{\mu}(0) \mid N(p)\right\rangle\right\rangle_{\text {spin }} \\
& \left.=\int d^{4} y e^{i q y}\left\langle\langle N(p)|\left[J_{\nu}^{\dagger}(y), J_{\mu}(0)\right] \mid N(p)\right\rangle\right\rangle_{\text {spin }}
\end{aligned}
$$

- Use the integral representation for the delta-distribution:

$$
(2 \pi)^{4} \delta^{(4)}\left(p+q-p_{X}\right)=\int d y e^{i\left(p+q-p_{X}\right) y}=\int d y e^{i q y} e^{i\left(p-p_{X}\right) y}
$$

- The space-time translation of an operator in QM is generated by the 4-momentum operator:

$$
\hat{O}(y):=e^{i \hat{P} \cdot y} \hat{O}(0) e^{-i \hat{P} \cdot y}
$$

- Use the completeness relation:

$$
\sum_{\text {states } X} \int d \Phi_{X}|X\rangle\langle X|=1
$$

- The second term in the commutator leads to $q+p x-p=0$ violating mom. cons. $q+p-p x=0$!

Hadronic tensor

Optical theorem: $\quad W_{\mu \nu} \propto \operatorname{Im} T_{\mu \nu}$

$$
T_{\mu \nu}=i \int d^{4} x e^{i q x}\langle N| T\left[J_{\mu}^{\dagger}(x) J_{\nu}(0)\right]|N\rangle
$$

III. Longitudinal and transverse structure functions

Structure functions

$$
W^{\mu \nu}=-g_{\perp}^{\mu \nu} F_{1}\left(x, Q^{2}\right)+\frac{1}{p \cdot q} p_{\perp}^{\mu} p_{\perp}^{\nu} F_{2}\left(x, Q^{2}\right)
$$

- The sfs are non-perturbative objects which parameterize the structure of the target as 'seen' by virtual photons
- They are obtained with the help of projection operators: $\mathbf{P}_{\mathbf{i}}{ }^{\mu v} \mathbf{W}_{\mu v}=\mathbf{F}_{\mathbf{i}}$
- The projectors are rank-2 tensors formed out of the
 independent momenta \mathbf{p}, \mathbf{q} and the metric \mathbf{g} (similar to $\mathbf{W}_{\mu \mathrm{v}}$)
- One can introduce transverse and longitudinal structure functions by contracting the hadronic tensor with the polarization vectors for transversely/longitudinally polarized virtual photons: $\mathrm{F}_{\mathrm{T}}, \mathrm{F}_{\mathrm{L}}$

- It turns out that: $F_{T}=\mathbf{2 x} F_{1}, F_{\mathbf{2}}=F_{L}+F_{T}$ (neglecting M)

Homework Problems

Chosing the z-axis along the three-momentum \vec{q}, such that $q^{\mu}=\left(q^{0}, 0,0,|\vec{q}|\right)$, the polarisation vectors of spacelike photons with helicity $\lambda=0, \pm 1$ can be written as:

$$
\begin{aligned}
\lambda= \pm 1: \epsilon_{ \pm}(q) & =\mp \frac{1}{\sqrt{2}}(0,1, \pm i, 0) \\
\lambda=0: \epsilon_{ \pm}(q) & =\frac{1}{\sqrt{-q^{2}}}\left(\sqrt{\nu^{2}-q^{2}}, 0,0, \nu\right)
\end{aligned}
$$

1. Verify that $q \cdot \epsilon=0$ for each λ, and show the following completeness relation for a space like photon $\left(q^{2}<0\right)$:

$$
\sum_{\lambda=0, \pm 1}(-1)^{\lambda+1} \epsilon^{* \mu}(q) \epsilon^{\nu}(q)=-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}
$$

2. Neglecting terms of order $O\left(M^{2} / Q^{2}\right)$ show that:
a) $\epsilon_{0}^{* \mu}(q) \epsilon_{0}^{\nu}(q) W_{\mu \nu}=\frac{1}{2 x} F_{L}$ with $F_{L}=F_{2}-2 x F_{1}=F_{2}-F_{T}$
b) $\left.\frac{1}{2}\left[\epsilon_{+}^{* \mu}(q) \epsilon_{+}^{\nu}(q)+\epsilon_{-}^{* \mu}(q) \epsilon_{-}^{\nu}(q)\right)\right] W_{\mu \nu}=\frac{1}{2 x} F_{T}$ with $F_{T}=2 x F_{1}$

It is useful to do the calculation in the nucleon rest frame $p=(M, 0,0,0)$.

