
Higgs I : Fundamentals 
CTEQ Summer School 2018

1

Ciaran Williams



2

Overview 

Fundamentals of the Higgs mechanism, SSB gauge 
invariance, masses of bosons and fermions 

Higgs at the LHC: Higgs production, EFT, Higgs 
decays. Recent Experimental results. 

Lecture 1 : 

Lecture 2 : 



These slides can be downloaded from : 


Additionally a longer PDF writeup of this lecture: 


Also there are 4 very detailed CERN yellow reports on the Higgs boson :      
https://inspirehep.net/search?ln=en&ln=en&p=Handbook+of+LHC+Higgs
+Cross
+Sections&of=hb&action_search=Search&sf=&so=d&rm=&rg=25&sc=0
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More resources 

https://inspirehep.net/search?ln=en&ln=en&p=Handbook+of+LHC+Higgs+Cross+Sections&of=hb&action_search=Search&sf=&so=d&rm=&rg=25&sc=0
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On July 4th CERN 
announced the 
discovery of a new 
particle.
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“Physics world celebrates Higgs boson discovery”

On July 4th CERN 
announced the 
discovery of a new 
particle.
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“Physicists Find Elusive Particle Seen as 
Key to Universe”

“Physics world celebrates Higgs boson discovery”

On July 4th CERN 
announced the 
discovery of a new 
particle.
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“Higgs boson-like particle discovery claimed at LHC”

“Physicists Find Elusive Particle Seen as 
Key to Universe”

“Physics world celebrates Higgs boson discovery”

On July 4th CERN 
announced the 
discovery of a new 
particle.
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Scientists at the Fermilab in 
Batavia, Ill., on Wednesday 
watched the presentation 
about the discovery of the 
Higgs boson, which was 
shown from Geneva.

On July 4th CERN 
announced the 
discovery of a new 
particle.
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  Global Symmetries and Gauge Theories 
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I. INTRODUCTION

Last time we introduced the concept of Lagrangians in particle physics. We showed that the Euler-Lagrange
equations generate the wave equations we have been using thus far in the course. We promote the Lagrangian to
the most fundamental definition of the theory. We then studied Noether’s theorem and learnt how the existence
of a symmetry implies the existence of a conserved current. Today we’ll look at what happens when promote this
symmetry from a global symmetry to a local one.

II. LOCAL AND GLOBAL SYMMETRIES

Before we looked at a redefinition of the field by a constant phase

 ! e

i↵

 (1)

where ↵ is a constant. This constant redefinition of the field is known as a global phase transition (and for historical
reasons we also call it a global gauge transformation). The invariance under this rotation means that something
is unmeasurable, for example translation invariance means that we cannot determine an absolute position in space.
Similarly invariance under global gauge transformation means that ↵ is unmeasurable. This invariance is not the
most general, it would be more satisfactory if ↵ could di↵er from space-time point to point. i.e. ↵ = ↵(x). Such a
transfomration

 ! e

i↵(x)
 (2)

is known as local gauge invariance. Is the Dirac Lagrangian invariant under local gauge transformations? For com-
pleteness lets recall the Dirac Lagrangian.

L = i �

µ

@

µ

 � m  (3)

Lets see, the adjoint spinor transforms as

 !  e

�i↵(x) (4)

So the mass term   is manifestly gauge invariant. We run into problems with the space-time derivative tho since

@

µ

 ! e

i↵(x)
@

µ

 + ie

i↵(x)
 @

µ

↵ (5)

Oh dear, that doesn’t look so good. If we want to be stubborn and insist on local gauge invariance then its clear that
we have to modify the derivative term in the Dirac Lagrangian. We would prefer if our derivative had the following
transformation

D

µ

 ! e

i↵(x)
D

µ

 (6)

Because then gauge invariance in the derivative term would be manifest. In order to construct this ”covariant
derivative” we must introduce a vector field A

µ

which posses the transformation properties necessary to cancel the
unwanted term in the gauge transformation. i.e. we define

D

µ

= @

µ

� ieA

µ

(7)

Now we require that A

µ

transforms as follows,

A

µ

! A

µ

+
1

e

@

µ

↵ (8)

U(1) Gauge Inv.
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We begin by refreshing our notion of Gauge invariance.

We make the following transformation on our Dirac Spinor.
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Then investigate what happens to the Dirac Lagrangian 

Under this transformation. 
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The mass term is trivially gauge invariant since

  !  e�i↵(x)ei↵(x) =   

However the spacetime derivative is a bit tricker 
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So the kinetic term is not gauge invariant on its own. 
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� ieA

µ

(7)
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µ
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A
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µ

+
1

e

@

µ

↵ (8)

We would like to change the derivative such that it transforms as follows

This “covariant derivative” will be gauge invariant. 

We can achieve this transformation by defining the covariant derivative as 
follows

And we demand the following transformation of A. 
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Its easy to show that the new co-variant derivative possesses the correct transformation properties under gauge
invariance. Our new Lagrangian is defined as,
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Hence by demanding Local gauge invariance we are forced to introduce a new factor field A

µ

called the gauge field.
Which couples to Dirac particles charge (�e) in exactly the same way as the photon field! If we want to promote the
gauge field to a physical photon field we must also include a kinetic term for it. We know that F

µ⌫

, the field strength
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is gauge invariant. Since we must construct a Lorentz invariant Lagrangian the obvious candidate for gauge invariant
kinetic term is F
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, including a factor of �1/4 to ensure the correct equations of motion we find the following
Lagrangian for QED,
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Its interesting to consider what happens if we add a mass term for the photon, such a term would have the following
structure
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So the photon mass term is clearly not a gauge invariant quantity, and therefore demanding that nature is invariant
under local U(1) rotations excludes the possibility of photon masses.

III. NON-ABELIAN GAUGE INVARIANCE AND QCD

Next we want to look into a more generalized set of gauge-symmetries, imagine instead of a simple phase invariance
(or U(1) symmetry) that physics was invariant under a more general class of rotations, i.e.

 (x) ! U (x) (16)

where now U is a general unitarity matrix, i.e. we want to generalize our U(1) gauge invariance to a larger SU(N)
gauge invariance. The general class of SU(N) gauge theories are known as Yang-Mills theories, but today we will
focus on the Yang-Mills theory which is realized in nature QCD. We know that QCD is invariant under SU(N

c

)
rotations, where N

c

= 3 is the number of colors. Now we would like to construct a gauge theory based on local gauge
invariance under this symmetry. Note that gauge invariance under global SU(3) rotations is again rather simple to
prove, and corresponds to the conservation of color. Lets start again with the fermion part of the Lagrangian,

L0 = q

j

(i�µ@
µ

� m)q
j

(17)

here q

i

represents a quark field with color i = 1, 2, 3 and we sum over the allowed color states. Of course in nature
there are 6 quarks, but for now we focus on one specific flavor. Now we want our Lagrangian to be invariant under
local SU(3) transformations, so

q(x) ! e

i↵a(x)Ta
q(x) (18)

This is exactly the sort of rotation we studied earlier in the course, in the context of hadron physics. Recall that
↵

a

(x) is a set of a continuous real functions which, and that a corresponds to the number of generator T

a

matrices,
for SU(3) a = 8. The T

a

’s are defined through the Lie Algebra of SU(3)

[T
a

, T

b

] = if

abc

T

c

(19)
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The magic of gauge invariance is that we just mandated the inclusion of a 
gauge boson to our free Lagrangian. That is we recovered the interaction 
part of the QED Lagrangian 

We can get the full QED Lagrangian by including the Field Strength 
Tensor (which is gauge invariant) 

So 
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Now, whats important for our discussion today is that its impossible to 
write down a mass term which respects gauge invariance since under our 
U(1) transformation the quadratic term 

behaves as follows
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This was a catastrophe for Gauge Invariance! How can we have 
massive gauge bosons in our theory? 



12

Spontaneous Symmetry Breaking of a Gauge Theory
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IV. MASSIVE VECTOR BOSONS : A DISASTER FOR GAUGE THEORIES?

So far we have seen the power of relating theories of nature to invariance under gauge transformations. We know
that QED can be considered as a gauge theory arising from local phase transitions, and that QCD can be considered
as a more abstract symmetry under SU(3) transformations. The combined symmetries we have gauge theories for so
far is thus

SU(3)
color

⌦ U(1)
EM

(33)

Note that every particle respects these symmetries (i.e. leptons are still invariant under SU(3) transformations, its
just that, since they are singlets under the gauge group, the transformation is always trivial) i.e. under any SU(3)
color rotation

e ! e (SU(3)
c

) (34)

so its a completely trivial gauge theory.
What about the W

± and the Z bosons? They are manifestly not massless, weighing in at a whopping 80.4 GeV
and 91.2 GeV respectively! Any type of mass term we try to write down will not respect gauge invariance, as we can
easily recall from the photon
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And we have no remaining tools to fix up the gauge invariance. So what? Do we care? You might be thinking that
the lack of gauge invariance just removes a theoretical curiosity and is of no ultimate consequence. After all couldn’t
we just propose that the Electromagnetic and Strong interactions are gauge theories with massless bosons, and that
the weak force is not, and has some other interpretation? Well we could, but the problem is that we give up a lot

when we give up the idea of gauge invariance. Most fundamentally we loose the ability to re-normalize our theory.
Now renormalization is beyond the scope of this course, so I’ll give a very brief definition before moving onto the
solution. Renormalization is a procedure which allows us to redefine fundamental parameters in our theory such that
we can control the high energy behaviour of the theory. Now whilst it might seem initially ad hoc it is in fact very
deep and beautiful. A crucial result of a renormalizable theory is that there is a finite number of terms which must
be corrected, for example in QED all we need to know is how to define the coupling ↵ and the masses of the charged
particles appropriately. Once we have defined them to a give order in perturbation theory they are the same for all
calculations. Now if we give up on gauge invariance we also give up on this renormalzability. In this case the theory
becomes unwieldy, we have to continue to re define parameters for each order in the perturbation theory, theres an
infinite list of things to define, so the theory becomes rather poorly defined. So in a brutally short explanation, if we
just plug in a mass term into our Lagrangian for the W and Z then as it stands we loose our ability to construct a
decent theoretical model. Something must be missing from our picture of nature...

