Due 26 September 2013

Consider the equation:

 $x'' + 2 \gamma x' + \omega_0^2 x = Q_0 Exp(i \omega_D t)$

The term $2 \gamma x'$ is the friction (dissipative) term. The term $Q_0 \text{ Exp}(i \omega_D t)$ is the driving term.

> 1) Case: $x'' + 0 + \omega_0^2 x = 0$. 2) Case: $x'' + 2\gamma x' + \omega_0^2 x = 0$ 3) Case: $x'' + 0 + \omega_0^2 x = Q_0 \operatorname{Exp}(i \omega_D t)$ 4) Case: $x'' + 2\gamma x' + \omega_0^2 x = Q_0 \operatorname{Exp}(i \omega_D t)$

Note, you may find it convenient to define: $\omega_1^2 = \omega_0^2 - \gamma^2$. Note, you may use either $Q_0 \cos(\omega_D t)$ or $Q_0 \exp(i \omega_D t)$, but I prefer the Exp format.

Boundary Conditions: x[t] = x0, x'[t] = v0.

For each of the 4 cases above, use Mathematica to obtain the solution including boundary conditions. Simplify the solution to roughly match the form you derived on paper. Plot the solution for a selection of variables that display the key features of the solution.

Here are a few observations I expect you to make.

This is an example—I expect you to come up with more.

- For case 2, display a) under-damped, b) critically damped, and c) over-damped, and plot these curves on the same plot for a selection of BC. Comment.
- For case 3, vary γ and ω_D , and comments. What happens when γ is small? When ω_D , is close to ω_0 ?