IV. CC and NC DIS

Cross section for CC and NC DIS

The differential cross section for DIS mediated by interfering gauge bosons \mathbf{B}, \mathbf{B} ' can be written as:

$$
\frac{d^{2} \sigma}{d x d y}=\sum_{B . B^{\prime}} \frac{d^{2} \sigma^{B B^{\prime}}}{d x d y}
$$

- $B, B^{\prime} \in\{\gamma, Z\}$ in the case of NC DIS
- $B=B^{\prime}=W$ in the case of CC DIS

$$
d \sigma^{B B^{\prime}} \sim L_{\mu \nu}^{B B^{\prime}} W_{B B^{\prime}}^{\mu \nu}
$$

Each of the terms $\mathbf{d \sigma}^{\mathbf{B B}}$ ' can be calculated from the general expression:
PDG'I7, Eq. (I9.2)

$$
\left(\begin{array}{rl}
\frac{d^{2} \sigma^{B B^{\prime}}}{d x d y} & =\frac{2 S^{2} y}{(4 \pi)^{2} F^{2}}\left[\frac{e^{4}}{Q^{4}} \chi_{B} \chi_{B^{\prime}} L_{\mu \nu}^{B B^{\prime}} W_{B B^{\prime}}^{\mu \nu} 4 \pi\right. \\
& =\frac{4 S^{2}}{F^{2}} \frac{2 \pi \alpha^{2}}{Q^{4}} y \chi_{B} \chi_{B^{\prime}} L_{\mu \nu}^{B B^{\prime}} W_{B B^{\prime}}^{\mu \nu}
\end{array}\right)
$$

$$
\begin{aligned}
& \chi_{\gamma}\left(Q^{2}\right)=1 \\
& \chi_{Z}\left(Q^{2}\right)=\frac{g^{2}}{\left(2 \cos \theta_{w}\right)^{2} e^{2}} \frac{Q^{2}}{Q^{2}+M_{Z}^{2}}=\frac{G_{F}}{\sqrt{2}} \frac{M_{Z}^{2}}{2 \pi \alpha} \frac{Q^{2}}{Q^{2}+M_{Z}^{2}} \\
& \chi_{W}\left(Q^{2}\right)=\frac{g^{2}}{(2 \sqrt{2})^{2} e^{2}} \frac{Q^{2}}{Q^{2}+M_{W}^{2}}=\frac{G_{F}}{\sqrt{2}} \frac{M_{W}^{2}}{4 \pi \alpha} \frac{Q^{2}}{Q^{2}+M_{W}^{2}}
\end{aligned}
$$

$C C V_{T}$-DIS

$$
\begin{aligned}
\frac{\left.d^{2} \sigma^{\nu(\bar{\nu}}\right)}{d x d y} & =\frac{G_{F}^{2} M_{N} E_{\nu}}{\pi\left(1+Q^{2} / M_{W}^{2}\right)^{2}}\left\{\left(y^{2} x+\frac{m_{\tau}^{2} y}{2 E_{\nu} M_{N}}\right) F_{1}^{W^{ \pm}} \quad\right. \text { Kretzer, Reno'02 } \\
& \left.+\left[\left(1-\frac{m_{\tau}^{2}}{4 E_{\nu}^{2}}\right)-\left(1+\frac{M_{N} x}{2 E_{\nu}}\right) y\right] F_{2}^{W^{ \pm}} \pm\left[x y\left(1-\frac{y}{2}\right)-\frac{m_{\tau}^{2} y}{4 E_{\nu} M_{N}}\right)\right] F_{3}^{W^{ \pm}} \\
& \left.+\frac{\mathbf{m}_{\tau}^{\mathbf{2}}\left(\mathbf{m}_{\tau}^{2}+\mathbf{Q}^{\mathbf{2}}\right)}{\mathbf{4} \mathbf{E}_{\nu}^{2} \mathbf{M}_{\mathbf{N}}^{\mathbf{2}} \mathbf{x}} \mathbf{F}_{4}^{W^{ \pm}}-\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{E}_{\nu} \mathbf{M}_{\mathbf{N}}} \mathbf{F}_{5}^{W^{ \pm}}\right\}
\end{aligned}
$$

Albright-Jarlskog relations:
(derived at LO, extended by Kretzer, Reno)

$$
\begin{array}{ll}
\boldsymbol{F}_{4}=0 & \begin{array}{l}
\text { valid at } \mathrm{LO}\left[\mathcal{O}\left(\alpha_{s}^{0}\right)\right], M_{N}=0 \\
\text { (even for } \left.m_{c} \neq 0\right)
\end{array} \\
\boldsymbol{H}_{2}=2 x F_{5} & \begin{array}{l}
\text { valid at all orders in } \alpha_{s} \\
\text { for } M_{N}=0, m_{q}=0
\end{array}
\end{array}
$$

Full NLO expressions $\left(M_{N} \neq 0, m_{c} \neq 0\right)$: Kretzer, Reno'02

Sensitivity to F_{4} and F_{5}

v_{τ} CC DIS cross-section

\bar{v}_{τ} CC DIS cross-section

Homework Problems

* Little research project:

Work out the cross sections for NC and CC DIS
(Find typos in the following expressions,
Compare with expressions in PDF review)

