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Disclaimer

This lecture has profited a lot from the following resources:

• The text book by Halzen&Martin, Quarks and Leptons

• The text book by Ellis, Stirling & Webber, QCD and Collider Physics

• The lecture on DIS at the CTEQ school in 2012 by F. Olness

• The lecture on DIS given by F. Gelis Saclay in 2006
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Lecture 1I

9. Recap

10.  The pQCD formalism

11.  NLO corrections to DIS

12.  Parton evolution

13. DIS with massive quarks (not covered)

14.  Target mass corrections (not covered)

15.  Nuclear corrections (not covered)

16.  QCD studies with neutrinos (not covered)
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IX. Recap
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So far: Naive Parton Model
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Partonic tensor:
calculable, not IR safe

Parton distribution:
not calculable,
but universal
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• This model provides an explicit realization of Bjorken scaling

• The Callan-Gross relation FL=F2-FT=0 implies F2=2x F1=FT

• The observation of this property provides further support of the fact that the 
partons are spin-1/2 fermions

• If the partons were spin-0 particles, we would have FT=0 and hence F2=FL

• Caveats and puzzles (to be addressed later): 

• The naive parton model assumes that the partons are free. 
How can this be true in a strongly bound state?

• One would like to have a field theoretic description (QCD) of what is going on,
 including the effects of interactions and quantum fluctuations. 

F2 and FL in the Parton Model
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Field theory point of view

• A nucleon at rest is a very complicated object

• Contains fluctuations at all space-time scales smaller than its own size

• Only the fluctuations that are longer lived than the external probe participate in the 
interaction process

• The only role of short-lived fluctuations is to renormalize the masses and 
couplings

• Interactions are very complicated if the constituents of the nucleon have a non-trivial 
dynamics over time-scales comparable to those of the probe

Kinematics

Experimental facts

Naive parton model
● e-mu cross-section
● Naive parton model
● Towards a field theory

OPE in a free field theory

Scaling violations

Factorization

François Gelis – 2006 Lecture II/V – SPhT, Saclay, January 2006 - p. 16/57

Field theory point of view

■ A nucleon at rest is a very complicated object...
■ Contains fluctuations at all space-time scales smaller than its

own size
■ Only the fluctuations that are longer lived than the external

probe participate in the interaction process
■ The only role of short lived fluctuations is to renormalize the

masses and couplings
■ Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe

Lecture by
F. Gelis 2006
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Field theory point of view

Kinematics

Experimental facts

Naive parton model
● e-mu cross-section
● Naive parton model
● Towards a field theory

OPE in a free field theory

Scaling violations

Factorization

François Gelis – 2006 Lecture II/V – SPhT, Saclay, January 2006 - p. 17/57

Field theory point of view

■ Dilation of all internal time-scales for a high energy nucleon
■ Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
◃ the constituents behave as if they were free

■ Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)

• Dilation of all internal time-scales for a high-energy nucleon

• Interactions among constituents now take place over time-scales that are longer than 
the characteristic time-scale of the probe
➢ the constituents behave as if they were free, the probability of having 
interactions between the constituents during the time-scale of the probe is 
suppressed

• Many fluctuations live long enough to be seen by the probe. The nucleon appears to be 
denser at higher energy (it containts more gluons)

• Proofs from first principles of QCD show that the parts involving long and short time-
scales can be separated into independent factors (Factorization theorems)
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X. The pQCD formalism
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Quantum Chromodynamics (QCD)
QUANTUM CHROMODYNAMICS (QCD)

QCD: A QFT for the strong interactions

• Statement: Hadronic matter is made of spin-1/2 quarks [↔ SU(3)fl]
• Baryons like ∆++ = |u↑u↑u↑

¸

forbidden by Pauli exclusion/Fermi-Dirac stat.
Need additional colour degree of freedom!

• Local SU(3)-color gauge symmetry:

LQCD =
X

q=u,d,s,c,b,t
q̄(i∂/ −mq)q − gq̄G/q − 1

4G
a
µνGµν

a + Lgf + Lghost

• Fundamental d.o.f.: quark and gluon fields
• Free parameters:

• gauge coupling: g
• quark masses: mu,md ,ms,mc ,mb,mt

I. Schienbein (LPSC Grenoble) Masses in pQCD Oct. 27, 2011 4 / 74Wednesday 20 June 18



Quantum Chromodynamics (QCD)QCD

Properties:
• Confinement and Hadronization:

• Free quarks and gluons have not been observed:
A) They are confined in color-neutral hadrons of size ∼ 1 fm.
B) They hadronize into the observed hadrons.

• Hadronic energy scale: a few hundred MeV [1 fm↔ 200 MeV]
• Strong coupling large at long distances (! 1 fm): ’IR-slavery’
• Hadrons and hadron masses enter the game

• Asymptotic freedom:
• Strong couling small at short distances: perturbation theory
• Quarks and gluons behave as free particles at asymptotically large
energies

I. Schienbein (LPSC Grenoble) Masses in pQCD Oct. 27, 2011 5 / 74Wednesday 20 June 18



Asymptotic FreedomASYMPTOTIC FREEDOM

Renormalization of UV-divergences:
Running coupling constant as := αs/(4π)

as(µ) =
1

β0 ln(µ2/Λ2)

NLO, MSbar

upper: αs(MZ)=0.121
αs(MZ)=0.1187
lower: αs(MZ)=0.1165

αs(MZ)=0.118

µ (GeV)

αs(µ)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 10 102

• Gross, Wilczek (’73); Politzer (’73)

Non-abelian gauge theories:
negative beta-functions

das
d lnµ2

= −β0a2s + . . .

where β0 = 11
3 CA − 2

3nf

⇒ asympt. freedom: as ↘ for µ ↗

• Nobel Prize 2004

I. Schienbein (LPSC Grenoble) Masses in pQCD Oct. 27, 2011 6 / 74
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Perturbative QCD (pQCD)

Asympt. freedom pQCD possible if all scales hard

Factorisation

Possible to separate hard and
soft scales
soft part : universal
hard part : perturbative

1 GeV


200 MeV hard scalesoft scale

1 fm 0.2 fm short distancelong distance

perturbativenon-pert.

