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Lecture 1:

o Fundamentals of the Higgs mechanism, SSB gauge
Invariance, masses of bosons and fermions

Lecture 2:

o Higgs at the LHC: Higgs production, EFT, Higgs
decays. Recent Experimental results.
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o These slides can be downloaded from :
o Additionally a longer PDF writeup of this lecture:

o Also there are 4 very detailed CERN yellow reports on the Higgs boson :

https://inspirehep.net/search?In=en&ln=en&p=Handbook+of+L HC+Higgs
+Cross

+Sections&of=hb&action search=Search&sf=&so=d&rm=&rg=25&sc=0

-


https://inspirehep.net/search?ln=en&ln=en&p=Handbook+of+LHC+Higgs+Cross+Sections&of=hb&action_search=Search&sf=&so=d&rm=&rg=25&sc=0

On July 4th CERN
announced the
discovery of a new
particle.
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On July 4th CERN
announced the
discovery of a new
particle.

‘“‘Physics world celebrates nggs boson dlscovery’ ’ @ CBS

NEWS

“Physicists Find Elusive Particle Seen as .
Key to Universe” Che New JJork Times

BlB]C
“Higgs boson-like particle discovery claimed at LHC™ ENI=V VIS
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On July 4th CERN
announced the
discovery of a new
particle.

Che New ork Times

Scientists at the Fermilab in
Batavia, lll., on Wednesday
watched the presentation
about the discovery of the
Higgs boson, which was
shown from Geneva.
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Global Symmetries and Gauge Theories
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We begin by refreshing our notion of Gauge invariance.

We make the following transformation on our Dirac Spinor.

Y — 6ia(x)¢ @ N ae—ia(x)
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We begin by refreshing our notion of Gauge invariance.

We make the following transformation on our Dirac Spinor.

Y — 67504($)¢ @ N ae—ia(x)

Then investigate what happens to the Dirac Lagrangian

L= Z@’Y“@M _ m@w

Under this transformation.
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L = ’L@V“@uw — m@lb

The mass term is trivially gauge invariant since
@w N @e—ia(az)eia(az)w __ @w
However the spacetime derivative is a bit tricker
to(x) . _ta(x)
0 — e 0, + ie Y 0,¢

So the kinetic term is not gauge invariant on its own.
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We would like to change the derivative such that it transforms as follows

D,y — e @) D )

This “covariant derivative” will be gauge invariant.

We can achieve this transformation by defining the covariant derivative as
follows

D, =0, —1eA,
And we demand the following transformation of A.

1
A'u — AM —+ g@MOé

-



.(é University at Buffalo The state University of New York

The magic of gauge invariance is that we just mandated the inclusion of a

gauge boson to our free Lagrangian. That is we recovered the interaction
part of the QED Lagrangian

L = i@V“D;ﬂ# — my)
i@'y'uﬁuw T GJW“A;W - m@iﬁ

We can get the full QED Lagrangian by including the Field Strength
Tensor (which is gauge invariant)

F,, =0,A, —0,A4,

So

_ _ 1
LQED = w(w“fh —m)y + ey Apb — ZFM Fu
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Now, whats important for our discussion today is that its impossible to
write down a mass term which respects gauge invariance since under our
U(1) transformation the quadratic term

1
Em — imzA“Au

behaves as follows

1 1

1
§m2A“AM — 5772/2(14'“ —I— (9“)\)(14“ —|_ @M)\) % §m2A“AM

=
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This was a catastrophe for Gauge Invériance! How can we have
massive gauge bosons in our theory?



Spontaneous Symmetry Breaking of a Gauge Theory
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We start with a toy example, which actually contains nearly all of the
physics we will need.

We have a Lagrangian

1 1

L=T =V = 5(0,:0)(0°0) - (50" + 1Ao*)

This is invariant under the following (discrete) symmetry
O — —¢
Lets look at the potential term

12214
= (= )\
V= (5876 + 1)
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The potential has different types of structures depending on the sign of ,u2

V, Vo,

ue >0 pe <0
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We are interested in the minima of the potential which we find as follows

ov 5 o
a—¢—0 — (u” +A¢p") =0

Which we define as 5

TR
O=Fv v= \
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In order to have a stable perturbation theory we want to expand our fields
around the minimum. We can choose either +/- v. Lets choose +v.

o(x) = v+ n(z)

