Chapter 11

Rolling, Torque, and
Angular Momentum


http://hyperphysics.phy-astr.gsu.edu/hbase/circ.html

11.2 Rolling as Translational and Rotation Combined

Fig. 11-2 A time-exposure photograph of a rolling disk. Small lights have been at-
tached to the disk, one at its center and one at its edge. The latter traces out a curve called
a cycloid. (Richard Megna/Fundamental Photographs)

« Although the center of the object moves in a straight line parallel to the surface, a
point on the rim certainly does not.

« This motion can be studied by treating it as a combination of translation of the
center of mass and rotation of the rest of the object around that center.



11.2 Rolling

5§ = [:)R . - Veom — @R (smooth rolling motion).
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Fig. 11-4 Rolling motion of a wheel as a combination of purely rotational motion and
purely translational motion. (@) The purely rotational motion: All points on the wheel move
with the same angular speed w. Points on the outside edge of the wheel all move with the
same linear speed v = v . The linear velocities V' of two such points, at top (7') and bottom
(P) of the wheel, are shown. (b) The purely translational motion: All points on the wheel
move to the right with the same linear velocity Vo, (¢) The rolling motion of the wheel is the
combination of (@) and (b).



11.3 The Kinetic Energy of Rolling

If we view the rolling as pure rotation about an axis
through P, then:

* w is the angular speed of the wheel; I, is the rotational
inertia of the wheel about the axis through P.

« Using the parallel-axis theorem (Ip = I, + Mh?):

Ip=1..,+ MR?

« M is the mass of the wheel, |, is its rotational inertia Rotation axis at P
about an axis through its center of mass, and R is the
wheel’s radius, at a perpendicular distance h.

« Using the relation v, = wR, we get:
_1 2 4 1an2
K = 5lonow* + My,

A rolling object, therefore has two types of kinetic energy:
1. Arotational kinetic energy due to rotation about the center of mass (= % | ., ,W?);
2. Atranslational kinetic energy due to translation of the center of mass (= %2 MvZ2_,,,,)



11.4: The Forces of Rolling:
Friction and Rolling

A wheel rolls horizontally without sliding while
accelerating with linear acceleration a_,,,. A static
frictional force f, acts on the wheel at P, opposing
its tendency to slide.

The magnitudes of the linear acceleration a,,,,
and the angular acceleration a can be related by:

(on = @R (smooth rolling motion)
where R is the radius of the wheel.

If the wheel does slide when the net force acts on
it, the frictional force that acts at P in Fig. 11-3is a
kinetic frictional force, f, .The motion then is not
smooth rolling, and the above relation does not
apply to the motion.



11.4: The Forces of Rolling: Rolling Down a Ramp

I A round uniform body of radius
R rolls down a ramp. The forces
that act on it are the gravitational
force Fy, a normal force Fy, and

a frictional force f, pointing up

The torque dueto f,  the ramp.
determines the

Forces Fy and Fy cos
merely balance.

Forces Fg sin 6 and f :F;,sin 0
determine the linear
acceleration down

angular acceleration
the ramp. around the com.
0
_ _ g sin 0
oot = 10— Rl iy i = -
net & omx = T Tom/ MR?

Ueom = LTR — fs — _Icnm Ri



11.4: The Forces of Rolling: Rolling Down a Ramp

« A rotating object has kinetic energy K — 1 |a)2 associated with its
rotational motion alone. 2
— It may also have translational kinetic energy: K =1 Mvy?.

trans

« In problems involving energy conservation with rotating objects, both
forms of kinetic energy must be considered.

— For rolling objects, the two are related:
— The relation depends on the rotational inertia.

A solid ball rolls down a hill.  Energy bar graphs  Equation for energy conservation:

How fast is it moving at the

N v 1 1 1 1(2 b
bottom? o Mgh:—Mvz+—la)2:—Mv2+—[—MR2)[3) =— W’
W11 2 ) ) 2\5 R/ 10
O.
U Kens St Solution:
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Example: Rolling Down a Ramp

y

Forces Fy and Fgcos @
merely balance.

The torque due to F;
determines the

. angular acceleration
around the com.

Forces ,E;; sin 6 and £, ?gsin 0
determine the linear
acceleration down

the ramp.

