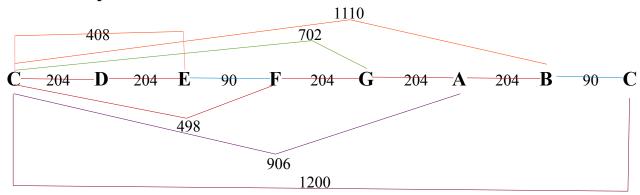

Pythagorean Tuning (1,2,3,4)

All tones found by pure 5ths

Relationship in ratios:


Pythagorean Third: C-E

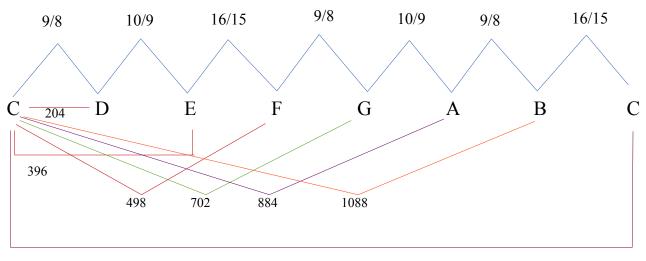
 $C \times 3/2 = G \rightarrow G \times 3/2 = D \rightarrow D \times 1/2 = D \rightarrow D \times 3/2 = A \rightarrow A \times 3/2 = E \rightarrow E \times 1/2 = E$ Calculated out:

 $3/2 \times 3/2 = 9/4 \rightarrow 9/4 \times \frac{1}{2} = 9/8 \rightarrow 9/8 \times 3/2 = 27/16 \rightarrow 27/16 \times 3/2 = 81/32 \rightarrow 81/32 \times 1/2 = 81/64$

E = 81/64 Note, this is close to 80/64 = 10/8 = 5/4 = ideal Major Third

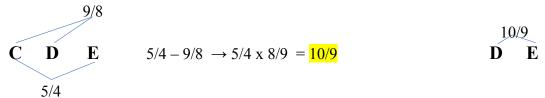
Relationship in cents:

Pythagorean Comma:


Difference between B# arrived at by twelve 5ths (702¢) and C arrived at by seven octaves (1200¢). Pythagorean Comma = $(12\times2¢) = 24¢$

Just Tuning (1,2,3,4,5) Based on pure 5th plus pure 3rd

Relationship in ratios:


OCTAVE: 2/1 FIFTH: 3/2 FOURTH: 4/3 THIRD: 5/4

Major SECOND: 9/8 (best) or 10/9 (acceptable)

1200

Major Second: D-E

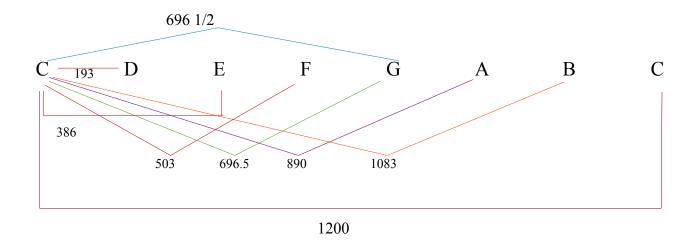
Minor second: E-F

C D E F
$$4/3 - 5/4 = 4/3 \rightarrow 4/3 \times 4/5 = 16/15$$
 E F

Mean Tone Temperament

Based on altering successive 5ths to get pure 3rd

Finding Pure 3rd:


- Spreading 1/4 Didymean Comma (81/80 or 22 cents) over each of the four 5th
- 1/4 of 22 cents is $5\frac{1}{2}$ cents
- So each 5th is 696½ cents instead of 702 cents

Pythagorean: 702 702 702 702 = 2808 C G D A E

Mean tone:
$$696\frac{1}{2}$$
 $696\frac{1}{2}$ $696\frac{1}{2}$ $696\frac{1}{2}$ = 2768 $2768 - 2400$ (two octaves) = 386 Pure $3^{rd} = 386\cancel{\varepsilon}$

OCTAVE: 1200¢ FIFTH: 696½¢ THIRD: 386¢

SECOND: 386/2 = 193 ¢ (meantone: we divide the 3rd evenly in half to find the second)

Temperament: Note, "Meantone" and "Equal" are compromises as they involve intervals that are not interger ratios such as 193 c or $12 \sqrt{2}$. This is in contrast to the "Pythagorean" and "Just" which are **Tunings** and do have interger ratios, albeit not always nice ones such as 81/64.

Sinong Chen Daniel Hawkins Samantha Stewart

Equal Temperament Based on ...