Writing our Lagrangian in the new coordinates we see that

1 1
L= 5(6’M77)(8“77) — Mvn® — don® — Z)wfl + const
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In order to have a stable perturbation theory we want to expand our fields
around the minimum. We can choose either +/- v. Lets choose +v.

o(x) = v+ n(z)

Writing our Lagrangian in the new coordinates we see that

1 1
L= 5(6’M77)(8“77) — \v?n? — don® — Z)wfl + const

Comparing the Lagrangian to that of a free scalar field

L= (0,0)(0"6) — 5’

We see that the scalar field has a physical mass

My = VM2 = /=212
) \/ %
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Writing our Lagrangian in the new coordinates we see that

1 1
L= 5(%77)(8“77) — >\02772 — )\’0773 — Z)wfl + const
Vo,
p? <0 77 — _77
\ / In the new coordinates the symmetry is gone
-

Note that we didn't change the Lagrangian, and the symmetry is still
present globally. Our choice of +v versus -v breaks the symmetry.

A perturbative expansion around O would be inherently unstable.

-




.(é University at Buffalo The state University of New York

Lets consider a similar, but more complicated example. A complex
scalar field with the following Lagrangian

Vo,

2
10 L= (0,0)"(0"9) — 1676 — A6"0)
. This is invariant under the (global)
¢2 phase rotations

6 — e

d1

=
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Writing the complex scalar field as the combination of two real fields

V.,
k<0 ¢:L(¢1+’i¢2)
v v V2
\ @ / The Lagrangian can then be written as follows
N ]

L= %(le + %(6’@2)2 — %;f(ab% + ¢3) — iw‘f + 20703 + ¢2)

The minimum of the potential is a circle in the (¢1, ®2) plane

G- b -
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We spontaneously choose to expand our fields around the point

So that gb(x) — %(U -+ 77(51?) + Zf(ZE))

And the Lagrangian becomes

1
= ( uf) ( u77) + p?n? + const 4 cubic + quartic

We see one massless field and one with mass m,, = 1/ —2u?

-
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The appearance of one massive and one massless boson is no
accident. It is an example of Goldstone’s theorem, which states that.

For every continuous symmetry of a physical system which is
spontaneously broken there exists a massless boson

In our example we lost one symmetry (rotations in(¢1, ¢2) plane) so as
predicted we see one massless boson

So if SSB generates masses? Where are all the Goldstone bosons?




The Higgs mechanism
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We reconsider our previous Lagrangian,

= (0"9)"(0u0) — 19" ¢ — N(¢"$)°

¢ %l 6ia(m)¢

Which means we have to introduce a gauge field to ensure gauge
Invariance.

Our Lagrangian is thus

L= (0" +ieA")5" (O — ieAu)d — i20"6 — N(&°0)* — ;F" Fp,

-
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ " /

Anc ¢($) — % (U + N (33 ) + Zf (33 )) é;;;___;;;___;;;;;;;;;;--;;;_;;;;;;___;;;;;zé

Our Lagrangian is then

1 1
= ( uf) ( ,m) — 2}2)\772 + 56 U2A AF — evA,,0"¢ + Interaction terms

Lots to see here!

-
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then

1 1
T 5(5’lm)2 _ v2)\772 + 5621)214”14“ — evA,0"¢ + Interaction terms

Lots to see here!

Goldstone boson

-
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then

1
5621)214“14“ — evA,0"¢ + Interaction terms

Lots to see here!

Goldstone boson

Massive scalar

-
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then

evA,0"¢ + Interaction terms

Lots to see here!

Goldstone boson

Massive scalar

Mass term for the gauge boson!

-
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then

Lots to see here!

Goldstone boson

Massive scalar
Mass term for the gauge boson!

me = 0 mn:\/Z)\vQ ma = ev m
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Expanding about the vacuum as before ¢ = ( 8 ) \ _ n /

Our Lagrangian is then 2?2277

Lots to see here!

Goldstone boson

Massive scalar
Mass term for the gauge boson!

me = 0 mn:\/Z)\vQ ma = ev
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1 1
= ( Mﬁ) ( ,m) —vz)\n2 + 56 U2A AF(— evA,,0"E + Interaction terms

This term is nasty, and corresponds to a mixing between the Goldstone
and gauge bosons.

lts appearance is related to the longitudinal degree of symmetry of the
(massive) gauge boson.