The perturbative QCD formalism

Two key ingredients:

Energy scale
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The perturbative QCD formalismTHE PQCD FORMALISM

QCD factorization theorems:

dσ = PDF⊗ dσ̂ + remainder

• PDF:
• Proton composed of partons = quarks, gluons
• Structure of proton described by parton distribution functions (PDF)
• Factorization theorems provide field theoretic definition of PDFs
• PDFs universal→ PREDICTIVE POWER

• Hard part dσ̂:
• depends on the process
• calculable order by order in perturbation theory
• Factorization theorems prescribe how to calculate dσ̂:
“dσ̂ = partonic cross section - mass factorization”

• Statement about error: remainder suppressed by hard scale

Original factorization proofs considered massless partons
I. Schienbein (LPSC Grenoble) Masses in pQCD Oct. 27, 2011 8 / 74
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Factorization theorems

Wµ⌫ =
X

i

Z 1

x

d⇠

⇠
f
i

(⇠, µ2
F

, µ2
R

)ŵµ⌫

i

(⇠, Q2, µ2
F

/Q2, µ2
R

/Q2,↵
s

(µ2
R

)) +O(Q2/⇤2)

In addition to inclusive DIS, there are factorization formulas for other processes

Inclusive DIS:

11/04/06 I. Schienbein (SMU), Tests of QCD 10

Factorization

Proton
aa

Proton
b

c

= f Pa⊗ f P b⊗  abc

From experiment
Calculable from 

theoretical model

Parton Distribution Functions (PDFs)

f P a , b x ,2

 Universal

 Describe the structure of hadrons

 The key to calculations involving

   hadrons in the initial state!!!

The hard part  ab c 
2

 Free of short distance scales

 Calculable in perturbation theory

 Depends on the process
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Predictive Power
Predictive Power

● DIS:

● DY: 

● A+B -> H + X:

● Predictions for unexplored kinematic regions
and for your favorite new physics process

Universality: same PDFs/FFs enter different processes:
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How to compute the hard cross section?

11/04/06 I. Schienbein (SMU), Tests of QCD 13

How to compute the hard cross sections???

LO: d 0 =d0 

NLO: d 1=d 1 −collinear subtractions

Renormalized partonic cross section

UV div.

(IR div. cancel between real and virtual diagrams)

Mass factorization 
Factorization scheme dependent

Remove long distance part
(soft scales)

• The good news is at LO the hard cross section is just the partonic cross section

• At higher orders,  divergences appear which have to be regularized and then be 
treated with procedures called “renormalization” and “mass factorization”

Wednesday 20 June 18



XI. NLO corrections to DIS
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NLO corrections to DIS

2.3 DIS structure functions in the ACOT scheme 29
3.2 Heavy Quark Contributions to ACOT Structure Functions 15

p1, m1 p2, m2

q

(a)

p1, m1

p2, m2

q

(b)

k

p1, m1

p2, m2

q

k

p1, m1 p2, m2

q

(c1)

p1, m1 p2, m2

q

(c2)

p1, m1 p2, m2

q

(c3)

Figure 3.1: Feynman diagrams for the QS(0) (a) and QS(1) [(b), (c)] contributions to ACOT
structure functions in Eqs. (3.3) and (3.9), respectively.

which are both suppressed by two powers of the lepton mass. We neglect target (nucleon)

mass corrections which are important at larger values of Bjorken–x [19] where heavy quark

contributions are of minor importance.

We consider DIS of the virtual Boson B⇤ on the quark Q1 with mass m1 producing

the quark Q2 with mass m2. At order O(↵0
s) this proceeds through the parton model

diagram in Fig. 3.1 (a).

Finite mass corrections to the massless parton model expressions are taken into account

by adopting the Ansatz given in Eq. (17) of [19]

W µ⌫ =

Z

d⇠

⇠
Q1(⇠, µ

2) !̂µ⌫ |p+1 =⇠P+ . (3.2)

W µ⌫ is the usual hadronic tensor and !̂µ⌫ is its partonic analogue. Here as in the following

Figure 2.3: Feynman diagrams for the QS(0) (a) and QS(1) [(b), (c)] contributions to ACOT
structure functions in Eqs. (2.47) and (2.53), respectively.

2.3.1 DIS on a Massive Quark at O(↵0
s)

We consider the process B⇤Q1 ! Q2, i.e., DIS of the virtual Boson B⇤ on the quark

Q1 with mass m1 producing the quark Q2 with mass m2. At order O(↵0
s) this proceeds

through the parton model diagram in Fig. 2.3 (a).

Finite mass corrections to the massless parton model expressions are taken into account

by adopting the Ansatz given in Eq. (17) of [35]

W µ⌫ =

Z

d⇠

⇠
Q1(⇠, µ

2) !̃µ⌫ |p+1 =⇠P+ . (2.46)

W µ⌫ is the hadronic tensor introduced in Sec. 2.1.3 and !̃µ⌫ is its partonic analogue. Here

as in the following a tilde on partonic quantities refers to unsubtracted amplitudes, i.e.

2.3 DIS structure functions in the ACOT scheme 33

3.2 Heavy Quark Contributions to ACOT Structure Functions 19

The vertex correction in Appendix A.2 is implicitly tested because it contributes to any of

the final results. However, as an independent cross check the well known QED textbook

result can be reproduced for m1 = m2, A = 0.

Initial state parton mass e↵ects in NC DIS at O(↵1
s) have been first considered in [53]

within the scenario [55] of intrinsic nonperturbative cc̄ pairs stemming from fluctuations of

the nucleon Fock space wavefunction. Although we do not consider such a scenario here

we note that our results could be easily transferred to corresponding applications [56].

The main di↵erence would be an inclusion of kinematical target mass e↵ects which are

important at larger x [19] where a possible nonperturbative charm component is expected

[55] to reside. We list a detailed comparison of our calculation to the one in [53] in

Appendix A.4. Since our calculation does not fully agree with [53] for reasons which we

are completely able to trace back and given the amount of successful independent tests

of our results we regard the disagreement with [53] as a clear evidence that the results in

[53] should be updated by our calculation.