Cross section for CC and NC DIS

Show that for an incoming electron with general $\gamma_{\mu}\left(V-A \gamma_{5}\right)$ current the leptonic tensor is given by (neglecting the lepton masses m_{1} and m_{2}):

$$
\begin{aligned}
L_{\mu \nu}^{B B^{\prime}} & =\frac{1}{2} \sum_{\lambda} \sum_{\lambda^{\prime}} \bar{u}(l, \lambda) \Gamma_{\nu}^{B^{\prime}} u\left(l^{\prime}, \lambda^{\prime}\right) \bar{u}\left(l^{\prime}, \lambda^{\prime}\right) \Gamma_{\mu}^{B} u(l, \lambda) \\
& =\frac{1}{2} \operatorname{Tr}\left[\left(l+m_{1}\right) \Gamma_{\nu}^{B^{\prime}} \gamma^{\beta}\left(l^{\prime}+m_{2}\right) \Gamma_{\mu}^{B}\right] \\
& =2 L_{+}\left[l^{\mu} l^{\prime \nu}+l^{\nu} l^{\prime \mu}-\left(l \cdot l^{\prime}\right) g^{\mu \nu}\right]+4 i R_{l,+} \epsilon_{\mu \nu \rho \sigma} l^{\rho} l^{\prime \sigma}
\end{aligned}
$$

Here $\Gamma_{\mu}^{B}=\gamma_{\mu}\left(V_{e}^{B}=A_{e}^{B} \gamma_{5}\right), L_{ \pm}=V_{e}^{B} V_{e}^{B^{\prime}} \pm A_{e}^{B} A_{e}^{B^{\prime}}, R_{e, \pm}=V_{e}^{B} A_{e}^{B^{\prime}} \pm V_{e}^{B^{\prime}} A_{e}^{B}$.

B	V_{e}^{B}	A_{e}^{B}
γ	-1	0
Z^{0}	$-1 / 2+2 \sin ^{2} \theta_{w}$	$-1 / 2$
W	1	1

see Halzen\&Martin

Cross section for CC and NC DIS

The weak currents are not conserved $\left(^{*}\right)$ and parity is violated. Therefore, one has to assume the most general structure for the hadronic tensor. In particular one has to include a parity violating piece $\sim i \epsilon_{\mu \nu \rho \sigma} p^{\rho} q^{\sigma}$:

$$
\begin{aligned}
W_{\mu \nu}^{B B^{\prime}}= & -g_{\mu \nu} F_{1}^{B B^{\prime}}\left(x, Q^{2}\right)+\frac{p_{\mu} p_{\nu}}{p \cdot q} F_{2}^{B B^{\prime}}\left(x, Q^{2}\right)-i \epsilon_{\mu \nu \rho \sigma} \frac{p^{\rho} q^{\sigma}}{2 p \cdot q} F_{3}^{B B^{\prime}}\left(x, Q^{2}\right) \\
& +\frac{q_{\mu} q_{\nu}}{p \cdot q} F_{4}^{B B^{\prime}}\left(x, Q^{2}\right)+\frac{p_{\mu} q_{\nu}+p_{\nu} q_{\mu}}{2 p \cdot q} F_{5}^{B B^{\prime}}\left(x, Q^{2}\right)+\frac{p_{\mu} q_{\nu}-p_{\nu} q_{\mu}}{2 p \cdot q} F_{6}^{B B^{\prime}}\left(x, Q^{2}\right)
\end{aligned}
$$

The terms proportional to F_{4}, F_{5} will be proportional to the lepton masses squared and are usually neglected (F_{6} will not contribute to the cross section at all). Of course, these terms have to be kept in the hadronic tensor when projecting out structure functions.
$\left.{ }^{*}\right)$ With $J_{w}^{\mu}=\bar{u}\left(p^{\prime}\right) \gamma_{\mu}\left(v-a \gamma_{5}\right) u(p)$ and using the Dirac equation one finds $q_{\mu} J_{w}^{\mu} \sim a\left(m+m^{\prime}\right)$ with $p^{2}=m^{2}, p^{\prime 2}=m^{\prime 2}$. Therefore $q_{\mu} L^{\mu \nu} \sim$ lepton mass.

Cross section for CC and NC DIS

We are now in a position to calculate the cross section:

$$
\frac{d^{2} \sigma^{B B^{\prime}}}{d x d y}=\frac{4 \pi \alpha^{2} S}{Q^{4}} \chi_{B} \chi_{B}^{\prime}\left[x y^{2} L_{+} F_{1}^{B B^{\prime}}+\left(1-y-x y M^{2} / S\right) L_{+} F_{2}^{B B^{\prime}}-y(1-y / 2) 2 R_{l,+} x F_{3}^{B B^{\prime}}\right]
$$

Introducing generalized structure functions we can form the Neutral Current (NC) cross section:

$$
\frac{d^{2} \sigma^{N C}}{d x d y}=\frac{4 \pi \alpha^{2} S}{Q^{4}}\left[x y^{2} \mathcal{F}_{1}^{N C}+\left(1-y-x y M^{2} / S\right) \mathcal{F}_{2}^{N C}-y(1-y / 2) x \mathcal{F}_{3}^{N C}\right]
$$

with

$$
\begin{aligned}
& \mathcal{F}_{1,2}^{N C}\left(x, Q^{2}\right)=F_{1,2}^{\gamma \gamma}+2 \chi_{Z}\left(-v_{l}^{Z}\right) F_{1,2}^{\gamma Z}+\chi_{Z}^{2}\left(\left(v_{l}^{Z}\right)^{2}+\left(a_{l}^{Z}\right)^{2}\right) F_{1,2}^{Z Z} \\
& \mathcal{F}_{3}^{N C}\left(x, Q^{2}\right)=-2 \chi_{Z} a_{l}^{Z} F_{3}^{\gamma Z}+\chi_{Z}^{2} 2 v_{l}^{Z} a_{l}^{Z} F_{3}^{Z Z}
\end{aligned}
$$

