Acceleration of Charged Particles by Dr.Ken Taylor

W hy Accelerate Particles?

To probe sub-nuclear world

Two-Fold Nature of Particle

Accelerators

1. To provide high energy projectiles for:

- Breaking particles into constituents
 - **Creating new particles according to**

mass - energy relation $E = mc^2$

Pair Production

Pair Annihilation

Two-Fold Nature of Particle Accelerators

Rochester, C. D. and J. G. Wilson; *Cloud Chamber Photographs of the Cosmic Radiation*; Pergamon Press, Ltd., 1952.

7......

Two-Fold Nature of Particle

Accelerators

-

2. To serve as a microscope in which projectiles of ultra-short wavelength probe the sub-nuclear world according to the matter - wave relation $\lambda = \mathbf{h}/\mathbf{p}$.

Natural Particle
"Accelerators"
* 1. Radioactive Sources
• Beta Particle Em ission
Mn - 56
$$\rightarrow$$
 Fe - 56 + β + γ
• Alpha Particle Em ission
Ra - 226 \rightarrow Rn - 222 + He
-4 (α)

Natural Particle

"Accelerators"

.............

...........

Isotope	<i>t</i> _{1/2} (yr)	Decay product	Particle energies (MeV)
³ H	12.26	e-	0.019
²² Na	2.602	y	0.511, 1.275
	Stersstand HL	e+	0.54, 1.8
⁵⁵ Fe	2.6	X-rays	0.0057
⁶⁰ Co	5.26	β	0.315
		y	1.173, 1.332
⁸⁵ Kr	10.76	e- day ou	0.670
	rakes into accou	broy dia editor	0.514
⁹⁰ Sr	28.1	e-	0.546
¹⁰⁶ Ru	1.01	e-	0.039
→ ¹⁰⁶ Rh	30 sec	e-	2.0, 2.4, 3.1, 3.53
		y	0.512, 0.616
¹⁰⁹ Cd	1.23	y man y	0.088
¹³³ Ba	7.2	Ŷ	0.081, 0.303, 0.356
¹³⁷ Cs	30.23	Ŷ	0.662
	of I misimuc. B	e-	0.511, 1.176
²⁰⁷ Bi	30.2	y	0.570, 1.064, 1.770
		β	0.481, 0.554, 0.976, 1.048
²⁴¹ Am	458	y	0.060
	it from ratifoacti	ά	5.486, 5.443, 5.389

Source: CRC Handbook of Chemistry and Physics, 64th ed., Boca Raton: CRC Press, 1983; Radioisotope data chart, Bicron Corp, Newbury, Ohio, 1974.

Fernow, Richard; Introduction to Experimental Particle Physics; Cambridge University Press; 1986; page 119.

NaturalParticle "Accelerators" ▶ 3. Disadvantages of Natura Particle "Accelerators" LACK OF CONTROL OVER PARTICLE: Type ▶ Energy D irection ▶ Flux • Arrival Time

E lectrostatic Accelerators ▶Crookes's Tube ---1st Research Accelerator Used by J.J. Thom son in Measuring e/m of electron

Electrostatic Accelerator

Crookes's Tube

Gouiran, Robert; Particles and Accelerators; World University Press; 1967; page 19.

......

E lectrostatic Accelerators: Cockcroft - W alton

▶ Invented at Fam ous Cavendish Laboratory in 1932 →U sed to produce the 1st nuclear disintegration produced by m an -m ade accelerator $p + Li - 7 \rightarrow \alpha + \alpha + 17$ MeV

E lectrostatic Accelerators: Cockcroft - W alton

▶Cascading Voltage
Doubler

▶Analogous to charging capacitors in parallel and discharging in series

current voltage source)

Cockroftalton Voltage doubler circuit - unit cell W

Cockroft-

Walton Voltage quadrupler circuit

E lectrostatic Accelerators: D isadvantages

▶ E lectrostatic Accelerators lim ited to ≤1 M V (Due to arcing discharges)

All charges accelerated through gaps having electric fields established by potential differences

Radio-Frequency Accelerator:

The LINAC

- First constructed by R.W ideroe in 1928 ----50 keV
- ▶ Idea: replace single wide gap of large potential difference with succession of m any sm aller gaps having sm aller potential differences

Thus:acceleration takes place across a sequence of a large num ber of sm all

steps (rather than one large step)

Circular Accelerators: The Synchrotron

- Idea: Reuse sam e accelerating structure (RF type --- sim ilar to LINAC) to save space and m oney
- C incular array of bending m agnets (causes particles to circulate again and again and obtain energy boosts during each orbit)
- M agnetic field of m agnets increases as particle energy increases in order to m aintain constant radius of m otion

Synchrotron

➤ M agnetic force provides required centripetalacceleration of m oving charges

▶ Required force to maintain fixed radius increases due to increase in velocity and mass of charges

Synchrotron

 Maximum magnetic field of bending magnets approximately 8 - 10 Tesla

Maximum field places lim it on energy of accelerator for given radius or accelerator size

➤ G reater energies thus require greater real estate to reduce required centripetal force (due to larger radius)

Synchrotron Radiation $\rightarrow \Delta E \alpha E^4 / RM^4$ ▶ E lectrons in circular accelerators Protons in circular accelerators (all things being equal, protons suffer 10¹³ tim es less radiative losses than electrons)

Fixed-Target Beam s vs ► Collider beam s en joy much greater collision energies than those for fixed-target experiments ▶ For colliders --- The collision energy is twice the energy of either beam

Ferm ilab

Photo by Ken Taylor

Fermilab Photo by Ken Taylor

TunnelNearAleph

CERN - Geneva, Switzerland Photo by Ken Taylor

Atlas Construction

Site

CERN Photo by Ken Taylor

Atlas Construction

Workers

Dr.Ken Taylor 2001 QuarkNetAssociate Teacher Institute Southem MethodistUniversity