3.2.3 Gluon Fusion Contributions at O(↵1
s)

The gluon fusion contributions to heavy quark structure functions, depicted in Fig. 3.2,

(B⇤g ! Q̄1Q2) are known for a long time [33, 34, 35] and have been reinterpreted in

[20] within the helicity basis for structure functions. Here we only briefly recall the

k

p2, m2

q

p1, m1

k

p1, m1

q

p2, m2

Figure 3.2: Feynman diagrams for the production of a massive quark–antiquark pair via
boson–gluon fusion.

corresponding formulae in the tensor basis for completeness. The GF component of DI

structure functions is given by

FGF
1,3 (x,Q2) =

Z 1

ax

d⇠0

⇠0
g(⇠0, µ2) f1,3

✓

x

⇠0
, Q2

◆

Figure 2.4: Feynman diagrams for the production of a massive quark–antiquark pair via
boson–gluon fusion.

with the universal function (in the MS scheme)

f (1)
QQ(⇠

0, µ2,m2
1) =

↵s(µ2)

2⇡
CF



1 + ⇠02

1� ⇠0

✓

ln
µ2

m2
1

� 1� 2 ln(1� ⇠0)
◆�

+

(2.64)

describing a heavy quark parton with mass m1 inside a heavy quark target carrying a

momentum fraction ⇠0 in the direction of the plus component.

Note that the limit in Eq. (2.60) guarantees that Eq. (2.62) is also fulfilled when

m1 = m2 ! 0 (e.g. NC leptoproduction of charm) since

lim
m2!0

Hq,MS
i (⇠0, µ2,�) = Cq,MS

i (⇠0, µ2) +O
✓

m2
2

Q2

◆

(2.65)

where Cq,MS
i are the standard massless coe�cient functions in the MS scheme, e.g. in

[57, 62].

2.3.3 Gluon Fusion Contributions at O(↵1
s)

The gluon fusion (GF) contributions to heavy quark structure functions, depicted in Fig.

2.4, (B⇤g ! Q̄1Q2) are known for a long time [63–65]. Here we only briefly recall the

corresponding formulae for completeness. The GF component of deep inelastic structure

functions is given by

F̃GF
1,3 (x,Q2) =

Z 1

ax

d⇠0

⇠0
g(⇠0, µ2) f̃1,3

✓

x

⇠0
, Q2,m1,m2

◆

Boson gluon fusion

LO: quark initiated

NLO: quark intiated

(b) NLO real (R)
(c) NLO virtual (V)
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The anatomy of divergences

• There are 3 types of divergences which appear (quite generally at higher orders) 
and which need to be regularized in order to have mathematically well defined 
objects

• UV divergences (due to high energy modes in loop diagrams)

• Soft divergences (due to the emission of soft/low energy gluons)

• Collinear divergences (due to collinear parton branchings)

• Soft (S) and Collinear (C) divergences involve propagators which are close to their 
mass shell/which propagate long distances. They are therefore both IR divergences.

• The Collinear divergences are also called Mass singularities because they appear 
for massless particles. For massive particles the “singularities” are regularized/finite and 
give just very large contributions to the scattering amplitude for scales much larger 
than the mass

Wednesday 20 June 18



• There are 3 types of divergences which appear (quite generally at higher orders) 
and which need to be regularized in order to have mathematically well defined 
objects

• UV divergences (due to high energy modes in loop diagrams)

• Treated by the renormalization procedure 

• All parameters of the Lagrangian are redefined in a renormalization scheme, 
acquire a renormalization scale dependence (running couplings) 
and need to be ‘measured’ at one scale

• We can obtain the runnning parameter at another scale with differential 
equations called renormalization group equations (RGEs)

• Soft divergences (due to the emission of soft/low energy gluons)

• Collinear divergences (due to collinear parton branchings)

The anatomy of divergences
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• There are 3 types of divergences which appear (quite generally at higher orders) 
and which need to be regularized in order to have mathematically well defined 
objects

• UV divergences? Renormalization!

• Soft divergences (due to the emission of soft/low energy gluons)

• For ‘reasonable observables’ (IR safe), the soft divergences cancel in the sum of 
real and virtual contributions: RealS + VirtualS = finite  (KLN theorem)

• Collinear divergences (due to collinear parton branchings)

The anatomy of divergences
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• There are 3 types of divergences which appear (quite generally at higher orders) 
and which need to be regularized in order to have mathematically well defined 
objects

• UV divergences? Renormalization!

• Soft divergences? Cancel!

• Collinear divergences (due to collinear parton branchings)

• Treated by the mass factorization procedure
(multiplicative mass factorization is very similar to multiplicative renormalization)

• PDFs and Fragmentation functions are redefined in a factorization scheme, 
acquire a factorization scale dependence and we need to ‘measure’ them at one 
scale 

• We can obtain the evolution from one scale to another with renormalization 
group equations known as DGLAP equations

The anatomy of divergences
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• There are 3 types of divergences which appear (quite generally at higher orders) 
and which need to be regularized in order to have mathematically well defined 
objects

• UV divergences? Renormalization!

• Soft divergences? Cancel!

• Collinear divergences? Mass factorization! 

The collinear divergences will absorbed into a redefinition of the PDFs (or FFs).
The redefinition depends on the factorization scheme.

The anatomy of divergences
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Where do IR divergences come from?

p p’

k

θ

Neglecting the electron mass:

p = (E, 0, 0, E)

k = (!,! sin ✓, 0,! cos ✓)

p0 = p� k

The red propagator:

We see that the propagator is divergent for
a) ω→0 (soft photon emission)
b) θ→0  (collinear emission of photon)

i

p0/
=

ip0/

p02
⇠ 1

p02
=

1

p2 � 2p · k + k2
=

�1

2p · k =

�1

E!(1� cos ✓)
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Where do IR divergences come from?

p p’

k

θ

Including the electron mass:

The red propagator:

We see that the propagator is divergent/large for
a) ω→0 (soft divergence)
b) θ→0  (collinear ‘divergence’ regulated by the mass)

p = (E, 0, 0, |~p|) = (E, 0, 0, E�)

with � =

p
1�m2/E2

k = (!,! sin ✓, 0,! cos ✓)

p0 = p� k

i

p0/�m
=

i(p0/+m)

p02 �m2
⇠ 1

p02 �m2
=

1

p2 � 2p · k + k2 �m2
=

�1

2p · k =

�1

E!(1� � cos ✓)
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Where do IR divergences come from?

p p’

k

θ

The cut indicates that propagator
is on-shell, travels a long distance
before interaction with the blob

ω→0 
and/or  
θ→0
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Where do IR divergences come from?

p p’

k

θ
ω→0 
and/or  
θ→0

• In the soft/collinear regions the cross section factorizes into two independent pieces 
which are convoluted (the phase space factorizes as well): 
a) the probability for emitting a soft/collinear photon
b) the cross section for the interaction of the on-shell red line with the blob

• The soft part cancels once virtual corrections are included’

• The dominant leading logarithmic contributions to the amplitude come from the collinear 
regions. The collinear emission probability can be interpreted as finding an electron with a 
momentum fraction z inside a parent electron:

�ee(z, µ
2) =

↵

2⇡
P (0)
ee (z) lnµ2/m2

Discussion:
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Not yet ready with the discussion

p p’

k

θ
ω→0 
and/or  
θ→0

• The collinear logarithms [ alpha Pee ln mu2/m2] can in principle be kept in fixed order 
perturbation theory since the fine structure constant is small.