V. Bjorken scaling

Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

$$
\frac{d \sigma^{\mathrm{Mott}}}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2)
$$

Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

$$
\frac{d \sigma^{\mathrm{Mott}}}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2)
$$

Pointlike proton with spin:

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\mathrm{Mott}}}{d \Omega} \frac{E^{\prime}}{E}\left[1+2 \tau \tan ^{2}(\theta / 2)\right]
$$

$$
\tau=\frac{Q^{2}}{4 M^{2}}, Q^{2}=4 E E^{\prime} \sin ^{2}(\theta / 2)
$$

Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

$$
\begin{array}{ll}
\frac{d \sigma^{\mathrm{Mott}}}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2) & \xrightarrow{\begin{array}{c}
\text { Electron } \\
\text { Beam }
\end{array}} \begin{array}{l}
\text { Hydrogen } \\
\text { Target }
\end{array} \\
\begin{array}{l}
\text { Eointlike proton with spin: }
\end{array} \\
\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\text {Mott }}}{d \Omega} \frac{E^{\prime}}{E}\left[1+2 \tau \tan ^{2}(\theta / 2)\right] & E^{\prime}=\frac{E_{0}}{1+\frac{2 E_{0}}{M} \sin ^{2} \theta / 2}
\end{array}
$$

Extended proton with spin (Rosenbluth formula):

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\mathrm{Mott}}}{d \Omega} \frac{E^{\prime}}{E}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2}(\theta / 2)\right] \quad \tau=\frac{Q^{2}}{4 M^{2}}, Q^{2}=4 E E^{\prime} \sin ^{2}(\theta / 2)
$$

- Elastic form factor $\mathbf{G}_{\mathrm{E}}\left(\mathbf{Q}^{\mathbf{2}}\right), \mathbf{G}_{\mathrm{E}}(\mathbf{0})=\mathbf{I}$
- Magnetic form factor $\mathbf{G}_{\mathrm{M}}\left(\mathbf{Q}^{\mathbf{2}}\right), \mathbf{G}_{\mathrm{M}}(\mathbf{0})=\boldsymbol{\mu}_{\mathrm{p}}=\mathbf{2 . 7 9}$ $\mu_{\mathrm{p}}=2.79$: proton anomalous magnetic moment

Steeply falling form factors:

$$
\begin{aligned}
& G_{E}\left(Q^{2}\right)=\frac{G_{M}\left(Q^{2}\right)}{\mu_{p}}=\left(1+Q^{2} / a^{2}\right)^{-2} \\
& a^{2}=0.71 \mathrm{GeV}^{2}
\end{aligned}
$$

Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

$$
\frac{d \sigma^{\text {Mott }}}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2)
$$

Pointlike proton with spin:
$\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\mathrm{Mott}}}{d \Omega} \frac{E^{\prime}}{E}\left[1+2 \tau \tan ^{2}(\theta / 2)\right]$

Note that the idea of a point-like strongly interacting particle is rather academic!

Due to quantum corrections we have to generalize the 'point-like current' by the most general current respecting all symmetries of the interaction and introduce form factors.

This is even the case in QED. However, here the Dirac and Pauli form factors are calculable in perturbation theory.

Extended proton with spin (Rosenbluth formula):
$\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\text {Mott }}}{d \Omega} \frac{E^{\prime}}{E}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2}(\theta / 2)\right] \quad \tau=\frac{Q^{2}}{4 M^{2}}, Q^{2}=4 E E^{\prime} \sin ^{2}(\theta / 2)$

- Elastic form factor $\mathbf{G}_{\mathrm{E}}\left(\mathbf{Q}^{2}\right), \mathbf{G}_{\mathrm{E}}(\mathbf{0})=$ I
- Magnetic form factor $\mathbf{G}_{\mathrm{M}}\left(\mathbf{Q}^{\mathbf{2}}\right), \mathbf{G}_{\mathrm{M}}(\mathbf{0})=\mu_{\mathrm{p}}=2.79$ $\mu_{\mathrm{p}}=2.79$: proton anomalous magnetic moment

Steeply falling form factors:

$$
\begin{aligned}
& G_{E}\left(Q^{2}\right)=\frac{G_{M}\left(Q^{2}\right)}{\mu_{p}}=\left(1+Q^{2} / a^{2}\right)^{-2} \\
& a^{2}=0.71 \mathrm{GeV}^{2}
\end{aligned}
$$

What do we expect for a point-like particle?

Point-like proton without spin, neglecting recoil:
Point-like proton/muon with spin:

$$
\frac{d \sigma^{\mathrm{Mott}}}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2)
$$

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\mathrm{Mott}}}{d \Omega} \frac{E^{\prime}}{E}\left[1+2 \tau \tan ^{2}(\theta / 2)\right]
$$

WCOMOMOOOOMOW

$$
d \sigma \sim \frac{4 \pi \alpha^{2}}{Q^{2}} \times 1
$$

Dimensional considerations

Expectations from elastic ep scattering

Fig. 4. Elastic scattering cross sections for electrons from a "point" proton and for the actual proton. The differences are attributable to the finite sire of the proton.