The fix comes when we consider the possibility that there is indeed a symmetry, which provides a renormalizable
theory, but that something happens to it at and at low energies it is masked. This is called spontaneous symmetry
breaking, and we shall see it provides the solution to the problem of massive gauge bosons.

V. SPONTANEOUS SYMMETRY BREAKING, “HIDDEN” SYMMETRY

Lets begin by considering a simple example, which actually provides much of the physics we will need. Consider
the following Lagrangian

L = T � V =
1

2
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�)(@µ
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4
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4
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(36)

This Lagrangian possess a global symmetry � ! ��. Lets suppose that � > 0 then we have two possibilities for the
potential, which correspond to the two choices of the sign of µ

2. Defining

V =

✓
1

2
µ

2
�

2 +
1

4
��

4

◆
(37)

We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.

4

IV. MASSIVE VECTOR BOSONS : A DISASTER FOR GAUGE THEORIES?

So far we have seen the power of relating theories of nature to invariance under gauge transformations. We know
that QED can be considered as a gauge theory arising from local phase transitions, and that QCD can be considered
as a more abstract symmetry under SU(3) transformations. The combined symmetries we have gauge theories for so
far is thus

SU(3)
color

⌦ U(1)
EM

(33)

Note that every particle respects these symmetries (i.e. leptons are still invariant under SU(3) transformations, its
just that, since they are singlets under the gauge group, the transformation is always trivial) i.e. under any SU(3)
color rotation

e ! e (SU(3)
c

) (34)

so its a completely trivial gauge theory.
What about the W

± and the Z bosons? They are manifestly not massless, weighing in at a whopping 80.4 GeV
and 91.2 GeV respectively! Any type of mass term we try to write down will not respect gauge invariance, as we can
easily recall from the photon

m

2
A

µ

A

µ

! m

2
A

µ

A

µ

+
1

e

m

2
@

µ

↵A

µ

+
1

e

m

2
@

µ

↵A

µ + m

2 1

e

2
(@

µ

↵)(@µ

↵) (35)

And we have no remaining tools to fix up the gauge invariance. So what? Do we care? You might be thinking that
the lack of gauge invariance just removes a theoretical curiosity and is of no ultimate consequence. After all couldn’t
we just propose that the Electromagnetic and Strong interactions are gauge theories with massless bosons, and that
the weak force is not, and has some other interpretation? Well we could, but the problem is that we give up a lot

when we give up the idea of gauge invariance. Most fundamentally we loose the ability to re-normalize our theory.
Now renormalization is beyond the scope of this course, so I’ll give a very brief definition before moving onto the
solution. Renormalization is a procedure which allows us to redefine fundamental parameters in our theory such that
we can control the high energy behaviour of the theory. Now whilst it might seem initially ad hoc it is in fact very
deep and beautiful. A crucial result of a renormalizable theory is that there is a finite number of terms which must
be corrected, for example in QED all we need to know is how to define the coupling ↵ and the masses of the charged
particles appropriately. Once we have defined them to a give order in perturbation theory they are the same for all
calculations. Now if we give up on gauge invariance we also give up on this renormalzability. In this case the theory
becomes unwieldy, we have to continue to re define parameters for each order in the perturbation theory, theres an
infinite list of things to define, so the theory becomes rather poorly defined. So in a brutally short explanation, if we
just plug in a mass term into our Lagrangian for the W and Z then as it stands we loose our ability to construct a
decent theoretical model. Something must be missing from our picture of nature...

The fix comes when we consider the possibility that there is indeed a symmetry, which provides a renormalizable
theory, but that something happens to it at and at low energies it is masked. This is called spontaneous symmetry
breaking, and we shall see it provides the solution to the problem of massive gauge bosons.

V. SPONTANEOUS SYMMETRY BREAKING, “HIDDEN” SYMMETRY

Lets begin by considering a simple example, which actually provides much of the physics we will need. Consider
the following Lagrangian

L = T � V =
1

2
(@

µ

�)(@µ

�) �
✓

1

2
µ

2
�

2 +
1

4
��

4

◆
(36)

This Lagrangian possess a global symmetry � ! ��. Lets suppose that � > 0 then we have two possibilities for the
potential, which correspond to the two choices of the sign of µ

2. Defining

V =

✓
1

2
µ

2
�

2 +
1

4
��

4

◆
(37)

We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.

We start with a toy example, which actually contains nearly all of the 
physics we will need. 

We have a Lagrangian 

� ! ��
This is invariant under the following (discrete) symmetry 

Lets look at the potential term
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IV. MASSIVE VECTOR BOSONS : A DISASTER FOR GAUGE THEORIES?

So far we have seen the power of relating theories of nature to invariance under gauge transformations. We know
that QED can be considered as a gauge theory arising from local phase transitions, and that QCD can be considered
as a more abstract symmetry under SU(3) transformations. The combined symmetries we have gauge theories for so
far is thus

SU(3)
color

⌦ U(1)
EM

(33)

Note that every particle respects these symmetries (i.e. leptons are still invariant under SU(3) transformations, its
just that, since they are singlets under the gauge group, the transformation is always trivial) i.e. under any SU(3)
color rotation

e ! e (SU(3)
c

) (34)

so its a completely trivial gauge theory.
What about the W

± and the Z bosons? They are manifestly not massless, weighing in at a whopping 80.4 GeV
and 91.2 GeV respectively! Any type of mass term we try to write down will not respect gauge invariance, as we can
easily recall from the photon
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And we have no remaining tools to fix up the gauge invariance. So what? Do we care? You might be thinking that
the lack of gauge invariance just removes a theoretical curiosity and is of no ultimate consequence. After all couldn’t
we just propose that the Electromagnetic and Strong interactions are gauge theories with massless bosons, and that
the weak force is not, and has some other interpretation? Well we could, but the problem is that we give up a lot

when we give up the idea of gauge invariance. Most fundamentally we loose the ability to re-normalize our theory.
Now renormalization is beyond the scope of this course, so I’ll give a very brief definition before moving onto the
solution. Renormalization is a procedure which allows us to redefine fundamental parameters in our theory such that
we can control the high energy behaviour of the theory. Now whilst it might seem initially ad hoc it is in fact very
deep and beautiful. A crucial result of a renormalizable theory is that there is a finite number of terms which must
be corrected, for example in QED all we need to know is how to define the coupling ↵ and the masses of the charged
particles appropriately. Once we have defined them to a give order in perturbation theory they are the same for all
calculations. Now if we give up on gauge invariance we also give up on this renormalzability. In this case the theory
becomes unwieldy, we have to continue to re define parameters for each order in the perturbation theory, theres an
infinite list of things to define, so the theory becomes rather poorly defined. So in a brutally short explanation, if we
just plug in a mass term into our Lagrangian for the W and Z then as it stands we loose our ability to construct a
decent theoretical model. Something must be missing from our picture of nature...

The fix comes when we consider the possibility that there is indeed a symmetry, which provides a renormalizable
theory, but that something happens to it at and at low energies it is masked. This is called spontaneous symmetry
breaking, and we shall see it provides the solution to the problem of massive gauge bosons.

V. SPONTANEOUS SYMMETRY BREAKING, “HIDDEN” SYMMETRY

Lets begin by considering a simple example, which actually provides much of the physics we will need. Consider
the following Lagrangian

L = T � V =
1
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This Lagrangian possess a global symmetry � ! ��. Lets suppose that � > 0 then we have two possibilities for the
potential, which correspond to the two choices of the sign of µ
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We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.