• Conversely, they can be resummed to all orders by introducing parton distributions 
inside an electron (with an electron parton and a photon parton inside the electron). 

• The collinear terms can then be absorbed into the PDFs which can be evolved with 
(inhomogeneous) DGLAP equations and convoluted with ‘partonic processes’

• This “QED structure functions method” is really easy (!) and has been widely used at LEP 
and HERA to calculate the QED radiative corrections in the leading log approximation 
(which reproduces the exact result to 1% ... 2% accuracy)
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...more to say...

p p’

k

θ
ω→0 
and/or  
θ→0

• There is a fundamental difference between QED and QCD!

• The results for QED are reliable in fixed order perturbation theory or we can subtract 
the long distance terms and introduce QED structure functions as a technique to resum 
large collinear logs to all orders using the renormalization group 

• On the other hand, a quark propagating a long distance will hadronize!

The results with an almost on-shell free quark propagator are certainly not reliable and 
we are FORCED to subtract these long distance pieces from the cross section (and to 
replace them by experimentally determined PDFs)
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Mass factorization

� =
X

i

f̃i ⌦ �̃i

Let’s calculate a cross section/structure function in the QCD improved parton model at NLO!

It is given by a convolution of the partonic cross section (already renormalized) with PDFs:

The partonic cross section still contains collinear singularities (poles in 1/eps in dim. reg.).

The collinear pieces factorize into universal factorization constants and hard scattering cross 
sections. This is the crucial mass factorization relation.

�̃i =
X

l

�li ⌦ �̂l

factorization constants
containing the divergence

finite (IR-safe) hard
scattering cross sections

depends on μ=μRindependent of μ=μR
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Mass factorization

The factorization constants have to be determined once and for all. They can then be used in all 
kinds of process to do the mass factorization (analogue: renormalization constants)

We can now express the cross section as convolution of renormalized PDFs with hard scattering
cross sections:

�ij(z, µ
2
F , µ

2) = �ij�(1� z) + �(1)
ij (z, µ2

F , µ
2)

�(1)
ij =

↵s(µ2)

2⇡


Pij(z)

2

✏
+ Fij

�

FMS
ij = Pij(z)(�E � ln(4⇡) + ln

µ2
F

µ2
)

Using dim. reg.  with 
d=4+ε dimensions

renormalized PDFs

� =
X

i

X

l

f̃i ⌦ �li ⌦ �̂i =
X

l

fl ⌦ �̂l with fl =
X

i

�li ⌦ f̃i

The desired end result:

μ=μR is the scale of dim. reg.
μF is the factorization scale
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Construction of the hard scattering cross sections

�̃i =
X

l

�li ⌦ �̂l
The mass factorization relation can be inverted
in a perturbative approach

�ij = �ij + �(1)
ij + . . .

�̃ = �̃(0) + �̃(1) + . . .

�̂ = �̂(0) + �̂(1) + . . .

Entering the perturbative expressions into the mass factorization formula and comparing the 
lhs with the rhs we find iteratively (exercise!):

�̂(0)
i = �̃(0)

i

�̂(1)
i = �̃(1)

i � �(1)
li ⌦ �̃(0)

l = �̃(1)
i � �(1)

li ⌦ �̂(0)
l
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Wilson Coefficients
In DIS the hard scattering cross sections are called Wilson coefficients:

x

�1
F2 = q ⌦ C2,q + g ⌦ C2,g

x

�1
FL = q ⌦ CL,q + g ⌦ CL,g

F1 = q ⌦ C1,q + g ⌦ C1,g

We recover the leading order parton model results:

The Wilson coefficients have a perturbative expansion in the strong coupling constant:

Ci,q(z,Q
2/µ2) = C(0)

i,q (z) + C(1)
i,q (z,Q

2/µ2) + . . .

Ci,g(z,Q
2/µ2) = C(0)

i,g (z) + C(1)
i,g (z,Q

2/µ2) + . . .

C

(0)
2,q (z,Q

2
, Q

2
/µ

2) = e

2
q�(1� z), C(0)

2,g = 0, C(0)
L,q = 0, C(0)

L,g = 0

F2(x,Q
2) = x

X

q

e

2
q(q + q̄)(x,Q2) = 2xF1(x,Q

2), FL(x,Q
2) = 0
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Higher order Wilson coefficient functions 

40 Masses in deep inelastic scattering

ACOT scheme with all masses retained out to NLO. The ZM-VFNS�(n) term uses the

massless Wilson coe�cients at O(↵↵2
S) and O(↵↵3

S) with the specified �(n)-scaling.

We use the ZM-VFNS�(n) result in Eq. (2.77) to approximate the higher-order terms

because not all the necessary massive Wilson coe�cients at O(↵↵2
S) and O(↵↵3

S) have

been computed. There has been a calculation of neutral current electroproduction (equal

quark masses, vector coupling) of heavy quarks at this order [66] in the FFNS which could

be used to obtain the massive Wilson coe�cients in the S-ACOT scheme by applying

appropriate collinear subtraction terms. However, for the original ACOT scheme it would

then still be necessary to compute the massive Wilson coe�cients for the heavy quark

initiated subprocess at O(↵↵2
S). See Refs. [40, 67] for details.

2.4.2 Higher order coe�cient functions

Reference Boson SFs Order Coe�cients Scheme Comments

BBDM’78 [18] NC,CC± F2, FL, F3 ↵1
S C2 MS C(1)

3,+(x) = C(1)
3,�(x)

AEM’78 [70] NC,CC± F2 ↵1
S C2 MS —

FP’82 [62] NC,CC± F2 ↵1
S C2 MS —

GMMPS’91 [71] NC,CC+ FL ↵2
S CL,q(x), CL,g(x) MS CL,g corrected in [72]

NZ’91 [73] NC,CC± F2 ↵2
S C2,q(x) MS first calc.

