Homework \#2: Phys 3320: Prof. Olness Fall 2013

Due 26 September 2013

Consider the equation:

$$
x^{\prime \prime}+2 \gamma x^{\prime}+\omega_{0}{ }^{2} x=Q_{0} \operatorname{Exp}\left(i \omega_{D} t\right)
$$

The term $2 \gamma \mathrm{x}^{\prime}$ is the friction (dissipative) term.
The term $Q_{0} \operatorname{Exp}\left(i \omega_{D} t\right)$ is the driving term.

1) Case: $x^{\prime \prime}+0+\omega_{0}{ }^{2} x=0$.
2) Case: $x^{\prime \prime}+2 \gamma x^{\prime}+\omega_{0}{ }^{2} x=0$
3) Case: $x "+0+\omega_{0}{ }^{2} x=Q_{0} \operatorname{Exp}\left(i \omega_{D} t\right)$
4) Case: $x^{\prime \prime}+2 \gamma x^{\prime}+\omega_{0}{ }^{2} x=Q_{0} \operatorname{Exp}\left(i \omega_{D} t\right)$

Note, you may find it convenient to define: $\omega_{1}{ }^{2}=\omega_{0}{ }^{2}-\gamma^{2}$.
Note, you may use either $\mathrm{Q}_{0} \operatorname{Cos}\left(\omega_{D} t\right)$ or $\mathrm{Q}_{0} \operatorname{Exp}\left(\mathrm{i} \omega_{D} t\right)$, but I prefer the Exp format.
Boundary Conditions: $\mathrm{x}[\mathrm{t}]==\mathrm{x} 0$, $\mathrm{x}^{\prime}[\mathrm{t}]==\mathrm{v} 0$.

For each of the 4 cases above, use Mathematica to obtain the solution including boundary conditions. Simplify the solution to roughly match the form you derived on paper. Plot the solution for a selection of variables that display the key features of the solution.

Here are a few observations I expect you to make.
This is an example-I expect you to come up with more.

- For case 2, display a) under-damped, b) critically damped, and c) over-damped, and plot these curves on the same plot for a selection of BC. Comment.
- For case 3, vary γ and ω_{D}, and comments. What happens when γ is small? When ω_{D}, is close to ω_{0} ?