The potential has different types of structures depending on the sign of µ2
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions

@V

@�

= 0 =) �(µ2 + ��

2) = 0 (38)

The minimum of the potential thus occur at

� = ±v v =

r
�µ

2
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(39)

The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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so we can determine the mass of ⌘
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.
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So far we have seen the power of relating theories of nature to invariance under gauge transformations. We know
that QED can be considered as a gauge theory arising from local phase transitions, and that QCD can be considered
as a more abstract symmetry under SU(3) transformations. The combined symmetries we have gauge theories for so
far is thus
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Note that every particle respects these symmetries (i.e. leptons are still invariant under SU(3) transformations, its
just that, since they are singlets under the gauge group, the transformation is always trivial) i.e. under any SU(3)
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so its a completely trivial gauge theory.
What about the W

± and the Z bosons? They are manifestly not massless, weighing in at a whopping 80.4 GeV
and 91.2 GeV respectively! Any type of mass term we try to write down will not respect gauge invariance, as we can
easily recall from the photon
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And we have no remaining tools to fix up the gauge invariance. So what? Do we care? You might be thinking that
the lack of gauge invariance just removes a theoretical curiosity and is of no ultimate consequence. After all couldn’t
we just propose that the Electromagnetic and Strong interactions are gauge theories with massless bosons, and that
the weak force is not, and has some other interpretation? Well we could, but the problem is that we give up a lot

when we give up the idea of gauge invariance. Most fundamentally we loose the ability to re-normalize our theory.
Now renormalization is beyond the scope of this course, so I’ll give a very brief definition before moving onto the
solution. Renormalization is a procedure which allows us to redefine fundamental parameters in our theory such that
we can control the high energy behaviour of the theory. Now whilst it might seem initially ad hoc it is in fact very
deep and beautiful. A crucial result of a renormalizable theory is that there is a finite number of terms which must
be corrected, for example in QED all we need to know is how to define the coupling ↵ and the masses of the charged
particles appropriately. Once we have defined them to a give order in perturbation theory they are the same for all
calculations. Now if we give up on gauge invariance we also give up on this renormalzability. In this case the theory
becomes unwieldy, we have to continue to re define parameters for each order in the perturbation theory, theres an
infinite list of things to define, so the theory becomes rather poorly defined. So in a brutally short explanation, if we
just plug in a mass term into our Lagrangian for the W and Z then as it stands we loose our ability to construct a
decent theoretical model. Something must be missing from our picture of nature...

The fix comes when we consider the possibility that there is indeed a symmetry, which provides a renormalizable
theory, but that something happens to it at and at low energies it is masked. This is called spontaneous symmetry
breaking, and we shall see it provides the solution to the problem of massive gauge bosons.

V. SPONTANEOUS SYMMETRY BREAKING, “HIDDEN” SYMMETRY

Lets begin by considering a simple example, which actually provides much of the physics we will need. Consider
the following Lagrangian
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This Lagrangian possess a global symmetry � ! ��. Lets suppose that � > 0 then we have two possibilities for the
potential, which correspond to the two choices of the sign of µ
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We plot a representation of the two configurations in Fig 1. First we consider µ

2
> 0 in this instance the Lagrangian

describes a self interacting scalar with mass m = µ. It’s clear that the ground state (the vacuum) corresponds to
� = 0, and that it obeys the reflection symmetry of the Lagrangian � ! ��.
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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2) = 0 (38)

The minimum of the potential thus occur at

� = ±v v =
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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so we can determine the mass of ⌘
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.

We are interested in the minima of the potential which we find as follows

Which we define as
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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The minimum of the potential thus occur at
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,

L0 =
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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so we can determine the mass of ⌘
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.

In order to have a stable perturbation theory we want to expand our fields 
around the minimum. We can choose either +/- v. Lets choose +v.

Writing our Lagrangian in the new coordinates we see that 
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,
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The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions
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The minimum of the potential thus occur at
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,

L0 =
1

2
(@

µ

⌘)(@µ

⌘) � �v

2
⌘

2 � �v⌘

3 � 1

4
�⌘

4 + const (41)

The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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m

⌘

=
p

2�v

2 =
p

�2µ

2 (43)

Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.

In order to have a stable perturbation theory we want to expand our fields 
around the minimum. We can choose either +/- v. Lets choose +v.

Writing our Lagrangian in the new coordinates we see that 
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What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
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The minimum of the potential thus occur at
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The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,

L0 =
1

2
(@

µ

⌘)(@µ

⌘) � �v

2
⌘

2 � �v⌘

3 � 1

4
�⌘

4 + const (41)

The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form
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so we can determine the mass of ⌘
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Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.

Comparing the Lagrangian to that of a free scalar field 

We see that the scalar field has a physical mass 
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FIG. 1: The two possible configurations for V corresponding to µ2 > 0 (left) and µ2 < 0 (right)

What about the second option µ

2
< 0. Now the Lagrangian has the wrong sign for a mass term, since the relative

sign between the potential and kinetic energy pieces is not correct. The minimum of the potential in this instance
correspond to the solutions

@V

@�

= 0 =) �(µ2 + ��

2) = 0 (38)

The minimum of the potential thus occur at

� = ±v v =

r
�µ

2

�

(39)

The solution at � = 0 is a local maximum and not the lowest energy solution to the potential. Perturbative calculations
should involve expansions around the classical minimum � = v or � = �v, we therefore write

�(x) = v + ⌘(x) (40)

Where ⌘(x) corresponds to the quantum fluctuations around this minimum. We have chosen the +v solution, but we
could have equally well chosen the �v solution, nature also has to spontaneously make the same choice. Inserting our
definition into the Lagrangian we find,

L0 =
1

2
(@

µ

⌘)(@µ

⌘) � �v

2
⌘

2 � �v⌘

3 � 1

4
�⌘

4 + const (41)

The field ⌘ has a mass term and it’s the correct sign! The Lagrangian for a free scalar field of mass m is of the form

L =
1

2
(@

µ

�)(@µ

�) � 1

2
m

2
�

2 (42)

so we can determine the mass of ⌘

m

⌘

=
p

2�v

2 =
p

�2µ

2 (43)

Now this is the most magical thing I’ve done so far, on the one hand its clear that L0 = L, but on the other hand
I’m telling you that L does not contain a massive scalar, whilst L0 does. How do we reconcile this two ideas? Well
for starters its clear that the physics must be the same since the Lagrangians are the same. The issue lies with
the perturbation theory interpretation of the Lagrangian. If I do a perturbative calculation around � = 0 which
corresponds to doing perturbation theory with L then I would quickly find that my perturbation theory is unstable,
since � = 0 is not the minimum energy of theory. The correct perturbation theory is indeed around � = ±v and to
expand around the stable vacuum point. So from a perturbation theory point of view it is L0 which is the well defined
Lagrangian. We refer to the way the mass was generated as spontaneous symmetry breaking. In the L0 version of
our theory the reflection symmetry of the Lagrangian has apparently been broken by our choice of the ground state
� = +v (rather than � = �v) around which to do our perturbation theory calculations.

Writing our Lagrangian in the new coordinates we see that 

In the new coordinates the symmetry is gone

⌘ ! �⌘

Note that we didn't change the Lagrangian, and the symmetry is still 
present globally. Our choice of +v versus -v breaks the symmetry. 

A perturbative expansion around 0 would be inherently unstable. 
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

Lets consider a similar, but more complicated example. A complex 
scalar field with the following Lagrangian 

� ! ei↵�

This is invariant under the (global) 
phase rotations
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

6

V

v�v

µ

2
< 0

�1

�2

FIG. 2: The potential V (�) for a complex scalar field for the case µ2 < 0

VI. SSB OF A GAUGE THEORY
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this time the Lagrangian becomes
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
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2
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Writing the complex scalar field as the combination of two real fields 

The Lagrangian can then be written as follows
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Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes
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µ
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�. As before we
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2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
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2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose
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0
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
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2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes
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1

2
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⇠)2 +
1

2
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The minimum of the potential is a circle in the               plane(�1,�2)
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Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

�(x) =
1p
2
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this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
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2
(v + ⌘(x) + ⇠(x)) (49)
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We spontaneously choose to expand our fields around the point

So that 

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
�

⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
v

2
A

µ

A

µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

And the Lagrangian becomes 

We see one massless field and one with mass 
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The appearance of one massive and one massless boson is no 
accident. It is an example of Goldstone’s theorem, which states that.

For every continuous symmetry of a physical system which is 
spontaneously broken there exists a massless boson 

In our example we lost one symmetry (rotations in            plane) so as 
predicted we see one massless boson

(�1,�2)

So if SSB generates masses? Where are all the Goldstone bosons? 
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The Higgs mechanism

I aint afriad of no ghosts 
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2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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m
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= 0 m
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=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)
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The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian
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2
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We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.
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This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
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Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA
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⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =
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We reconsider our previous Lagrangian, 

Our Lagrangian is thus 

Which means we have to introduce a gauge field to ensure gauge 
invariance. 
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

24

Expanding about the vacuum as before
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
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2 + const + cubic + quartic (50)

�(x) =
1p
2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then
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Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)
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2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
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�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)
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The gauge invariant Lagrangian is thus

L = (@µ + ieA
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2
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4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
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2
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2 +
1

2
e

2
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⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
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� =
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There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes
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Expanding about the vacuum as before
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The situation is summarized in Fig 2.
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2
⌘

2 + const + cubic + quartic (50)

�(x) =
1p
2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
�

⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
v

2
A

µ

A

µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
Goldstone boson
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)
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Expanding about the vacuum as before
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Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ
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2
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⇤
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⇤
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The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is
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There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

�(x) =
1p
2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
�

⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
v

2
A

µ

A

µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
Goldstone boson

Massive scalar
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
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µ
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2 � 1

2
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There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
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There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to
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2
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2
2 = v
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2
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

�(x) =
1p
2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
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⇤
� � �(�⇤

�)2 � 1

4
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(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
v

2
A

µ

A

µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
Goldstone boson

Massive scalar
Mass term for the gauge boson!
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is
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There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to
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The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
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2 + const + cubic + quartic (50)
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Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes
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�. As before we
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The situation is summarized in Fig 2.
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that
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2
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Our Lagrangian is then
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The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e
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µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
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⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
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µ � evA

µ
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µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
Goldstone boson

Massive scalar
Mass term for the gauge boson!
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
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both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
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VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)
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Expanding about the vacuum as before
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I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
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2
(v + ⌘(x) + ⇠(x)) (49)
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1

2
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2 + const + cubic + quartic (50)

�(x) =
1p
2
(v + ⌘(x) + i⇠(x))And

Our Lagrangian is then
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The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.