ZN’91 [72] NC,CC+ F2, FL ↵2
S C2,g(x), CL,g(x) MS first calc.

ZN’92 [74] NC,CC+ F2 ↵2
S C2 MS —

NV’00 [75] NC,CC+ F2, FL ↵2
S CNS

2 MS x-space param.

NV’00 [76] NC,CC+ F2 ↵2
S CS

2 MS x-space param.

ZN’92 [77] NC,CC+ F3 ↵2
S C(2)

3,�(x) MS first calc.

MV’00 [78] NC,CC+ F2, FL, F3 ↵2
S — MS all N , confirms [72,73,77]

MRV’08 [79] CC� F2, FL, F3 ↵2
S �C(2)

2,L,3(x) MS x-space param., �C(2)
L new

MVV’09 [80] CC+ F3 ↵2
S C(2)

3,�(x) MS x-space param.

VVM’05 [81] NC,CC+ F2, FL ↵3
S C2, CL MS x-space calc. and param.

MVV’02 [82] NC,CC+ F2 ↵3
S CNS

2 MS x-space param.

MVV’05 [83] NC,CC+ FL ↵3
S CNS

L MS x-space param.

MR’07 [84] CC� F2, FL, F3 ↵3
S — MS N -space, fixed N  10

MRV’08 [79] CC� F2, FL, F3 ↵3
S �C(2)

2,L,3(N) MS N -space, first 5 moments

MVV’09 [80] CC+ F3 ↵3
S — MS x-space calc.

Table 2.1: Massless higher order Wilson coe�cient functions in the literature. ’NC’ corre-
sponds to neutral current DIS with � and Z exchange while ’CC±’ stands for charged current
DIS with W+ ±W� exchange.
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Scale dependence

• The PDFs depend on the factorization scale μF and the renormalization scale μR.

• Beyond LO the PDFs depend on the factorization/renormalization scheme.

• In DIS usually the scale choice μF=μR=Q is made

• The hard part is also scheme dependent (beyond LO) and one has to use the same scheme 
as for the PDFs and alphas.

• Physical observables do not depend on the scales and schemes 
up to missing higher orders in the perturbation series.

Wµ⌫ =
X

i

Z 1

0

d⇠

⇠
fi(⇠, µ

2
F , µ

2
R)ŵ

µ⌫
i (⇠, Q2, µ2

F /Q
2, µ2

R/Q
2,↵s(µ

2
R)) +O(Q2/⇤2)
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Scale dependence of as

The scale dependence of the strong coupling constant is also governed by a renormalization 
group equation:

The QCD beta-function is negative at small 
as  which leads to asymptotic freedom:

@as
@ lnµ2

= �[as(µ
2)] = �(�0a

2
s + �1a

3
s + �2a

4
s + . . .)

as :=
↵s

4⇡
, �0 = 11� 2

3
nf , �1 = 102� 38

3
nf . . .

8
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Figure 4: (a) 2-loop ↵S for different number of flavors;
(b) ratio of 3, 4, 5, and 6-flavor ↵S to the 3-flavor one.

NF dependence of ↵s is generally opposite to that of
the gluon PDF; this observation is particularly interest-
ing as many NLO contributions are proportional to the
combination ↵S ⇥ x g. If we consider the inclusive struc-
ture functions F123L, for example, the LO contributions
are proportional to the electroweak couplings and the
quark PDFs – both of which are relatively invariant under
changes in NF . Thus, the primary effect of the NF de-
pendence will be to modify the NLO contributions which
are dominantly proportional to ⇠ ↵S ⇥ x g. For these
contributions, the x g and ↵S dependence will partially
cancel each other out so that the total result is relatively
stable as a function of NF [6, 36].

To illustrate this mechanism, we show the combination
↵

(NR)
S ⇥ x g

(NF ) vs. x (in Fig. 5) and vs. µ (in Fig. 6).14
The compensating properties are best observed in the
ratio plots (Figs. 5b and 6b).

For example, in Fig. 5b for µ = 5 GeV we see that if we
start with NF = 3 for both ↵s and g (red line), the effect
of changing NF = 5 for ↵s increases ↵S ⇥ x g by 6%;
but, changing NF = 5 for the gluon decreases ↵S ⇥ x g

by roughly the same amount. Hence, the combination
↵S ⇥ x g is relatively stable under a change of NF as
we see by comparing the curves labeled {3, 3} (red) and
{5, 5} (cyan). This is an example of how the perturbation
theory adjusts to yield a result that is (approximately)

14 Note that we use here a 3(5)-flavor ↵S together with 5(3)-flavor
PDFs only for illustrative purposes. In the actual implementa-
tion of the H-VFNS we always keep NR = NF .

independent of NF at a given order of perturbation the-
ory.

In Fig. 6 we show ↵S⇥x g vs. µ for a choice of x values
{10�1

, 10�3
, 10�5}. While {3, 3} (red) and {5, 5} (cyan)

results are roughly comparable for lower µ and higher x

values (10�1), for smaller x values and larger µ the shift
in the gluon is not sufficient to compensate that of ↵s.

Reviewing Fig. 5 in more detail, we observe that
the NF compensation works well for lower µ values
⇠ (5, 10) GeV across a broad range of x. For µ = 5 GeV,
the curves labeled {3, 3} (red) and {5, 5} (cyan) match
within about ⇠ 2% over much of the x range. However,
for larger µ = 100 GeV the compensation between ↵S and
g is diminished. We will see this pattern again when we
examine the physical structure functions, and this differ-
ence is driven (in part) by uncanceled mass singularities
in the FFNS result.

V. PHYSICAL STRUCTURE FUNCTIONS VS.
NF

Having examined the unphysical (but useful) combina-
tion ↵S ⇥ xg, we now consider the physical observables
F2 and FL vs. NF . In Fig. 7 we display F2 vs. Q for
a choice of three x values; the absolute values are shown
in the upper figures, and the ratios in the lower figures.
Figure 8 shows the corresponding plots for FL. Both F2

and FL were calculated at NLO and N3LO [11] using 3
and 5 flavor H-VFNS PDFs.15 We observe a number of
patterns in these figures.

Low Q: Q < m

At low Q values, the NF = 3 and NF = 5 results coin-
cide. This is by design as once we go below the thresholds
for NF = 4, 5 the charm and bottom quarks are “deac-
tivated” and all NF calculations reduce to the NF = 3
result.

