THIS IS SIMPLE, AND YOU MUST DO IT BY HAND. NO CREDIT FOR COMPUTER PLOTS.

Problem \#1) $x(t)=100 \operatorname{Sin}[1 t]+50 \operatorname{Sin}[2 t]+33 \operatorname{Sin}[3 t]$.
You are given the above wave form $x(t)=100 \operatorname{Sin}[1 t]+50 \operatorname{Sin}[2 t]+33 \operatorname{Sin}[3 t]$.
You will SKETCH (that means roughly accurate, but no overly so) both a time-domain and frequency-domain graph.

Let's start with the time-domain graph. Set up your axes so that the horizontal axis runs from $t=[0,2 \pi]$ seconds, and your vertical axis running from -200 to +200 .
First sketch $100 \operatorname{Sin}[t]$ over the time interval $t=[0,2 \pi]$ seconds.
Next, sketch $50 \operatorname{Sin}[2 t]$ on the same plot.
Then, sketch $33 \operatorname{Sin}[3 t]$ on the same plot.
Then, by eye, add up the three curves, and sketch this with a dark line.
A sample is shown below. (Do this on a large sheet of paper.)

Next, let's do the frequency-domain graph. Set up your axes so that the horizontal axis runs from frequency $=1$ to 3 , and your vertical axis from 0 to 100 .
For each of the 3 frequencies $\{1,2,3\}$, make a bar chart showing the appropriate amplitude $\{100,50,30\}$.

Problem \#2) Repeat the above exercise for:

$$
\mathbf{x}(t)=100 \operatorname{Sin}[1 t]+0 \operatorname{Sin}[2 t]+33 \operatorname{Sin}[3 t] .
$$