Fig. 23. Summary of results on nuclear form factors presented by the Stanford group at the 1965 "International Symposium on Electron and Photon Interactions at High Energies". (A momentum transfer of $1 \mathrm{GeV}^{2}$ is equivalent to $26 \mathrm{Fermis}^{-2}$.)

The results formed the prejudice that the proton was a soft "mushy" extended object, possibly with a hard core surrounded by a cloud of mesons, mainly pions.

The SLAC-MIT team saw its objective in searching for the hard core of the proton. First DIS experiments (>=1967).

Bjorken scaling

Elastic scattering (Rosenbluth formula):

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma^{\mathrm{Mott}}}{d \Omega} \frac{E^{\prime}}{E}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2}(\theta / 2)\right]
$$

The DIS cross section resembles the elastic one:

$$
d \sigma_{\mathrm{DIS}} \sim d \sigma^{\mathrm{Mott}}\left[W_{2}+2 W_{1} \tan ^{2}(\theta / 2)\right]
$$

The form factors had been know to fall rapidly as a function of \mathbf{Q}^{2}.

Therefore, the general expectation for $\sigma_{\text {DIs }}$ before its measurement was that it also would be a fast falling function of \mathbf{Q}^{2}.

Early data on DIS from the SLAC-MIT experiment [PRL23(I969)935]

Bjorken scaling

Scaling hypothesis (Bjorken 1968):
In the limit $\mathbf{Q}^{\mathbf{2}} \rightarrow \infty, \mathbf{v} \rightarrow \infty$, such that $\mathbf{x}=\mathbf{Q}^{\mathbf{2}} /(\mathbf{2 M v})$ is fixed ('Bjorken limit') the structure functions $\mathrm{F}_{\mathrm{i}}\left(\mathbf{x}, \mathbf{Q}^{\mathbf{2}}\right)$ are insensitive to $\mathbf{Q}^{\mathbf{2}}: \mathbf{F}_{\mathrm{i}}=\mathbf{F}_{\mathrm{i}}(\mathbf{x})$

This behaviour is called scaling and \mathbf{x} is called the scaling variable

Bjorken scaling

Scaling hypothesis (Bjorken I968):
In the limit $\mathbf{Q}^{\mathbf{2}} \rightarrow \infty, \mathbf{v \rightarrow \infty}$, such that $\mathbf{x}=\mathbf{Q}^{\mathbf{2}} /(\mathbf{2 M v})$ is fixed ('Bjorken limit') the structure functions $\mathrm{F}_{\mathrm{i}}\left(\mathbf{x}, \mathbf{Q}^{\mathbf{2}}\right)$ are insensitive to $\mathbf{Q}^{\mathbf{2}}: \mathrm{F}_{\mathrm{i}}=\mathbf{F}_{\mathrm{i}}(\mathbf{x})$

This behaviour is called scaling and \mathbf{x} is called the scaling variable

Scaling implies that the nucleon appears as a collection of point-like constituents when probed at very high energies (\mathbf{Q}^{2} large).

The possible existence of such point-like constituents was also proposed by Feynman from a different theoretical perspective and he gave them the name 'partons'.

Structure of the proton

Fred Olness,

 CTEQ school 2012$\iint \sigma \sim \frac{4 \pi \alpha^{2}}{Q^{2}} \times 1$

$$
\bigcap \bigcap \backsim \backsim\left(\sigma \sim \frac{4 \pi \alpha^{2}}{Q^{2}} \times F\left(\frac{Q^{2}}{\Lambda^{2}}\right)\right.
$$

Λ of order of the proton mass scale

WCWCOWCWCWCO
 (6)
 $$
d \sigma \sim \frac{4 \pi \alpha^{2}}{Q^{2}} \times \sum_{i} e_{i}^{2}
$$

Bjorken scaling for F_{2}

Fred Olness, CTEQ school 2012

Data is (relatively) independent of energy

Scaling Violations observed at extreme x values

Bjorken scaling for FL

ZEUS collab, arXiv:0904.1092

The HERA combined measurement of F_{L} is compatible with scaling

We note that $\mathbf{F}_{\mathbf{L}}$ is quite smaller than \mathbf{F}_{2}.

VI.The Parton Model

Naive parton model

- The historical ('naive') parton model describes the nucleon as a collection made of point-like constituents called 'partons'.

Today the Feynman partons are understood to be identical with the quarks postulated by Gell-Mann.

- At high momentum ('infinite momentum frame') the partons are free.

Therefore, the interaction of one parton with the electron does not affect the other partons. This leads to scaling in $\mathbf{x}=\mathbf{Q}^{\mathbf{2}} /(\mathbf{2} \mathbf{M} \mathbf{v})$ as we will see below.

- In an IMF, the proton is moving very fast, $\mathbf{P \sim} \sim\left(E_{p}, \mathbf{0}, \mathbf{0}, E_{p}\right)$ with $\mathbf{E}_{p} \gg \mathbf{M}$.