At low Q values, we also observe there is a significant
difference between the NLO and N3LO results; this dif-
ference arises from a number of sources including the fact
that at low Q the value of ↵s is large, hence the higher
order corrections are typically larger here.

High Q: Q � m

As we move to larger Q values, we notice two distinct
features.

15 As there is no complete N3LO massive calculation, we are using
the approximation of Ref. [11]; this is entirely sufficient for the
purposes of this study. Note that in Ref. [11], the PDF evolu-
tion is performed at NNLO by the QCDNUM [45] code which
implements the MS matching conditions [46] which includes the
resulting discontinuities.
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Scale dependence of PDFs

We had introduced renormalized dressed PDFs fl(x,μF2):

The dependence of fl(x,μF2) 
is necessitated by the fact that 
the physical cross section has 
to be independent of μF

 depends on μ (see above)

fl(x, µ
2
F ) = f̃i(y, µ

2)⌦ �li(z, µ
2
F , µ

2)

�ij(z, µ
2
F , µ

2) = �ij�(1� z) + �(1)
ij (z, µ2

F , µ
2)

�(1)
ij =

↵s(µ2)

2⇡


Pij(z)

2

✏
+ Fij

�

FMS
ij = Pij(z)(�E � ln(4⇡) + ln

µ2
F

µ2
)

We can then calculate the logarithmic derivative w.r.t.  μF:

@fi(x, µ2
F )

@ lnµ2
F

=
↵s(µ2)

2⇡
Pij(z)⌦ f̃j(y, µ

2)

O(↵s)
=

all LL

↵s(µ2
F )

2⇡
Pij(z)⌦ fj(y, µ

2
F )

See F. E. Paige, QCD and Event Simulation, TASI lecture 1989
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Scale dependence
The scale dependence of the PDFs is governed by a coupled system of integro-differential 
equations, the DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) evolution equations:

@fi

@ lnµ2
= Pij(x, µ

2)⌦ fj(x, µ
2)

Here, a summation over all parton species ‘j’ is understood.  Pij are the QCD splitting 
functions which are known perturbatively  up to NNLO (3-loop) and ⊗ stands for the 
Mellin convolution of two functions/distributions with support in [0,1]:

(f ⌦ g)(x) =

Z 1

0
dy

Z 1

0
dz �(x� yz)f(y)g(z)

=

Z 1

0

dy

y

✓(0  x/y  1)f(y)g(x/y)

=

Z 1

x

dy

y

f(y)g(x/y) =

Z 1

x

dy

y

g(y)f(x/y)
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The leading order Splitting Functions

  

1 1-x

x

1 1-x

x

1 1-x

x

1

1-x

x

The Splitting Functions:

Read backwards

Note singularities

61
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Homework

  

Homework: Part 1        The Plus Function

Definition of  the Plus prescription:

1) Compute:

62

  

Homework: Part 1        The Plus Function

Definition of  the Plus prescription:

1) Compute:

62

Compute:

  

Homework: Part 2         P(q¨q)

2) Verify:

1 1-x

x

1 1-x=0

x=1

1

1-x

x

Observe

63

Verify:
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Homework

  

Homework: Part 2         P(q¨q)

2) Verify:

1 1-x

x

1 1-x=0

x=1

1

1-x

x

Observe

63
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Homework: Symmetries and Limits

  

HOMEWORK:  Part 3:    Symmetries & Limits

For the regular part 
show: 

For the regular part 
show:

Verify the following relation among the regular parts (from the real graphs)

Verify, in the soft limit:

1
1-x

x1 1-x

x

1 1-x

x

64

  

HOMEWORK:  Part 3:    Symmetries & Limits

For the regular part 
show: 

For the regular part 
show:

Verify the following relation among the regular parts (from the real graphs)

Verify, in the soft limit:

1
1-x

x1 1-x

x

1 1-x

x

64
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Homework: Conservation rules

  

HOMEWORK: Part 4: Conservation Rules

Verify conservation of momentum fraction

Verify conservation of fermion number

65

  

HOMEWORK: Part 4: Conservation Rules

Verify conservation of momentum fraction

Verify conservation of fermion number

65
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Homework: Using the real to guess the virtual

  

Use conservation of fermion number to compute 

the delta function term in P(q¨q)

Homework: Part 5:  Using the Real to guess the Virtual

This term only 
starts at NNLO

1 1-x

x

Powerful tool: Since we know real and virtual must balance, we can use to our advantage!!!

66
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The End of Lecture 2
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Quark masses in the parton model
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Massless Parton Model
18 Masses in deep inelastic scattering

l

p

l'

X

q

Figure 2.1: Kinematics of DIS in the single exchange boson approximation.

broken up such that the final state consists of the scattered lepton and a hadronic final

state X. Here, l and l0 are the four-momenta of the incoming and outgoing leptons,

q = l � l0 is the four-momentum of the exchange boson (�, Z, or W ) and p the four-

momentum of the hadron. The hadronic final state X carries the four-momentum pX .

In DIS processes, an inclusive sum over all hadronic final states is performed. Therefore,

only the initial state momenta l and p and the final lepton momentum l0, which has to be

measured, are available to describe the kinematics of DIS.

It is useful to introduce the following Lorentz-invariant quantities to describe the

kinematics of a DIS process:

• Q2 = �q2 = �(l � l0)2 > 0, the square of the momentum transfer,

• ⌫ = p · q/M lab
= El � El0 ,

• 0  x = Q2/(2p · q) = Q2/(2M⌫)  1, the (dimensionless) Bjorken scaling variable,

• 0  y = p · q/p · l lab
= (El � El0)/El  1, the inelasticity parameter,

• s = (p+ l)2, the square of the lepton–hadron energy in the center-of-mass system,

• S = 2p · l = s�M2 �m2, where M is the hadron mass and m the lepton mass,

• W 2 = p2X = (p+ q)2, the square of the invariant mass of the hadronic final state.

MASSLESS PARTONS

• In factorization ansatz: relate 4-momenta of partons to 4-momenta of hadrons

dσ[P] =

Z 1

0
dx f (x)dσ̂[p̂ = xP] with P2 = p̂2 = 0

• In dynamics: massless parton propagators
• In kinematics: massless partons in phase space
• At higher orders: calculate in n dimensions, renormalization and mass
factorization in MS

• However, not fully massless (would be unphysical!)
Example: No contribution from γ⋆c → c to DIS structure functions at scale
Q < mc (overestimation).