So we look to be in a little trouble again. If we want to use SSB to generate masses in a gauge theory we will
encounter lots of massless scalar particles. Where are they? We’ll see next how this problem is beautifully solved...

VII. THE HIGGS MECHANISM

Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
� ! �� symmetry. Then we upgraded it to a continuous global U(1) symmetry � ! e

i↵

�. Now we go for the home
run. Lets look at what happens when we break a continuous local gauge symmetry, � ! e

i↵(x)
�. Starting from our

original Lagrangian

L = (@µ

�)⇤(@
µ

�) � µ

2
�

⇤
� � �(�⇤

�)2 (51)

We see that the terms in the potential are manifestly gauge invariant, but that, as usual the derivative term screws
things up. So in our usual fashion we introduce a gauge field to restore gauge invariance.

D

µ

= @

µ

� ieA

µ

(52)

This field transforms as a regular gauge field (i.e. like a photon)

A

µ

! A

µ

+
1

e

@

µ

↵ (53)

The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
�

⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 � v

2
�⌘

2 +
1

2
e

2
v

2
A

µ

A

µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Lots to see here!
Goldstone boson

Massive scalar
Mass term for the gauge boson!
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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boson ⌘. The mass spectrum appears to be
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Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA
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⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
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This term is nasty, and corresponds to a mixing between the Goldstone 
and gauge bosons. 

Its appearance is related to the longitudinal degree of symmetry of the 
(massive) gauge boson. 

Since we didn't redefine A, it still has only transverse degrees of 
freedom 

We can write the Lagrangian in a nicer (more physical) framework by 
applying a gauge transformation. 
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Firstly we note that our choice of writing the scalar field was not 
unique, the following definition 
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Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
the appearance of a kinetic term for the photon. We now do the usual procedure, of finding the minimum of the
potential and expanding our fields around (a selected) vacuum energy point. We have the same configuration as
before, so the results of the last section still hold. We expand � / v + ⌘ + i⇠ and then after some algebra we find the
following
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1

2
(@
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⌘)2 � v

2
�⌘

2 +
1

2
e

2
v
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µ
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µ � evA

µ

@

µ

⇠ + Interaction terms (55)

Bingo! We have generated a dynamic mass for a gauge boson! The appearance of the term 1
2e

2
v

2
A

µ

A

µ in the
Lagrangian corresponds to a massive gauge boson! We also have a massless Goldstone boson, ⇠ and a massive scalar
boson ⌘. The mass spectrum appears to be

m

⇠

= 0 m

⌘

=
p

2�v

2
m

A

= ev (56)

Yippee, it looks like the job is done. However we still have that annoying Goldstone boson, and what on earth is the
term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
this isn’t what we want! Also we should worry about where the longitudinal degrees of freedom for A are going to
appear from. But a re-definition of the � field does not create a new degree of freedom for the A field. The answer to
both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
gauge field will ”eat” the Goldstone boson, and this additional degree of freedom corresponds to the 3 polarization
state we expect from a massive field.

How shall we do this? Well note that we can write the field � in several di↵erent ways,

� =
1p
2
(v + ⌘ + i⇠) =) � =

1p
2
(v + ⌘)ei⇠/v (57)

Is equally valid, (and equivalent to lowest order in the fields) 
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Firstly we note that our choice of writing the scalar field was not 
unique, the following definition 

7

The third term is mass for the ⌘ filed m

⌘

=
p

�2µ

2 The first term corresponds to the kinetic energy piece for ⇠ but
there is no corresponding mass term. The theory contains a massless boson which is known as a Goldstone boson.
In fact we have encountered an example of Goldstone’s theorem

Goldstone’s Theorem For every continuos symmetry of a physical system which is spontaneously broken there
exists a massless boson.
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Like a frog in boiling water, we have slowly increased the heat. We started looking at the breaking of a discrete
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The gauge invariant Lagrangian is thus

L = (@µ + ieA

µ)�⇤(@
µ

� ieA

µ

)� � µ

2
�

⇤
� � �(�⇤

�)2 � 1

4
F

µ⌫

F

µ⌫

(54)

Note two things, firstly the sign change on the covariant derivative as a result of the complex conjugation, and secondly
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term evA

µ

@

µ

⇠ supposed to represent? This looks like a mixing insertion, i.e. a photon will change into ⇠ boson. But
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both this issues is the same, the longitudinal degrees of freedom of the massive vector boson A correspond to ⇠! The
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2
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We therefore write out fields as follows 
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To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A

µ

� ! 1p
2
(v + h(x))ei✓(x)/v (58)

A

µ

! A

µ

+
1

ev

@

µ

✓ (59)

This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,

L00 =
1

2
(@

µ

h)2 � �v

2
h

2 +
1

2
e

2
v

2
A

µ

A

µ � �vh

3 � 1

4
�h

4 +
1

2
e

2
A

µ

A

µ

h

2 + ve

2
A

µ

A

µ

h � 1

4
F

µ⌫

F

µ⌫ (60)

The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.

VIII. SSB OF A LOCAL SU(2) GAUGE SYMMETRY

OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
j

3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.

Lets upgrade our complex scalar Lagrangian one more time,

L = (@
µ

�)†(@µ

�) � µ

2
�

†
� � �(�†

�)2 (61)

Where � is an SU(2) doublet of complex scalar fields:

� =

✓
�

↵

�

�

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
(62)

The Lagrangian is clearly invariant under global SU(2) rotations,

� ! e

i↵a⌧a/2
� (63)

and as usual, when we promote the invariance to a local symmetry ↵

a

(x) we have to introduce a covariant derivative,

D
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+ ig
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a

2
W
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(64)

and three gauge fields W

a, in the exact analog of the QCD Lagrangian we studied previously the transformation
properties of W

a are as follows,

~

W

µ

! ~

W

µ

� 1

g

@

µ

~↵ � ~↵ ⇥ ~

W

µ

(65)

Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f

abc

= ✏

abc

. The gauge
invariant Lagrangian then is

L =

✓
@

µ

� + ig

1

2
~⌧ · ~

W

µ

�

◆† ✓
@
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� + ig
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2
~⌧ · ~

W

µ

�

◆
� V (�) � 1

4
~

W

µ⌫

· ~

W

µ⌫ (66)

Where

V (�) = µ

2
�

†
� + �(�†

�)2 (67)

This is equivalent to choosing a favorite gauge to work in. We call it the 
unitary gauge. 
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The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.

VIII. SSB OF A LOCAL SU(2) GAUGE SYMMETRY

OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
j

3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.

Lets upgrade our complex scalar Lagrangian one more time,
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2
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The Lagrangian is clearly invariant under global SU(2) rotations,
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and as usual, when we promote the invariance to a local symmetry ↵

a

(x) we have to introduce a covariant derivative,

D
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and three gauge fields W

a, in the exact analog of the QCD Lagrangian we studied previously the transformation
properties of W

a are as follows,
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(65)

Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f
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= ✏
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. The gauge
invariant Lagrangian then is

L =
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Where

V (�) = µ

2
�

†
� + �(�†

�)2 (67)

In terms of these fields our Lagrangian becomes 

There are no physical Goldstone bosons in the theory (absorbed into the 
longitudinal degree of freedom of the gauge boson)


One physical massive scalar (the Higgs boson) 


One massive gauge boson. 

The old Lagrangian wasnt wrong, but it would have been extremely 
tedious to work with, we would carry around a lot of spurious ghosts in 
our calculation. 
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SSB of a local SU(2) 



29

8

To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A
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(v + h(x))ei✓(x)/v (58)
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! A
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This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,
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The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.
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OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
j

3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.

Lets upgrade our complex scalar Lagrangian one more time,
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2
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�)2 (61)

Where � is an SU(2) doublet of complex scalar fields:

� =
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The Lagrangian is clearly invariant under global SU(2) rotations,
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� (63)

and as usual, when we promote the invariance to a local symmetry ↵

a

(x) we have to introduce a covariant derivative,
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and three gauge fields W

a, in the exact analog of the QCD Lagrangian we studied previously the transformation
properties of W

a are as follows,
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Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f

abc

= ✏
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. The gauge
invariant Lagrangian then is
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Where
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�)2 (67)
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To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A
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This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,
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The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.
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OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
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3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.
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Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f
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The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
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terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.
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But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j
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and three gauge fields W
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Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f
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invariant Lagrangian then is
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Where
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2
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†
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�)2 (67)

We are nearly in a position to construct the SM Higgs. Our two 
remaining problems are 1) Generating two different masses for the W 
and Z bosons and 2) Generating masses for fermions. 

We start by promoting our basic Lagrangian 

To be symmetric under local SU(2) transformations of the form 

Sums over the 3 (2x2 matrices) which generate SU(2)
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Since there are 3 generators we introduce the following covariant 
derivative.