The quark-parton is moving parallel with the proton, carrying a fraction ξ of its momentum: $\hat{p}=\xi P$

Naive parton model

$$
d \sigma\left(e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+X\left(p_{X}\right)\right)=\sum_{i} \int_{0}^{1} d \xi f_{i}(\xi) d \hat{\sigma}\left(e(l)+i(\xi P) \rightarrow e\left(l^{\prime}\right)+i\left(p^{\prime}\right)\right)
$$

Naive parton model

$$
d \sigma\left(e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+X\left(p_{X}\right)\right)=\sum_{i} \int_{0}^{1} d \xi f_{i}(\xi) d \hat{\sigma}\left(e(l)+i(\xi P) \rightarrow e\left(l^{\prime}\right)+i\left(p^{\prime}\right)\right)
$$

We know how to calculate this!

Naive parton model

$$
\begin{gathered}
d \sigma\left(e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+X\left(p_{X}\right)\right)=\sum_{i} \int_{0}^{1} d \xi f_{i}(\xi) d \hat{\sigma}\left(e(l)+i(\xi P) \rightarrow e\left(l^{\prime}\right)+i\left(p^{\prime}\right)\right) \\
\begin{array}{c}
\text { Parton density: } \\
\text { fi } \mathbf{t}) \mathbf{d} \xi=\text { number of partons of } \\
\text { type 'i’,carrying a momentum } \\
\text { fraction of the proton } \\
\text { momentum in }[\xi, \xi+\mathbf{d} \xi]
\end{array}
\end{gathered} \begin{gathered}
\text { Elastic scattering off } \\
\text { point-like parton }
\end{gathered}
$$

Naive parton model

$$
d \sigma\left(e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+X\left(p_{X}\right)\right)=\sum_{i} \int_{0}^{1} d \xi f_{i}(\xi) d \hat{\sigma}\left(e(l)+i(\xi P) \rightarrow e\left(l^{\prime}\right)+i\left(p^{\prime}\right)\right)
$$

Naive parton model

$$
W^{\mu \nu}(P, q)=\sum_{i} \int_{x}^{1} \frac{d \xi}{\xi} f_{i}(\xi) \hat{w}_{i}^{\mu \nu}(\xi P, q)
$$

VII.Which partons?

Which Partons?

- It is tempting to identify the partons with the quarks of Gell-Mann's quark model
- The proton consists of three valence quarks (uud) which carry the quantum numbers of the proton (electric charge, baryon number): $\mathbf{u}=\mathbf{u}_{\mathbf{v}}, \mathbf{d}=\mathbf{d}_{\mathbf{v}}$

$$
\begin{aligned}
& u(x, Q)=2 \delta\left(x-\frac{1}{3}\right) \\
& d(x, Q)=1 \delta\left(x-\frac{1}{3}\right)
\end{aligned}
$$

Perfect Scaling PDFs
Q independent

Quark Number Sum Rule

$$
\langle q\rangle=\int_{0}^{1} d x q(x) \quad\langle u\rangle=2 \quad\langle d\rangle=1 \quad\langle s\rangle=0
$$

Quark Momentum Sum Rule

$$
\langle x q\rangle=\int_{0}^{1} d x x q(x) \quad\langle x u\rangle=\frac{2}{3} \quad\langle x d\rangle=\frac{1}{3}
$$

Which Partons?

- The valence quarks are bound together by gluons which leads to a smearing of the delta distributions and the gluon can fluctuate into a 'sea' of quark-anti-quark pairs: $S(x)=u b a r(x)=d b a r(x)=s(x)=s b a r(s)$
- $u(x)=u v(x)+u b a r(x), d(x)=d v(x)+d b a r(x), u b a r(x), d b a r(x), s(x), \ldots$

Gluons allow partons to exchange momentum fraction

Momentum Fraction x

Which Partons?

- Problem, experimentally it is found that the momentum fractions of the quark partons do not add up to I!

$$
\sum_{i} \int_{0}^{1} d x x\left[q_{i}(x)+\bar{q}_{i}(x)\right] \sim 0.5
$$

- Gluons carry half of the momentum but don't couple to photons
- We have to include a gluon distribution $\mathbf{G}(\mathbf{x})$

Which Partons?

In summary, the following picture emerges:

- The proton consists of three valence quarks (uud) which carry the quantum numbers of the proton (electric charge, baryon number): $\mathbf{u}_{\mathrm{v}}, \mathbf{d}_{\mathbf{v}}$
- There is a sea of light quark-antiquark pairs: u ubar, d dbar, s sbar, ... When probed at a scale \mathbf{Q}, the sea contains all quark flavours with mass $\mathbf{m}_{\mathbf{q}} \ll \mathbf{Q}$
- $u(x)=u v(x)+u b a r(x), d(x)=d v(x)+d b a r(x)$
- There is gluon distribution $\mathbf{G}(\mathbf{x})$ which carries about 50% of the proton momentum

Quark number sum rule: $\int_{0}^{1} d x u_{v}(x)=2, \quad \int_{0}^{1} d x d_{v}(x)=1, \quad \int_{0}^{1} d x(s-\bar{s})(x)=0$