I. Schienbein (LPSC Grenoble) Masses in pQCD Oct. 27, 2011 9 / 74
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LO parton kinematics

Pµ = (P+, P�, ~PT )

P
µ

= (P0, Px

, P
y

, P
z

)Proton momentum:

Light cone coordinates:

P± = (P0 ± Pz)/
p
2

Pµ ' (P+,M2/(2P+),~0T )Useful if strongly ordered:

P+ � P�, ~PT

Parton momentum: p̂µ ' (⇠P+,m2/(2⇠P+,~0T )
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LO parton kinematics

Momentum conservation: �(4)(q + p̂i � p̂j) ! �(⇠ � �)

M

2 = m

2 = 0 ) � = x

M

2 6= 0,m2 = 0 ) � = xRM

M

2 6= 0,m2 6= 0 ) � = xRMRij

A Review of Target Mass Corrections 33

where E and E ′ represent the initial and final lepton energies, respectively. The mass

of the hadronic final state is given by:

W 2 = P 2
X = (P + q)2 = M2 +

Q2

x
(1 − x) . (A.4)

For convenience, we also introduce the variable r, which is a combination of factors that

appears frequently:

r =

√

1 +
4x2M2

Q2
≡
√

1 +
Q2

ν2
.

Appendix A.2.

Generalized Nachtmann Variable

For massless quarks, the parton light-cone fraction is given by the Nachtmann variable ξ.

Given the 4-vector Pµ = {Pt, Px, Py, Pz}, we can re-express this in light-cone coordinates

as Pµ = {P+,
−→
P ⊥, P−} where♯ P± = (Pt ± Pz)/

√
2 and

−→
P ⊥ = {Px, Py} are the

(boost-invariant) transverse components. Light-cone coordinates are a convenient
representation when the momentum components are strongly ordered, e.g. P+ ≫
P⊥, P−. Thus, if the hadron light-cone vector is Pµ = {P+,

−→
0 , M2/(2P+)}, the parton

vector for a (massless) parton is pµ = {ξP+,
−→
0 , 0}.†† In the case of massive partons,

the Nachtmann variable ξ is generalized to ξ̄. [29, 57, 68]

We identify two generalized Nachtmann-type of variables, ξ and ξ̄, which are related

to the Bjorken x variable via a dimensionless multiplicative factor. These can be written
as:

ξ = xRM , (A.5)

ξ̄ = ξ Rij = xRM Rij , (A.6)

where

RM =
2

1 +
√

1 + (4x2M2/Q2)
=

2

1 + r
, (A.7)

Rij =
Q2 − m2

i + m2
j + ∆(−Q2, m2

i , m
2
j )

2Q2
, (A.8)

∆(a, b, c) =
√

a2 + b2 + c2 − 2(ab + bc + ca) , (A.9)

where mi is the initial quark mass and mj is the final quark mass. The variable ξ = xRM

essentially corrects Bjorken x for the effects of the hadronic mass. Computationally, this

arises from the final state momentum conserving delta-function, δ4(q + P − PX), which

can be re-expressed to include the delta-function δ(x − ξ/RM).
In a similar manner, the variable ξ̄ = ξ Rij further corrects the ξ variable for the

effects of the partonic masses. The origin of this correction is the momentum conserving

♯ There are multiple conventions here; sometimes the 1/
√

2 is replaced by a 1/2 or a 1.
††The parton model is derived in the collinear limit where the parton transverse momentum is neglected,
e.g. −→p ⊥ = 0; finite transverse momentum can contribute to the TMCs, cf. Sec. 1.

Crucial observation:
target mass and quark 
mass effects factorize!

Nachtmann variable
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ACOT scheme

Theoretical basis: Factorization theorem with massive quarks

J. Collins ’98

d�[P ] =
X

i

Z 1

0
d⇠fi(⇠, µ

2
F )d�̂(�

⇤i ! cX)[µ2
R, µ

2
F /Q

2,m2/Q2]|p̂+=⇠P+ +O(⇤2/Q2)

Mass term contained in the
hard scattering coefficient

Sum over all possible
subprocesses

massive hard scattering 
cross section; IR safe

d�̂[m] = d�̃[m]� d�sub

massive partonic cross section; 
not yet IR safe

collinear subtraction 
term, mass fact. with

massive regulator
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Target mass corrections
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OPE

Georgi, Politzer (1976) 

∫
d
4
x e

iq·x⟨N |T (Jµ(x)Jν(0))|N⟩

=

∑

k

(

−gµνqµ1qµ2 + gµµ1qνqµ2 + qµqµ1gνµ2 + gµµ1gνµ2Q2
)

×qµ3
· · · qµ2k

22k

Q4k
A2kΠµ1···µ2k}
⟨N |Oµ1···µ2k

|N⟩

traceless, symmetric

rank-2k tensor
=

k∑

j=0

(−1)j (2k − j)!

2j(2k)j
g · · · g p · · · p

Πµ1···µ2k
= pµ1

· · · pµ2k
− (gµiµj

terms)

Duality in QCD

Operator product expansion

local operators
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OPE

=
∞
∑

j=0

(

M2

Q2

)j
(n + j)!

j!(n − 2)!

An+2j

(n + 2j)(n + 2j − 1)

n-th Cornwall-Norton moment of       
structure function

F2

∫
dx xn−2 F2(x, Q2)Mn

2 (Q2) =

An =

∫ 1

0

dy yn F (y)

“quark distribution function”

F (y) ≡
F2(y)

y2
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TMC

take inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′)

+ 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)

target mass corrected structure function

⌘ =

Nachtmann variable
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TMC: Master formula
2.2 Target mass corrections 27

functions:

FTMC
1 (x,Q2) =

x

⌘r
F (0)
1 (⌘, Q2) +

M2x2

Q2r2
h2(⌘, Q

2) +
2M4x3

Q4r3
g2(⌘, Q

2) , (2.41)

FTMC
2 (x,Q2) =

x2

⌘2r3
F (0)
2 (⌘, Q2) +

6M2x3

Q2r4
h2(⌘, Q

2) +
12M4x4

Q4r5
g2(⌘, Q

2) , (2.42)

FTMC
3 (x,Q2) =

x

⌘r2
F (0)
3 (⌘, Q2) +

2M2x2

Q2r3
h3(⌘, Q

2) + 0 , (2.43)

with the functions hi(⌘, Q2) and g2(⌘, Q2) given in Eqs. (2.36)–(2.39). The F (0)
j are the

structure functions FTMC
j in the limit M ! 0:

F (0)
j (⌘, Q2) ⌘

⇣

lim
M!0

FTMC
j (x,Q2)

⌘

�

�

�

x=⌘
. (2.44)

Note that since ⌘ depends on x and M , F (0)
j (⌘, Q2) 6= limM!0 F TMC

j (⌘, Q2), which has

been the source of some confusion in the literature. Parton model representations of F (0)
j

including quark mass terms in the ACOT scheme will be discussed in Secs. 2.3 and 2.4.