8

To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A

µ

� ! 1p
2
(v + h(x))ei✓(x)/v (58)

A

µ

! A

µ

+
1

ev

@

µ

✓ (59)

This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,

L00 =
1

2
(@

µ

h)2 � �v

2
h

2 +
1

2
e

2
v

2
A

µ

A

µ � �vh

3 � 1

4
�h

4 +
1

2
e

2
A

µ

A

µ

h

2 + ve

2
A

µ

A

µ

h � 1

4
F

µ⌫

F

µ⌫ (60)

The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.

VIII. SSB OF A LOCAL SU(2) GAUGE SYMMETRY

OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
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and three gauge fields W
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Putting this all together we obtain the following Lagrangian 

With our usual Higgs potential 
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(68)

In exactly the same fashion as previous examples the potential has a non-zero minimum if µ

2
< 0 and � > 0 then

�

†
� =

1

2
(�2

1 + �

2
2 + �

2
3 + �

2
4) = �µ

2

2�
(69)

Again we choose a point to expand around e.g. �3 = v and �
i

= 0 i 6= 3. Then

�0 =
1p
2

✓
0
v

◆
(70)

We will have three Goldstone bosons, however we can work in the Unitary gauge, in which we fix the gauge transfor-
mation of the three W fields such that no Goldstone bosons appear in the theory. Operationally all we have to do is
redefine the Lagrangian using the following field

� =
1p
2

✓
0

v + h(x)

◆
(71)

Then the mass terms are generated from the following piece

����ig
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~⌧ · ~W
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�
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=
g

2

8

����
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(72)

=
g

2
v

2

8
[(W 1

µ

)2 + (W 2
µ

)2 + (W 3)2
µ

] (73)

where | |2 = ( )†( ) So we have generated three massive bosons with equal mass M = 1
2gv This is nearly but not quite

the Standard Model, since M

W

6= M

Z

. Next time we’ll get there....

IX. THE GLASHOW WIENBERG AND SALAM (GWS) MODEL : THE STANDARD MODEL OF
PARTICLE PHYSICS

A. Introduction

We learnt that electromagnetic interactions were controlled by the following interaction

�iej

em

µ

A

µ = �ie( �
µ

Q )Aµ

U(1)
EM

(74)

where Q is the charge operator (with eigenvalue �1 for the electron). We found this interaction could be obtained
from the free Dirac Lagrangian

L =  (i�µ@
µ

� m) (75)

and demanding local invariance under phase rotations

 !  

0 = e

i↵(x)Q
 (76)

This lead to the Lagrangian of QED,

L =  (i�µ@
µ

� m) � e( �
µ

Q )Aµ � 1

4
F

µ⌫

F

µ⌫ (77)

Before we focused only on the electron, so set Q = �1 in the above. In generality we should allow for other charges,
e.g. Q

u

= 2/3 etc. We learnt that to describe weak interactions we had to include an SU(2)
L

and a U(1)
Y

set of
currents into the theory, recall that

Q = T

3 +
Y

2
(78)

Which has minima at
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We (spontaneously) choose the following vacuum state 

And expand around it as follows (in the unitary gauge)
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[(W 1

µ

)2 + (W 2
µ

)2 + (W 3)2
µ

] (73)

where | |2 = ( )†( ) So we have generated three massive bosons with equal mass M = 1
2gv This is nearly but not quite

the Standard Model, since M

W

6= M

Z

. Next time we’ll get there....

IX. THE GLASHOW WIENBERG AND SALAM (GWS) MODEL : THE STANDARD MODEL OF
PARTICLE PHYSICS

A. Introduction

We learnt that electromagnetic interactions were controlled by the following interaction

�iej

em

µ

A

µ = �ie( �
µ

Q )Aµ

U(1)
EM

(74)

where Q is the charge operator (with eigenvalue �1 for the electron). We found this interaction could be obtained
from the free Dirac Lagrangian

L =  (i�µ@
µ

� m) (75)

and demanding local invariance under phase rotations

 !  

0 = e

i↵(x)Q
 (76)

This lead to the Lagrangian of QED,

L =  (i�µ@
µ

� m) � e( �
µ

Q )Aµ � 1

4
F

µ⌫

F

µ⌫ (77)

Before we focused only on the electron, so set Q = �1 in the above. In generality we should allow for other charges,
e.g. Q

u

= 2/3 etc. We learnt that to describe weak interactions we had to include an SU(2)
L

and a U(1)
Y

set of
currents into the theory, recall that

Q = T

3 +
Y

2
(78)

From our past experience we know that the the mass terms for the 
gauge bosons come from the              part of the Lagrangian |Dµ�|2

So for simplicity we focus on that 

�

So we have 3 massive gauge bosons, of equal mass. 



34

The Standard Model



35

10

where T

3 is the third component of weak isospin ”i.e. the position in the SU(2)
L

doublet/singlet/triplet of the
particle”. The currents we found were
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(79)

as is suggested by the vector notation, there are three W

µ

vector bosons. We also introduce a weak hyper charge
current B

µ

�i

g

0

2
j

Y

µ

B

µ = �ig

0
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2
 B

µ (80)

We now work in the idea of gauge invariance, our Lagrangian must be gauge invariant under the following two types
of transformation
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(81)
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the left-handed fermions form the doublets �
L

and the right handed fermions are isosinglets  
R

. For example with
the electron, and its neutrino
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whereas for the quarks both members of the SU(2)
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doublet have corresponding right-handed fermions
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The combined SU(2)
L

⌦ U(1)
Y

gauge invariant Lagrangian is then (for an electron- neutrino pair)
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where we have inserted the values of the hyper charge Y

L

= �1 and Y

R

= �2.

X. THE HIGGS FIELD AND MASS GENERATION

Notice the lack of mass terms in our Lagrangian at the end of the previous section. The electron mass term
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5) +
1

2
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5)]e (86)

= �m(e
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+ e
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) (87)

is manifestly not gauge invariant under either U(1)
Y

or SU(2)
L

transformations. One of the joys of the SM is that
it allows for simultaneous generation of gauge boson masses and fermion masses at the same time through the Higgs
mechanism.

We introduce the following term into the Lagrangian which corresponds to four real scalar fields
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where V (�) is the usual Higgs potential V (�) = µ
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�+ �(�†�)2. To keep L2 gauge invariant � must transform as a
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. We define the fields as follows,
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✓
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0 =
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where | |2 = ( )†( ) So we have generated three massive bosons with equal mass M = 1
2gv This is nearly but not quite

the Standard Model, since M
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6= M

Z

. Next time we’ll get there....

IX. THE GLASHOW WIENBERG AND SALAM (GWS) MODEL : THE STANDARD MODEL OF
PARTICLE PHYSICS

A. Introduction

We learnt that electromagnetic interactions were controlled by the following interaction
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where Q is the charge operator (with eigenvalue �1 for the electron). We found this interaction could be obtained
from the free Dirac Lagrangian

L =  (i�µ@
µ

� m) (75)

and demanding local invariance under phase rotations
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0 = e
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This lead to the Lagrangian of QED,

L =  (i�µ@
µ

� m) � e( �
µ
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4
F
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F
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Before we focused only on the electron, so set Q = �1 in the above. In generality we should allow for other charges,
e.g. Q

u

= 2/3 etc. We learnt that to describe weak interactions we had to include an SU(2)
L

and a U(1)
Y

set of
currents into the theory, recall that
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3 +
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where T

3 is the third component of weak isospin ”i.e. the position in the SU(2)
L

doublet/singlet/triplet of the
particle”. The currents we found were
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as is suggested by the vector notation, there are three W
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vector bosons. We also introduce a weak hyper charge
current B

µ
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0

2
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We now work in the idea of gauge invariance, our Lagrangian must be gauge invariant under the following two types
of transformation
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0 = e
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the left-handed fermions form the doublets �
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and the right handed fermions are isosinglets  
R

. For example with
the electron, and its neutrino
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whereas for the quarks both members of the SU(2)
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doublet have corresponding right-handed fermions
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The combined SU(2)
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gauge invariant Lagrangian is then (for an electron- neutrino pair)

L1 = �

L

�

µ


i@

µ

� g

1

2
~⌧ · ~W

µ

� ig

0
✓

�1

2

◆
B

µ

�
�

L

+ e

R

�

µ [i@
µ

� g

0(�1)B
µ

] e
R

� 1

4
~

W

µ⌫

~

W

µ⌫ � 1

4
B

µ⌫

B

µ⌫

(85)

where we have inserted the values of the hyper charge Y
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= �1 and Y

R

= �2.

X. THE HIGGS FIELD AND MASS GENERATION

Notice the lack of mass terms in our Lagrangian at the end of the previous section. The electron mass term
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) (87)

is manifestly not gauge invariant under either U(1)
Y

or SU(2)
L

transformations. One of the joys of the SM is that
it allows for simultaneous generation of gauge boson masses and fermion masses at the same time through the Higgs
mechanism.

We introduce the following term into the Lagrangian which corresponds to four real scalar fields
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where V (�) is the usual Higgs potential V (�) = µ

2
�

†
�+ �(�†�)2. To keep L2 gauge invariant � must transform as a

multiplet under SU(2)
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⌦ U(1)
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. We define the fields as follows,
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where
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(�3 + i�4) (91)

10

where T
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current B
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We now work in the idea of gauge invariance, our Lagrangian must be gauge invariant under the following two types
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. For example with
the electron, and its neutrino
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whereas for the quarks both members of the SU(2)
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doublet have corresponding right-handed fermions
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The combined SU(2)
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⌦ U(1)
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gauge invariant Lagrangian is then (for an electron- neutrino pair)
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where we have inserted the values of the hyper charge Y

L

= �1 and Y

R

= �2.

