Pythagorean Tuning (1,2,3,4)

All tones found by pure 5ths
Relationship in ratios:
OCTAVE: $2 / 1$
FIFTH: $\quad 3 / 2$
FOURTH: 4/3

Pythagorean Third: C-E

$\mathrm{C} \times 3 / 2=\mathrm{G} \rightarrow \mathrm{Gx} 3 / 2=\mathrm{D} \rightarrow \mathrm{D} \times 1 / 2=\mathrm{D} \rightarrow \mathrm{D} \times 3 / 2=\mathrm{A} \rightarrow \mathrm{A} 3 / 2=\mathrm{E} \rightarrow \mathrm{E} \times 1 / 2=\mathrm{E}$ Calculated out:
$3 / 2 \times 3 / 2=9 / 4 \rightarrow 9 / 4 \times 1 / 2=9 / 8 \rightarrow 9 / 8 \times 3 / 2=27 / 16 \rightarrow 27 / 16 \times 3 / 2=81 / 32 \rightarrow 81 / 32 \times 1 / 2=81 / 64$
$\mathbf{E}=\mathbf{8 1} / \mathbf{6 4}$ Note, this is close to $80 / 64=10 / 8=5 / 4=$ ideal Major Third

Relationship in cents:

Pythagorean Comma:

Difference between B\# arrived at by twelve 5ths (702ф) and C arrived at by seven octaves (1200ф). Pythagorean Comma $=(12 \times 2 \phi)=24 \phi$

Just Tuning (1,2,3,4,5)

Based on pure $5^{\text {th }}$ plus pure $3^{\text {rd }}$

Relationship in ratios:

OCTAVE: $\quad 2 / 1$
FIFTH: $\quad 3 / 2$
FOURTH: $\quad 4 / 3$
THIRD: $\quad 5 / 4$
Major SECOND: 9/8 (best) or 10/9 (acceptable)

Major Second: D-E

Minor second: E-F
4/3
16/15
$\begin{array}{ccc}\text { C } & \text { D } & \text { E } \\ & \text { F }\end{array}$
$4 / 3-5 / 4=4 / 3 \rightarrow 4 / 3 \times 4 / 5=16 / 15$
E F

Mean Tone Temperament

Based on altering successive $5^{\text {ths }}$ to get pure 3 rd

Finding Pure $3^{\text {rd }}$:

- Spreading $1 / 4$ Didymean Comma ($81 / 80$ or 22 cents) over each of the four $5^{\text {th }}$
- $1 / 4$ of 22 cents is $51 / 2$ cents
- So each $5^{\text {th }}$ is $6961 / 2$ cents instead of 702 cents

Pythagorean:	: 702		702	702	702	$=2808$
	C	G	D	A	E	
Mean tone:	6961/2		6961/2	6961/2	$69611 / 2$	$=2768$
	-2400 (tw	$2768-2400$ (two octaves) $=386$		386		

OCTAVE: 1200¢
FIFTH: $\quad 6961 / 2 \phi$
THIRD: 386 ¢
SECOND: $\quad 386 / 2=193 \phi$ (meantone: we divide the $3^{\text {rd }}$ evenly in half to find the second)

1200

Temperament: Note, "Meantone" and "Equal" are compromises as they involve intervals that are not interger ratios such as 193ϕ or ${ }^{12} \sqrt{2}$. This is in contrast to the "Pythagorean" and "Just" which are Tunings and do have interger ratios, albeit not always nice ones such as 81/64.

Equal Temperament

Based on ...