We emphasize that the functions FTMC
i = FTMC

i (x,Q2), and not FTMC
i = FTMC

i (⌘, Q2),

so that (x,Q2) is the correct point in phase space. While on the surface it may appear

strange to have the left-hand-side of Eq. (2.40) be a function of x and the right-hand-side a

function of ⌘, this arises quite naturally in the calculation. Specifically, evaluating the final

state momentum conservation constraint, we can write (schematically) �4(q+P �PX) ⇠
�(x�⌘), and thus FTMC

i (x,Q2) ⇠ F (0)
i (x,Q2) �(x�⌘) ⇠ F (0)

i (⌘, Q2). Note that it would be

incorrect to write FTMC
i (⌘, Q2) ⇠ F (0)

i (⌘, Q2). All structure functions and PDFs depend

on Q2; we sometimes suppress this dependence for ease of notation.

Another feature of Eq. (2.40) is that h2 and g2 appear in the formulas for both FTMC
1

and FTMC
2 . This follows directly from the form of Eq. (2.24). For example, both the

terms proportional to C2k
1 and to C2k

2 contribute to T1 (multiplying �gµ⌫). The terms

proportional to C2k
2 give rise to the second and third terms in Eq. (2.41).

The “master equation” (2.40) holds to any order in the strong coupling constant ↵s,

which implies that the coe�cients Ai
j, B

i
j and Cj and the variable ⌘ are independent of

the order (LO, NLO, NNLO, . . . ) to which the structure functions F (0)
i are considered.

In addition, Eq. (2.40) does not assume or imply any Callan–Gross relation. Specifically,

one can compute the longitudinal structure function according to:

FTMC
L (x,Q2) = r2FTMC

2 (x,Q2)� 2xFTMC
1 (x,Q2)

• Modular, easy to use!

• Resums leading twist TMC to all orders in (M2/Q2)n

• Input: standard structure functions in the parton model 
with M=0
• any order in alpha_s
• can include quark masses
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Figure 9. Comparison of the F2 structure function, with and without target mass
corrections, and NuTeV data [64]. The base PDF set is CTEQ6HQ [7].

is the F (0)
2 determine from the fit, while the dashed curve is the full FTMC

2 . Consistent

with the determination from PDF fits previously discussed, the TMC contributions to

TMC important at 
large x and small Q2
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QCD studies with neutrinos
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Flavor separation of PDFs

NC charged lepton DIS: 2 structure functions (γ-exchange)

F

�
2 (x) ⇠ 1

9 [4(u+ ū+ c+ c̄) + d+ d̄+ s+ s̄](x)

CC Neutrino DIS: 6 additional structure functions F1,2,3W+, F1,2,3W-

F

�
2 (x) = 2xF �

1 (x)

FW+

3 ⇠ 2[d+ s� ū� c̄]

FW�

3 ⇠ 2[u+ c� d̄� s̄]

FW+

2 ⇠ [d+ s+ ū+ c̄]

FW�

2 ⇠ [d̄+ s̄+ u+ c]

Useful/needed to disentangle different quark parton flavors 
in a global analysis of proton or nuclear PDFs
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Dimuon production and the strange PDF

Opposite sign dimuon production in neutrino DIS: νN→μ+μ-X

  

Di-muon production  fi  Extract s(x) Parton Distribution

N

nµ

µ- µ+

s
c

X

N

nµ

µ+ µ-

s
c

X

12

Extract   s(x) Extract   s(x)

s(x) and  s(x)  are essential in extraction of  Sinq
W

Used in CTEQ6 Fits

W-

g

s

c

CDF: PRL 100:091803,2008.
D0:  PLB666:23,2008.
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CDF & D0
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with SM 

Also a challenge at LHC

Depends on 
nuclear 

corrections
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W
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W-

g

s

c

CDF: PRL 100:091803,2008.
D0:  PLB666:23,2008.

 s gÆWc at the Tevatron

CDF & D0

Consistent 
with SM 

Also a challenge at LHC

Depends on 
nuclear 

corrections

• High-statistics data from CCFR and NuTeV: Main source of information!

• x~[0.01,0.4]

• νFe DIS: need nuclear corrections! Problem: Final State Interactions (FSI) 

• CHORUS (νPb): compatible with NuTeV, could be included

• NOMAD (νFe): data not yet published, in principle very interesting
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World data on 18/5 F2NC and F2CC on iron

�F2 =
5

18
F

CC
2 � F

NC
2 ' x

6
[s(x) + s̄(x)]

Data available at Durham 
database;

Data brought to the same 
Q2=8 GeV2

Info on nuclear corrections 
in ν-Fe DIS vs l-Fe DIS:
Advantage: no deuterium

Info on strange PDF in iron:

Advantage: inclusive, no FSI

Disadvantage: difference of 
two large numbers

charged
leptons

Neutrinos

N. Kalantarians, C. Keppel,
M. E. Christy, work in progress
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xF3 and Isospin Violation 

  xF3 uniquely determined by neutrino-DIS

  The sum is sensitive to the valence quarks

Nonsinglet QCD evolution, determination of 

  The difference can be used to constrain isospin violation
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  10

Hadronic Precision Observables

 gL  and   gR  are effective L and R
nq couplings

Paschos-Wolfenstein (PW):

Much higher statistics, but 
involves hadrons/nuclei!
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QCD for PW-style analysis

non-isoscalarity
of the target

QCD effects higher order
ew effects

due to strangeness
asymmetry: due to isospin

violation:
higher order
QCD effects

NuSOnG can 
address this 
in-situ with 
high precision!

see, e.g., hep-ph/0405221
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