X. THE HIGGS FIELD AND MASS GENERATION

Notice the lack of mass terms in our Lagrangian at the end of the previous section. The electron mass term

�mee = �me[
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5) +
1

2
(1 + �

5)]e (86)

= �m(e
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) (87)

is manifestly not gauge invariant under either U(1)
Y

or SU(2)
L

transformations. One of the joys of the SM is that
it allows for simultaneous generation of gauge boson masses and fermion masses at the same time through the Higgs
mechanism.

We introduce the following term into the Lagrangian which corresponds to four real scalar fields

L2 =
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where V (�) is the usual Higgs potential V (�) = µ

2
�

†
�+ �(�†�)2. To keep L2 gauge invariant � must transform as a

multiplet under SU(2)
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⌦ U(1)
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. We define the fields as follows,

� =
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where
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+ =
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0 =
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SU(3)C ⌦ SU(2)L ⌦ U(1)Y ! SU(3)C ⌦ U(1)EM

In order to generate the mass spectrum of the SM, we need to break a 
more complicated structure than just a single SU(2). 

Where we define hypercharge as follows

Left-handed and right handed matter transforms as follows 

Quarks and Leptons are represented by 
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where T
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current B

µ

�i

g

0

2
j

Y

µ

B

µ = �ig

0
 �

µ

Y

2
 B

µ (80)

We now work in the idea of gauge invariance, our Lagrangian must be gauge invariant under the following two types
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where we have inserted the values of the hyper charge Y

L

= �1 and Y
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= �2.

X. THE HIGGS FIELD AND MASS GENERATION

Notice the lack of mass terms in our Lagrangian at the end of the previous section. The electron mass term

�mee = �me[
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5) +
1

2
(1 + �

5)]e (86)
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is manifestly not gauge invariant under either U(1)
Y

or SU(2)
L

transformations. One of the joys of the SM is that
it allows for simultaneous generation of gauge boson masses and fermion masses at the same time through the Higgs
mechanism.

We introduce the following term into the Lagrangian which corresponds to four real scalar fields
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where V (�) is the usual Higgs potential V (�) = µ

2
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�+ �(�†�)2. To keep L2 gauge invariant � must transform as a

multiplet under SU(2)
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For instance, the leptonic part of the Lagrangian 

Is manifestly gauge invariant. 
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Note the absence of any mass term in the Lagrangian, in fact the mass 
term

Is NOT invariant under SU(2) rotations. 

The Higgs will help us here too. 
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L

⌦ U(1)
Y

gauge invariant Lagrangian is then (for an electron- neutrino pair)
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L
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R
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µ

� g

0(�1)B
µ

] e
R

� 1

4
~

W

µ⌫

~

W

µ⌫ � 1

4
B

µ⌫

B

µ⌫
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where we have inserted the values of the hyper charge Y

L

= �1 and Y

R

= �2.

X. THE HIGGS FIELD AND MASS GENERATION

Notice the lack of mass terms in our Lagrangian at the end of the previous section. The electron mass term

�mee = �me[
1

2
(1 � �

5) +
1

2
(1 + �

5)]e (86)

= �m(e
R
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L

+ e

L

e

R

) (87)

is manifestly not gauge invariant under either U(1)
Y

or SU(2)
L

transformations. One of the joys of the SM is that
it allows for simultaneous generation of gauge boson masses and fermion masses at the same time through the Higgs
mechanism.

We introduce the following term into the Lagrangian which corresponds to four real scalar fields
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where V (�) is the usual Higgs potential V (�) = µ
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†
�+ �(�†�)2. To keep L2 gauge invariant � must transform as a

multiplet under SU(2)
L

⌦ U(1)
Y

. We define the fields as follows,

� =

✓
�

+

�

0

◆
(89)

where

�

+ =
1p
2
(�1 + i�2) (90)

�

0 =
1p
2
(�3 + i�4) (91)
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where T

3 is the third component of weak isospin ”i.e. the position in the SU(2)
L

doublet/singlet/triplet of the
particle”. The currents we found were
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We now work in the idea of gauge invariance, our Lagrangian must be gauge invariant under the following two types
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(89)

where

�

+ =
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2
(�1 + i�2) (90)

�

0 =
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Next we need to work out the Higgs sector, The Higgs is an SU(2) 
doublet with hyperchage Y=1.

Q=1/2+1/2Q=1/2-1/2

Expanding our complex 
scalars

The Higgs part of the Lagrangian is then 
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To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A

µ

� ! 1p
2
(v + h(x))ei✓(x)/v (58)

A

µ

! A

µ

+
1

ev

@

µ

✓ (59)

This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,

L00 =
1

2
(@

µ

h)2 � �v

2
h

2 +
1

2
e

2
v

2
A

µ

A

µ � �vh

3 � 1

4
�h

4 +
1

2
e

2
A

µ

A

µ

h

2 + ve

2
A

µ

A

µ

h � 1

4
F

µ⌫

F

µ⌫ (60)

The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.

VIII. SSB OF A LOCAL SU(2) GAUGE SYMMETRY

OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
j

3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.

Lets upgrade our complex scalar Lagrangian one more time,

L = (@
µ

�)†(@µ

�) � µ

2
�

†
� � �(�†

�)2 (61)

Where � is an SU(2) doublet of complex scalar fields:

� =

✓
�

↵

�

�

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
(62)

The Lagrangian is clearly invariant under global SU(2) rotations,

� ! e

i↵a⌧a/2
� (63)

and as usual, when we promote the invariance to a local symmetry ↵

a

(x) we have to introduce a covariant derivative,

D

µ

! @

µ

+ ig

⌧

a

2
W

a

µ

(64)

and three gauge fields W

a, in the exact analog of the QCD Lagrangian we studied previously the transformation
properties of W

a are as follows,

~

W

µ

! ~

W

µ

� 1

g

@

µ

~↵ � ~↵ ⇥ ~

W

µ

(65)

Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f

abc

= ✏

abc

. The gauge
invariant Lagrangian then is

L =

✓
@

µ

� + ig

1

2
~⌧ · ~

W

µ

�

◆† ✓
@

µ

� + ig

1

2
~⌧ · ~

W

µ

�

◆
� V (�) � 1

4
~

W

µ⌫

· ~

W

µ⌫ (66)

Where

V (�) = µ

2
�

†
� + �(�†

�)2 (67)

Covariant derivative 
Higgs potential
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Now we get to see something really beautiful, consider the following 
linear combination of generators 

11

So � is a doublet under SU(2)
L

with hyper charge Y = 1. We have one positively charged scalar Q = 1/2 + 1/2 and
one neutral scalar Q = 1/2 � 1/2. As is usual with SSB the vacuum of the Higgs potential is not at zero with µ

2
< 0

and we re-expand the fields around a new vacuum.

� =
1p
2

✓
0
v

◆
(92)

Note that the choices we have made for �0 with T = 1/2 and T

3 = �1/2 breaks the SU(2)
L

and U(1)
Y

gauge sym-
metries, so you might expect four goldstone bosons, however note that the following linear combination of generators

Q = T

3 +
Y

2
(93)

remains unbroken, that is

Q�0 (94)

so that

�0 ! �

0
0 = e

i↵(x)Q
�0 = �0 (95)

The vacuum is thus invariant under an U(1)
EM

transformation, and we have a linear combination of generators which
corresponds to a massless boson (which we will identify with the photon).

A. Masses of the gauge bosons

Lets look at the masses of the gauge bosons

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
g

2

8

����

✓
gW

3
µ

+ g

0
B

µ

g(W 1
µ

� iW

2
µ

)
g(W 1

µ

+ iW

2
µ

) �gW

3
µ

+ g

0
B

µ

◆✓
0
v

◆����
2

(96)

(97)

which equals
����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
1

8
v

2
g

2
⇥
(W 1

µ

)2 + (W 2
µ

)2
⇤
+

1

8
v

2(g0B
µ

� gW

3
µ

)(g0Bµ � gW

3µ) (98)

we can re-write this in terms of the physical W bosons W

± and a matrix over the remaining states.

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=

✓
1

2
vg

◆2

W

+
µ

W

�µ +
1

8
v

2(W 3
µ

, B

µ

)

✓
g

2 �gg

0

�gg

0
g

02

◆✓
W

3µ

B

µ

◆
(99)

The first terms correspond to masses for the W bosons

M

W

=
1

2
vg (100)

The remaining term is o↵-diagonal in the W

3 and B

µ basis

1

8
v

2
h
g

2(W 3
µ

)2 � 2gg

0
W

3
µ

B

µ + g

02
B

2
µ

i
=

1

8
v

2
⇥
gW

3
µ

� g

0
B

µ

⇤2
+ 0

⇥
gW

3
µ

+ g

0
B

µ

⇤2
(101)

One of the eigenvalues of the 2 ⇥ 2 matrix is zero, so in when we identify the mass terms as

1

2
M

2
Z

Z

µ

+
1

2
M

2
A

A

µ

(102)

Then we see

A

µ

=
gW

3
µ

+ g

0
B

µp
g

2 + g

02
M

A

= 0 (103)

Z

µ

=
gW

3
µ

� g

0
B

µp
g

2 + g

02
M

Z

=
1

2
v

p
g

2 + g

02 (104)

(105)
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So � is a doublet under SU(2)
L

with hyper charge Y = 1. We have one positively charged scalar Q = 1/2 + 1/2 and
one neutral scalar Q = 1/2 � 1/2. As is usual with SSB the vacuum of the Higgs potential is not at zero with µ
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One of the eigenvalues of the 2 ⇥ 2 matrix is zero, so in when we identify the mass terms as
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Then we see
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Again we expand around the vacuum given by 

Acting on the vacuum state, i.e. 