Momentum sum rule:

$$
\int_{0}^{1} d x x\left\{\sum_{i}\left[q_{i}(x)+\bar{q}_{i}(x)\right]+G(x)\right\}=1
$$

VIII. Structure functions in the parton model

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\left.4 \pi \hat{w}_{i}^{\mu \nu}=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\left.4 \pi \hat{w}_{i}^{\mu \nu}=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}}
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }}
\end{aligned}
$$

standard current for point-like fermion as in QED

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P \gamma^{\mu}(\xi P+q) \gamma^{\nu}\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P \gamma^{\mu}(\xi P+\not q) \gamma^{\nu}\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \nexists \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right]\right.
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right]\right.
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\text {spin }} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P \gamma^{\mu}(\xi P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right]\right. \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P \gamma^{\mu}(\xi P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right]\right. \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P P \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi P P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right]\right. \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) 2 e_{i}^{2}\left[\xi^{2} P^{\mu} P^{\nu}+\xi\left(P^{\mu} q^{\nu}+P^{\nu} q^{m} u\right)-\xi g^{\mu \nu} P \cdot q\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \nexists \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right]\right. \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \nexists \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) 2 e_{i}^{2}\left[\xi^{2} P^{\mu} P^{\nu}+\xi\left(P^{\mu} q^{\nu}+P^{\nu} q^{m} u\right)-\xi g^{\mu \nu} P \cdot q\right] \\
& =(2 \pi) \xi \delta(\xi-x) e_{i}^{2}\left[-\left(g^{\mu} \nu-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{2 \xi}{P \cdot q}\left(P^{\mu}-q^{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P^{\nu}-q^{\nu} \frac{P \cdot q}{q^{2}}\right)\right]
\end{aligned}
$$

A Parton Model Calculation

- As a little exercise, let's calculate the contribution of a parton of type i, carrying the fraction ξ of the nucleon momentum, to the partonic tensor:

$$
\begin{aligned}
4 \pi \hat{w}_{i}^{\mu \nu} & \left.=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(p^{\prime 2}\right)(2 \pi)^{4} \delta^{(4)}\left(\xi P+q-p^{\prime}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& \left.=(2 \pi) \delta\left((\xi P+q)^{2}\right)\left\langle\langle\xi P| J^{\mu \dagger}(0) \mid \xi P+q\right\rangle\langle\xi P+q| J^{\nu}(0)|\xi P\rangle\right\rangle_{\mathrm{spin}} \\
& =(2 \pi) \delta\left((\xi P+q)^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \nexists \gamma^{\mu}(\xi P P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \delta\left(\left(2 \xi P \cdot q+q^{2}\right) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right]\right. \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) \frac{e_{i}^{2}}{2} \operatorname{Tr}\left[\xi \not P \gamma^{\mu}(\xi \not P+\not q) \gamma^{\nu}\right] \\
& =(2 \pi) \frac{1}{2 P \cdot q} \delta(\xi-x) 2 e_{i}^{2}\left[\xi^{2} P^{\mu} P^{\nu}+\xi\left(P^{\mu} q^{\nu}+P^{\nu} q^{m} u\right)-\xi g^{\mu \nu} P \cdot q\right] \\
& =(2 \pi) \xi \delta(\xi-x) e_{i}^{2}\left[-\left(g^{\mu} \nu-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{2 \xi}{P \cdot q}\left(P^{\mu}-q^{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P^{\nu}-q^{\nu} \frac{P \cdot q}{q^{2}}\right)\right]
\end{aligned}
$$

As expected for elastic scattering, the result is $\sim \delta(1-\hat{x})$ with $\hat{x}=\frac{Q^{2}}{2 \hat{p} \cdot q}=\frac{x}{\xi}$.

F_{1} and F_{2} in the Parton Model

- A parton of type i, carrying the fraction ξ of the nucleon momentum, gives the following contribution to the hadronic tensor:

$$
4 \pi \hat{w}_{i}^{\mu \nu}=(2 \pi) \xi \delta(\xi-x) e_{i}^{2}\left[-\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{2 \xi}{P \cdot q}\left(P^{\mu}-q^{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P^{\nu}-q^{\nu} \frac{P \cdot q}{q^{2}}\right)\right]
$$

- If there are $f_{i}(\xi) \mathbf{d} \xi$ partons of type i with a momentum fraction between ξ and $\xi+d \xi$, we have

$$
W^{\mu \nu}=\sum_{i} \int_{x}^{1} \frac{d \xi}{\xi} f_{i}(\xi) \hat{w}_{i}^{\mu \nu}
$$

- One obtains the following structure functions:

$$
F_{1}(x)=\frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \quad, \quad F_{2}(x)=2 x F_{1}(x)
$$

F_{2} and F_{L} in the Parton Model

- This model provides an explicit realization of Bjorken scaling
- The Callan-Gross relation $F_{L}=F_{2}-F_{T}=0$ implies $F_{2}=2 x F_{1}=F_{T}$
- The observation of this property provides further support of the fact that the partons are spin-I/2 fermions
- If the partons were spin-0 particles, we would have $\mathrm{F}_{\mathbf{T}}=\mathbf{0}$ and hence $\mathrm{F}_{\mathbf{2}}=\mathrm{F}_{\mathrm{L}}$
- Caveats and puzzles (to be addressed later):
- The naive parton model assumes that the partons are free. How can this be true in a strongly bound state?
- One would like to have a field theoretic description (QCD) of what is going on, including the effects of interactions and quantum fluctuations.