Since we didn't redefine A, it still has only transverse degrees of
freedom

We can write the Lagrangian in a nicer (more physical) framework by

-

applying a gauge transformation.
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Firstly we note that our choice of writing the scalar field was not
unique, the following definition

1 1 .
¢ = E(’U‘l‘77+73§) — ¢ = E(v#—n)e?’g/”

Is equally valid, (and equivalent to lowest order in the fields)
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Firstly we note that our choice of writing the scalar field was not
unique, the following definition

b= —=(+n+if) = 6= —=(v+mn)es

V2 V2

Is equally valid, (and equivalent to lowest order in the fields)

We therefore write out fields as follows

6 = (vt ()"
1

A, — A, vﬁuﬂ

€

This is equivalent to choosing a favorite gauge to work in. We call it the

unitary gauge. m
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In terms of these fields our Lagrangian becomes

1 1 1 1 1 y
L= 5(a,ih)2 — M?h® + 5621)2ANA“ — Ah?® — th‘l + 562AMA'uh2 +ve’ A, AP h — 7 Fuw

o There are no physical Goldstone bosons in the theory (absorbed into the
longitudinal degree of freedom of the gauge boson)

o One physical massive scalar (the Higgs boson)

o One massive gauge boson.

The old Lagrangian wasnt wrong, but it would have been extremely

tedious to work with, we would carry around a lot of spurious ghosts in
our calculation.

-



SSB of a local SU(2)

28
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We are nearly in a position to construct the SM Higgs. Our two
remaining problems are 1) Generating two different masses for the W
and Z bosons and 2) Generating masses for fermions.

We start by promoting our basic Lagrangian
2 2
= (0u9)"(0") — 1*d'd — \(9'0)
To be symmetric under local SU(2) transformations of the form

6 — cilamy?g

Sums over the 3 (2x2 matrices) which generate SU(2)

¢:<¢a>:i<¢l Z¢2>
e V2 \ @3+ 194 m
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Since there are 3 generators we introduce the following covariant
derivative.

D, — 0, —|—zg Wa

Which sums over 3 gauge bosons.

Under an SU(2) transformation the fields transform as follows.

S S 1 S
Wi = Wy = 0,6 = d x W,
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Putting this all together we obtain the following Lagrangian

1

T —
L= <8u¢ T ig%?- Wu¢> <8u¢ T @.95_)' Wu¢> — V(¢) — Wy - WH

With our usual Higgs potential
V(p) = 1’¢'d+ A(@'¢)’

Which has minima at

2

1
616 = 5(81 + 63+ 83 + 67) = — o

-
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We (spontaneously) choose the following vacuum state

L /0
b0=7 4

And expand around it as follows (in the unitary gauge)

1 0
¢:ﬁ v+ h(x)
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From our past experience we know that the the mass terms for the
2 .
gauge bosons come from the |D,,¢|~ part of the Lagrangian

So for simplicity we focus on that

2 2 3 1 1172 2
%Y W+ — W 0
= W _ L o o
5" ud ( Wﬁ +i”3 —”3 ) <U)

22}2

= LW+ (W2)2 + (W32

| —
!
Na)

QOO|

So we have 3 massive gauge bosons, of equal mass.




The Standard Model

34
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In order to generate the mass spectrum of the SM, we need to break a
more complicated structure than just a single SU(2).

SUB)e®@SUR2),U1)y - SUB)c @U(1)gm

Where we define hypercharge as follows

Y
Q:TBWL?

Left-handed and right handed matter transforms as follows

XL%X/L _ eia(:c)-?/Q—l—iﬁ(x)Y

XL

Quarks and Leptons are represented by

Ve

XLZ(Z) Yr =ur or dp XL=< _> YR = €eRr
L € Jr
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For instance, the leptonic part of the Lagrangian

| 1. 1 o IR T
L1 =Xy [7,8“ — 957" W, —ig’ (—5) BM} XL +ery* [i0, — ¢'(=1)B,ler — ZWWW“ — ZB“ B,

Is manifestly gauge invariant.

Note the absence of any mass term in the Lagrangian, in fact the mass

term 1 1
—mee = —me[7 (1 - V) + 51+ v°)]e
= —m(egrer, + €reRr)

Is NOT invariant under SU(2) rotations.

The Higgs will help us here too.

-
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Next we need to work out the Higgs sector, The Higgs is an SU(2)
doublet with hyperchage Y=1.