Q�0 /
✓

1 0
0 0

◆✓
0
v

◆
=

✓
0
0

◆
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and

~

W

µ⌫ = @

µ

~

W

⌫

� @

⌫

~

W

µ

� g

~

W

µ

⇥ ~

W

⌫

(68)

In exactly the same fashion as previous examples the potential has a non-zero minimum if µ

2
< 0 and � > 0 then

�

†
� =

1

2
(�2

1 + �

2
2 + �

2
3 + �

2
4) = �µ

2

2�
(69)

Again we choose a point to expand around e.g. �3 = v and �
i

= 0 i 6= 3. Then

�0 =
1p
2

✓
0
v

◆
(70)

We will have three Goldstone bosons, however we can work in the Unitary gauge, in which we fix the gauge transfor-
mation of the three W fields such that no Goldstone bosons appear in the theory. Operationally all we have to do is
redefine the Lagrangian using the following field

� =
1p
2

✓
0

v + h(x)

◆
(71)

Then the mass terms are generated from the following piece

����ig
1

2
~⌧ · ~W

µ

�

����
2

=
g

2

8

����

✓
W

3
µ

W

1
µ

� iW

2
µ

W

1
µ

+ iW

2
µ

W

3
µ

◆✓
0
v

◆����
2

(72)

=
g

2
v

2

8
[(W 1

µ

)2 + (W 2
µ

)2 + (W 3)2
µ

] (73)

where | |2 = ( )†( ) So we have generated three massive bosons with equal mass M = 1
2gv This is nearly but not quite

the Standard Model, since M

W

6= M

Z

. Next time we’ll get there....

IX. THE GLASHOW WIENBERG AND SALAM (GWS) MODEL : THE STANDARD MODEL OF
PARTICLE PHYSICS

A. Introduction

We learnt that electromagnetic interactions were controlled by the following interaction

�iej

em

µ

A

µ = �ie( �
µ

Q )Aµ

U(1)
EM

(74)

where Q is the charge operator (with eigenvalue �1 for the electron). We found this interaction could be obtained
from the free Dirac Lagrangian

L =  (i�µ@
µ

� m) (75)

and demanding local invariance under phase rotations

 !  

0 = e

i↵(x)Q
 (76)

This lead to the Lagrangian of QED,

L =  (i�µ@
µ

� m) � e( �
µ

Q )Aµ � 1

4
F

µ⌫

F

µ⌫ (77)

Before we focused only on the electron, so set Q = �1 in the above. In generality we should allow for other charges,
e.g. Q

u

= 2/3 etc. We learnt that to describe weak interactions we had to include an SU(2)
L

and a U(1)
Y

set of
currents into the theory, recall that

Q = T

3 +
Y

2
(78)

So Q annihilates the vacuum, i.e. 
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One of the eigenvalues of the 2 ⇥ 2 matrix is zero, so in when we identify the mass terms as
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Then we see
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The symmetry of the vacuum wrt Q, will give us EM (and the 
photon)!
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Getting back to our massive bosons we see that the piece we are 
interested in is 



39

11

So � is a doublet under SU(2)
L

with hyper charge Y = 1. We have one positively charged scalar Q = 1/2 + 1/2 and
one neutral scalar Q = 1/2 � 1/2. As is usual with SSB the vacuum of the Higgs potential is not at zero with µ

2
< 0

and we re-expand the fields around a new vacuum.

� =
1p
2

✓
0
v

◆
(92)

Note that the choices we have made for �0 with T = 1/2 and T

3 = �1/2 breaks the SU(2)
L

and U(1)
Y

gauge sym-
metries, so you might expect four goldstone bosons, however note that the following linear combination of generators

Q = T

3 +
Y

2
(93)

remains unbroken, that is

Q�0 (94)

so that

�0 ! �

0
0 = e

i↵(x)Q
�0 = �0 (95)

The vacuum is thus invariant under an U(1)
EM

transformation, and we have a linear combination of generators which
corresponds to a massless boson (which we will identify with the photon).

A. Masses of the gauge bosons

Lets look at the masses of the gauge bosons

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
g

2

8

����

✓
gW

3
µ

+ g

0
B

µ

g(W 1
µ

� iW

2
µ

)
g(W 1

µ

+ iW

2
µ

) �gW

3
µ

+ g

0
B

µ

◆✓
0
v

◆����
2

(96)

(97)

which equals
����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
1

8
v

2
g

2
⇥
(W 1

µ

)2 + (W 2
µ

)2
⇤
+

1

8
v

2(g0B
µ

� gW

3
µ

)(g0Bµ � gW

3µ) (98)

we can re-write this in terms of the physical W bosons W

± and a matrix over the remaining states.

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=

✓
1

2
vg

◆2

W

+
µ

W

�µ +
1

8
v

2(W 3
µ

, B

µ

)

✓
g

2 �gg

0

�gg

0
g

02

◆✓
W

3µ

B

µ

◆
(99)

The first terms correspond to masses for the W bosons

M

W

=
1

2
vg (100)

The remaining term is o↵-diagonal in the W

3 and B

µ basis

1

8
v

2
h
g

2(W 3
µ

)2 � 2gg

0
W

3
µ

B

µ + g

02
B

2
µ

i
=

1

8
v

2
⇥
gW

3
µ

� g

0
B

µ

⇤2
+ 0

⇥
gW

3
µ

+ g

0
B

µ

⇤2
(101)

One of the eigenvalues of the 2 ⇥ 2 matrix is zero, so in when we identify the mass terms as

1

2
M

2
Z

Z

µ

+
1

2
M

2
A

A

µ

(102)

Then we see

A

µ

=
gW

3
µ

+ g

0
B

µp
g

2 + g

02
M

A

= 0 (103)

Z

µ

=
gW

3
µ

� g

0
B

µp
g

2 + g

02
M

Z

=
1

2
v

p
g

2 + g

02 (104)

(105)

Getting back to our massive bosons we see that the piece we are 
interested in is 

11

So � is a doublet under SU(2)
L

with hyper charge Y = 1. We have one positively charged scalar Q = 1/2 + 1/2 and
one neutral scalar Q = 1/2 � 1/2. As is usual with SSB the vacuum of the Higgs potential is not at zero with µ

2
< 0

and we re-expand the fields around a new vacuum.

� =
1p
2

✓
0
v

◆
(92)

Note that the choices we have made for �0 with T = 1/2 and T

3 = �1/2 breaks the SU(2)
L

and U(1)
Y

gauge sym-
metries, so you might expect four goldstone bosons, however note that the following linear combination of generators

Q = T

3 +
Y

2
(93)

remains unbroken, that is

Q�0 (94)

so that

�0 ! �

0
0 = e

i↵(x)Q
�0 = �0 (95)

The vacuum is thus invariant under an U(1)
EM

transformation, and we have a linear combination of generators which
corresponds to a massless boson (which we will identify with the photon).

A. Masses of the gauge bosons

Lets look at the masses of the gauge bosons

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
g

2

8

����

✓
gW

3
µ

+ g

0
B

µ

g(W 1
µ

� iW

2
µ

)
g(W 1

µ

+ iW

2
µ

) �gW

3
µ

+ g

0
B

µ

◆✓
0
v

◆����
2

(96)

(97)

which equals
����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=
1

8
v

2
g

2
⇥
(W 1

µ

)2 + (W 2
µ

)2
⇤
+

1

8
v

2(g0B
µ

� gW

3
µ

)(g0Bµ � gW

3µ) (98)

we can re-write this in terms of the physical W bosons W

± and a matrix over the remaining states.