F_{L} is small but not zero

- Callan-Gross relation: $F_{L}=0$
- F_{L} is non-zero if:
- quarks are massive
- Z-boson exchange is included
- QCD corrections are included

We note that \mathbf{F}_{L} is quite smaller than \mathbf{F}_{2}.

Homework Problem

Leading order parton model expressions for structure functions in $\mathbf{e}+\mathbf{N} \rightarrow \mathbf{e}+\mathbf{X}(\gamma$-exchange) and $\mathbf{V}_{\boldsymbol{\mu}}+\mathbf{N} \rightarrow \boldsymbol{\mu}^{-}+\mathbf{X}$ DIS, assuming a diagonal CKM-matrix, $\mathbf{m}_{\mathbf{c}}=\mathbf{0}$

$$
\begin{aligned}
F_{2}^{e p} & =\frac{4}{9} x[u+\bar{u}+c+\bar{c}] \\
& +\frac{1}{9} x[d+\bar{d}+s+\bar{s}] \\
F_{2}^{e n} & =\frac{4}{9} x[d+\bar{d}+c+\bar{c}] \\
& +\frac{1}{9} x[u+\bar{u}+s+\bar{s}] \\
F_{2}^{\nu p} & =2 x[d+s+\bar{u}+\bar{c}] \\
F_{2}^{\nu n} & =2 x[u+s+\bar{d}+\bar{c}] \\
F_{2}^{\bar{\nu} p} & =2 x[u+c+\bar{d}+\bar{s}] \\
F_{2}^{\bar{\nu} n} & =2 x[d+c+\bar{u}+\bar{s}] \\
F_{3}^{\nu p} & =2[d+s-\bar{u}-\bar{c}] \\
F_{3}^{\nu n} & =2[u+s-\bar{d}-\bar{c}] \\
F_{3}^{\bar{\nu} p} & =2[u+c-\bar{d}-\bar{s}] \\
F_{3}^{\bar{\nu} n} & =2[d+c-\bar{u}-\bar{s}]
\end{aligned}
$$

- Verify this list!

Check for isospin symmetry, How are the structure functions F_{3} in neutrino and anti-neutrino DIS related?

- These different observables are used to dis-entangle the flavor structure of the PDFs

Homework Problem

Verify the following sum rules in the parton model:
$\underset{(1966)}{\text { Adler }} \quad \quad \int_{0}^{1} \frac{d x}{2 x}\left[F_{2}^{\nu n}-F_{2}^{\nu p}\right]=1$

Bjorken

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{2 x}\left[F_{2}^{\bar{\nu} p}-F_{2}^{\nu p}\right]=1 \tag{1967}
\end{equation*}
$$

$\underset{\substack{\text { Smith } \\(1969)}}{\operatorname{Gross} \text { Llewellyn- }} \quad \int_{0}^{1} d x\left[F_{3}^{\nu p}+F_{3}^{\bar{\nu} p}\right]=6$
$\underset{(1967)}{\text { Gottfried }}$ if $\bar{u}=\bar{d} \int_{0}^{1} \frac{d x}{x}\left[F_{2}^{e p}-F_{2}^{e n}\right]=\frac{1}{3}$
Experimentally: @ $\mathrm{Q}^{2}=4 \mathrm{GeV}^{2}$ $\mathbf{I G}_{\mathbf{G}}=\mathbf{0 . 2 3 5} \mathbf{+ / -} \mathbf{0 . 0 2 6}$
Conclusion? [cf. hep-ph/03|l091]

Homework (19??)

$$
\frac{5}{18} F_{2}^{\nu N}-F_{2}^{e N}=?
$$

$$
F_{2}^{l N}:=\left(F_{2}^{l p}+F_{2}^{l n}\right) / 2 \quad(l=\nu, e)
$$

Homework Problem

- Calculate the structure functions $\mathbf{F}_{1}(\mathbf{x})$ and $\mathbf{F}_{\mathbf{2}}(\mathbf{x})$ for a massless spin-0 parton 'i' of electric charge $\mathbf{e}_{\mathbf{i}}$ and parton distribution $\mathbf{q}_{\mathbf{i}}(\mathbf{x})$.

The scalar-scalar-photon vertex reads:

The result for the partonic tensor is:

$$
\hat{w}_{i}^{\mu \nu}=\frac{2}{Q^{2}} e_{i}^{2} x^{3} p_{\perp}^{\mu} p_{\perp}^{\nu} \delta(\xi-x)
$$

How do the results change if the incoming parton remains massless but the outgoing parton has a mass m ?

The End

[^0]: * Here 'lab' designates the proton rest frame $P=(M, 0,0,0)$ which coincides with the lab frame for fixed target experiments