+
el IN
Q=1/2-1/2 Q=1/2+1/2

oF = —(¢1 + i¢2)

Expanding our complex \/_
scalars B0 = —
\/§

The Higgs part of the Lagrangian is then

(P35 +1¢4)

— V(o)
™~

Higgs potential
Covariant derivative/ ? P

V(o) = u?¢lo + A(oT¢)?

. T = Y
LQ — (Z@H — 95 . W,u — g/EB“> ¢
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Again we expand around the vacuum given by

-5

Now we get to see something really beautiful, consider the following
linear combination of generators v

— T3 4
@ + 35

Acting on the vacuum state, i.e.

1 0 0 0
o= ( 5 0)(v)=(5)
So Q annihilates the vacuum, i.e.

b — Pp = " PR gy = ¢y

The symmetry of the vacuum wrt Q, will give us EM (and the
photon)!
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Getting back to our massive bosons we see that the piece we are
interested in is

2
_ v
8

( gWi +9'B, g(W; —iW}) ) (O)
1 12 3
g W, +iWg) —gW; +4'B, v
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Getting back to our massive bosons we see that the piece we are
interested in is

2 2

. 1_} . 'g/ 92
|(—zg§T-WM—z§BM)gb = 3

( gWi +9'B, g(W; —iW}) ) (O)
1 12 3
g W, +iWg) —gW; +4'B, v

Expanding this out yields

2

1 . /
‘(—ig—f’- W, — ig—Bu> &

1 1
2 2 = Svg (W) + (Wi)*] + 5v*(g' By — W) (g' BY — gW™)

H 8
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Getting back to our massive bosons we see that the piece we are
interested in is

2 2

. 1_} . 'g/ 92
|(—zg§T-WM—z§BM)gb = 3

( gWi +9'B, g(W; —iW}) ) (O)
1 12 3
g W, +iWg) —gW; +4'B, v

Expanding this out yields

2

1 . /
‘(—ig—f’- W, — ig—Bu> &

1 1
> > = 00 (W) + (W] + Sv*(¢/ By — gW})(g' B — gW™)

8

Or alternatively in terms of the physical W+,W- physical states

1, = g ? 1 : _ 1 2 44 W 3u
(~iog7 W= i%5,) o = (guo) wiw s g (9,4 ) ()
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Getting back to our massive bosons we see that the piece we are
interested in is

2 2

. 1_} . 'g/ 92
|(—zg§T-WM—z§BM)gb = 3

( gWi +9'B, g(W; —iW}) ) (O)
1 12 3
g W, +iWg) —gW; +4'B, v

Expanding this out yields

2

1 . /
‘(—ig—f’- W, — ig—Bu> &

1 1
> > = 00 (W) + (W] + Sv*(¢/ By — gW})(g' B — gW™)

8

Or alternatively in terms of the physical W+,W- physical states
i 1 ’ - 1 2 3 2 — ! I/V?"u
= (o) wiwr s geovgsa (04 (M)

1
We have our first big result MW = —vg

2

1, = g
|<—zg§7' - W, —ZEBM) O

-
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We can tidy up the last term by re-packing the fields into a diagonal
form

1 1
§v2 [92(W3)2 — Zgg’WSB“ + g/2Bi} — §v2 [gWi — g’BM}2 + 0 [gWi + g’Bu]2

Which we interpret as

1 1
§MZZ'LLZILL —|— §MAA'LLAILL

With

W2 +g¢'B

A, = eI
\/92_|_g/2
gW3 —¢'B, 1

7 — H M, — = 2 /2

So we predict a massless photon and a Z which is heavier than then W
:-) Happy days.
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Finally we turn our attention to the fermion mass terms, note that the
following combination is gauge invariant

L3 j{hcb%z + h.c]
/ \

Doublets singlet

For instance for the leptons we have

¢-|-
L3 =—G, (Pe,E)L < >€R—|—h.C
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In our time honored tradition we expand around the new vacuum

¢:\%(v+%(a;)>

Finding
L ——Gev(é er + ere )—Ge(é er +€erer)h
3= pUlerer terer) — o (eLer + ereL
l.e. L3 = —me€e meéeh

U




-(é University at Buffalo The state University of New York S ummary

p <0
2 2
: V(9) = 1’¢'d + Mo'¢)
b2 /
; o Potentials with multiple non-zero global
----------------- 5 : minimum, lead to spontaneous symmetry
breaking.

By breaking SU(2)_L X U(1)_Y to U(1)_EM we are able to
explain the generation of mass terms for both gauge bosons
and fermions in a theoretically robust manner.

-