����

✓
�ig

1

2
~⌧ · ~

W

µ

� i

g

0

2
B

µ

◆
�

����
2

=

✓
1

2
vg

◆2

W

+
µ

W

�µ +
1

8
v

2(W 3
µ

, B

µ

)

✓
g

2 �gg

0

�gg

0
g

02

◆✓
W

3µ

B

µ

◆
(99)

The first terms correspond to masses for the W bosons

M

W

=
1

2
vg (100)

The remaining term is o↵-diagonal in the W

3 and B

µ basis

1

8
v

2
h
g

2(W 3
µ

)2 � 2gg

0
W

3
µ

B

µ + g

02
B

2
µ

i
=

1

8
v

2
⇥
gW

3
µ

� g

0
B

µ

⇤2
+ 0

⇥
gW

3
µ

+ g

0
B

µ

⇤2
(101)

One of the eigenvalues of the 2 ⇥ 2 matrix is zero, so in when we identify the mass terms as

1

2
M

2
Z

Z

µ

+
1

2
M

2
A

A

µ

(102)

Then we see

A

µ

=
gW

3
µ

+ g

0
B

µp
g

2 + g

02
M

A

= 0 (103)

Z

µ

=
gW

3
µ

� g

0
B

µp
g

2 + g

02
M

Z

=
1

2
v

p
g

2 + g

02 (104)

(105)

Expanding this out yields 
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Or alternatively in terms of the physical W+,W- physical states
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Getting back to our massive bosons we see that the piece we are 
interested in is 
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Expanding this out yields 
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We have our first big result
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We can tidy up the last term by re-packing the fields into a diagonal 
form

Which we interpret as 
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µAµ

With 

So we predict a massless photon and a Z which is heavier than then W 
:-) Happy days. 
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B. Masses for Fermions

Finally we want to understand the mass generation of fermions in the Standard Model, we can do this easily using
the Higgs, we introduce the following gauge invariant term to the Lagrangian
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where h.c. stands for the Hermitian conjugate. e.g. for the electron fields
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Finally we turn our attention to the fermion mass terms, note that the 
following combination is gauge invariant 

Doublets singlet
For instance for the leptons we have 



42

12

B. Masses for Fermions

Finally we want to understand the mass generation of fermions in the Standard Model, we can do this easily using
the Higgs, we introduce the following gauge invariant term to the Lagrangian

L3 = �G

e

[�
L

� 

R

+ h.c] (106)

where h.c. stands for the Hermitian conjugate. e.g. for the electron fields

L3 = �G

e


(⌫

e

, e)
L

✓
�

+

�

0

◆
e

R

+ h.c

�
(107)

We we perform SSB and the Higgs mechanism we replace

� =
1p
2

✓
0

v + h(x)

◆
(108)

So that the Lagrangian becomes

L3 = � G

ep
2
v(e

L

e

R

+ e

R

e

L

) � G

ep
2
(e

L

e

R

+ e

R

e

L

)h (109)

Which corresponds to a mass term and an interaction term between the fermion and the Higgs field

L3 = �m

e

ee � m

e

v

eeh (110)

Thus completes the Standard Model!

12

B. Masses for Fermions

Finally we want to understand the mass generation of fermions in the Standard Model, we can do this easily using
the Higgs, we introduce the following gauge invariant term to the Lagrangian

L3 = �G

e

[�
L

� 

R

+ h.c] (106)

where h.c. stands for the Hermitian conjugate. e.g. for the electron fields

L3 = �G

e


(⌫

e

, e)
L

✓
�

+

�

0

◆
e

R

+ h.c

�
(107)

We we perform SSB and the Higgs mechanism we replace

� =
1p
2

✓
0

v + h(x)

◆
(108)

So that the Lagrangian becomes

L3 = � G

ep
2
v(e

L

e

R

+ e

R

e

L

) � G

ep
2
(e

L

e

R

+ e

R

e

L

)h (109)

Which corresponds to a mass term and an interaction term between the fermion and the Higgs field

L3 = �m

e

ee � m

e

v

eeh (110)

Thus completes the Standard Model!

12

B. Masses for Fermions

Finally we want to understand the mass generation of fermions in the Standard Model, we can do this easily using
the Higgs, we introduce the following gauge invariant term to the Lagrangian

L3 = �G

e

[�
L

� 

R

+ h.c] (106)

where h.c. stands for the Hermitian conjugate. e.g. for the electron fields

L3 = �G

e


(⌫

e

, e)
L

✓
�

+

�

0

◆
e

R

+ h.c

�
(107)

We we perform SSB and the Higgs mechanism we replace

� =
1p
2

✓
0

v + h(x)

◆
(108)

So that the Lagrangian becomes

L3 = � G

ep
2
v(e

L

e

R

+ e

R

e

L

) � G

ep
2
(e

L

e

R

+ e

R

e

L

)h (109)

Which corresponds to a mass term and an interaction term between the fermion and the Higgs field

L3 = �m

e

ee � m

e

v

eeh (110)

Thus completes the Standard Model!

In our time honored tradition we expand around the new vacuum 

Finding 

I.e. 
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FIG. 2: The potential V (�) for a complex scalar field for the case µ2 < 0

VI. SSB OF A GAUGE THEORY

Lets crank things up a notch and instead of considering a real scalar field, lets consider a complex scalar field �,
this time the Lagrangian becomes

L = (@
µ

�)⇤(@µ

�) � µ

2
�

⇤
� � ��

⇤
� (44)

The discrete symmetry of the last section � ! �� is now promoted to a U(1) symmetry � ! e

i↵

�. As before we
consider the case where � > 0 and µ

2
< 0. We choose to re-write our complex scalar as two real scalar fields,

� =
1p
2
(�1 + i�2) (45)

Then the phase transformation is �1 ! �1 cos ↵ � �2 sin ↵ and �2 ! �1 sin
↵

+�2 cos ↵. and the Lagrangian is

L =
1

2
(@

µ

�1)
2 +

1

2
(@

µ

�2)
2 � 1

2
µ

2(�2
1 + �

2
2) � 1

4
�(�4

1 + 2�

2
1�

2
2 + �

4
2) (46)

There is now a circle of minimum of the potential V (�) in the �1 �2 plane which corresponds to

�

2
1 + �

2
2 = v

2
v

2 = �µ

2

�

(47)

The situation is summarized in Fig 2.

Now again we choose a direction in this circular minimum and re-expand our fields around that point, we choose

� =

✓
v

0

◆
(48)

I.e. we expand in the direction of �1 and leave �2 alone. Therefore we say �1 = v + ⌘(x) and �2 = ⇠(x) such that

�(x) =
1p
2
(v + ⌘(x) + ⇠(x)) (49)

Then the Lagrangian becomes

L0 =
1

2
(@

µ

⇠)2 +
1

2
(@

µ

⌘)2 + µ

2
⌘

2 + const + cubic + quartic (50)

Potentials with multiple non-zero global 
minimum, lead to spontaneous symmetry 
breaking. 
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To lowest order in ⇠. So lets write � in this format instead, and we introduce a set of real fields h ✓ and A

µ

� ! 1p
2
(v + h(x))ei✓(x)/v (58)

A

µ

! A

µ

+
1

ev

@

µ

✓ (59)

This is of course, a particular choice of gauge, known as the unitary gauge. We insert this back into the original
Lagrangian and find the following form,

L00 =
1

2
(@

µ

h)2 � �v

2
h

2 +
1

2
e

2
v

2
A

µ

A

µ � �vh
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4
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4 +
1

2
e

2
A

µ

A

µ

h

2 + ve

2
A

µ

A

µ

h � 1

4
F

µ⌫

F

µ⌫ (60)

The Goldstone boson does not appear as a physical state in the theory. The apparent extra degree of freedom is
actually spurious, because it corresponds only to the freedom to make a gauge transformation. The Lagrangian
describes two interacting massive particles, a scalar h and a vector boson A. The massive scalar particle is the famous
Higgs boson. The unwanted Goldstone boson has been turned into the longitudinal polarization of the massive gauge
boson. Note that L0 and L00 describe the same physical system. So if I wanted to I could formulate my theory in
terms of L0 I would simply find a lot of spurious ”ghosts” in the theory ⇠. So its much easier in general to fix the
gauge and use only the physical states.

VIII. SSB OF A LOCAL SU(2) GAUGE SYMMETRY

OK, so we are making good progress, now we know how to generate a Higgs boson, and a massive gauge boson.
But we are not quite at the champagne moment just yet. We know that there are 3 massive gauge bosons in the SM,
so we have to enlarge the symmetry group which we want to SSB. This means that we will have to look at larger
groups. Note that SU(2) has 3 continuous symmetries (for instance think of the 3 parameters needed to define the
generators of SU(2), or the three currents j

±
j

3 we studied previously). So SU(2) is a good candidate symmetry for
us to break, get 3 Goldstone bosons and then make the masses of the W and Z whilst preserving gauge invariance.

Lets upgrade our complex scalar Lagrangian one more time,

L = (@
µ

�)†(@µ

�) � µ

2
�

†
� � �(�†

�)2 (61)

Where � is an SU(2) doublet of complex scalar fields:

� =

✓
�

↵

�
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◆
=
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2

✓
�1 + i�2

�3 + i�4

◆
(62)

The Lagrangian is clearly invariant under global SU(2) rotations,

� ! e

i↵a⌧a/2
� (63)

and as usual, when we promote the invariance to a local symmetry ↵

a

(x) we have to introduce a covariant derivative,

D

µ

! @

µ

+ ig

⌧

a

2
W

a

µ

(64)

and three gauge fields W

a, in the exact analog of the QCD Lagrangian we studied previously the transformation
properties of W

a are as follows,

~

W

µ

! ~

W

µ

� 1

g

@
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~↵ � ~↵ ⇥ ~

W

µ

(65)

Both ↵ and W are vectors of SU(2), so the last term can be written as a cross product since f

abc

= ✏

abc

. The gauge
invariant Lagrangian then is

L =

✓
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µ

� + ig

1

2
~⌧ · ~
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�

◆† ✓
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� + ig
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◆
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Where

V (�) = µ

2
�

†
� + �(�†

�)2 (67)

By breaking SU(2)_L X U(1)_Y to U(1)_EM we are able to 
explain the generation of mass terms for both gauge bosons 
and fermions in a theoretically robust manner. 


