Rotating Lab 3 Resonant Flame Tube

Prof. Tunks and Prof. Olness TBD

> PHYS 1320 Fall 2017

1 Introduction

1.1 Free-Form Lab Investigation

The last five labs of the semester are "free-form" rather than "cook-book" style. I provide you the equipment to investigate different phenomena, and you decide how you are going to explore the questions. Many of these labs are new, so I am looking for you to be creative and come up with interesting methods.

Since the equipment for these five labs is specialized and expensive. Please take good care of the equipment. I only have one set-up for each lab. This means that for week #1, five teams will be working on five different labs, and then we will rotate. There will be a sign-up sheet to determine the rotation.

1.2 Equipment Warnings

As mentioned above, some of this equipment is hi-tech, and very expensive. Please be very careful; pay attention to all equipment warnings. *If you have a question, please ask.* Anyone who is electrocuted or explodes will receive a failing grade for that lab segment.

• When the gas is turned on, be sure the flame is lit so that we don't have unburned gas escaping into the room—this can cause a serious hazard. As a precaution, open the door of the lab room to vent gas and fumes. Also watch for gas leaks at the ends of the tube.

1.3 Required Reading

The following passages from your textbook explain the material for this lab and prelab.

• Vibrating Air Columns p.63-68

2 Experiment

Find <u>at least</u> four resonances for the flame tube. For each resonance, sketch both the pressure and displacement waves in this tube, and find the frequency f, and the wavelength λ , and thus the velocity of sound in the gas using the relation $v = f\lambda$.

- Do you expect the velocity v to be the speed of sound in air? Explain.
- Are the ends of the tube **pressure** nodes or anti-nodes?
- What other observations or comments can you make?