A uniform ball, of mass M = 6.00 kg and radius R,

rolls smoothly from rest down a ramp at angle

© = 30.0°.

a) The ball descends a vertical height h=1.20 m to
reach the bottom of the ramp. What is its speed
at the bottom?

Calculations: Where |, is the ball’s rotational
inertia about an axis through its center of mass, v,
Is the requested speed at the bottom, and w is the
angular speed there.

Substituting, v.,/R for w, and 2/5 MR? for |

Veom = V()gh = V(1)(9.8 m/s2)(1.20 m)
= 4.10 m/s. (Answer)

com1

b) What are the magnitude and direction of
the frictional force on the ball as it rolls
down the ramp?

Calculations: First we need to determine

the ball’s acceleration a ., , :

gsin gsin 6
ﬂ' e —
omr 14+ 1, /MR | + :MRYMR?
9.8 m/s?) sin 30.0°
_ QImS)sn BT somi
| +2

We can now solve for the frictional force:

acomr 2
_ 3 ) comx __12
f 5 Icom R MR R B sMacom,.r

~S(600kg)(-330mis) = 840N, (Answer)



j}
Clicker question

A hollow ball and a solid ball roll without slipping down
an inclined plane. Which ball reaches the bottom of
the incline first?

A. The solid ball reaches the bottom first.
B. The hollow ball reaches the bottom first.
C. Both balls reach the bottom at the same time.

D. We can’t determine this without information about the mass.



11.5: The Yo-Yo

L, Instead of rolling down a ramp at angle f with the horizontal, the yo-yo rolls
down a string at angle # = 90" with the horizontal.

2. Instead of rolling on its outer surface at radius R, the yo-yo rolls on an axle of 9
radius Ry (Fig. 11-9a).

3. Instead of being slowed by frictional force . the yo-yo is slowed by the force
['onit from the string (Fig. 11-9b).

The analysis would agam lead us to Eq. 11-10. Therefore, let us just change the
notation in Eq. 11-10 and set = 90° to write the linear acceleration as /

g )
- | 1113
oo = MRS (1)

where Ly, 1S the yo-yo's rotational inertia about its center and M is its mass. A yo-
yo has the same downward acceleration when 1t is climbing back up. » o

Fig. 11-9 (a) A yo-yo,shown in cross

section. The string, of assumed negligible
thickness,1s wound around an axle of ra-
dius Ry. (b) A free-body diagram for the

falling yo-yo. Only the axle is shown.



11.6: Torque Revisited

Cross rinto F
TorqueTis in the T
positive z direction. F (redrawn, with
0 x 7 tail at origin) \ 0 y

=]

¢

T F
Line of action of F
(a) (b) (¢)

—

T=71 X F (torque defined).

= rFsin ¢,|

Fig. 11-10 (a) A force F, lying in an x-y plane, acts on a particle at point A. (b) This force produces a
torque T =r x F on the particle with respect to the origin O. By the right-hand rule for vector (cross)
products, the torque vector points in the positive direction of z. Its magnitude is given by rF, in (b)

and by 7. F in (c).



3.8: Multiplying vectors: Vector (Cross) Product

The vector product between two
vectors a and b can be written as:

—

axhb

The result is a new vector c,
which is:

¢ = ab sin ¢,

Here a and b are the magnitudes
of vectors a and b respectively,
and @ is the smaller of the two
angles between a and b vectors.

The right-hand rule allows us to find
the direction of vector c.

Fig. 3-19 [lllustration of the right-hand rule for vector products. (a) Sweep vector @ into
vector b with the fingers of your right hand. Your outstretched thumb shows the direction

of vector¢ = a X b.



3.8: Multiplying vectors: Vector product in unit-vector notation:
@%b =(ad+a,j + a,k) x (b + b, + b.k)

- (ﬁyb L b_vﬂz)i t(ahy - bzﬂx]j T (ﬂ.rb}- N bxﬂ},)f(.
Note that: ﬂxi X brl — ﬂxbx(i X 1] =)

~
]

And, 01 X b},j = ﬂxb},(i X])= ﬂxb_vlz



Example: Vector product

[n Fig. 3-20, vector @ lies in the xy plane, has a magnitude of
18 units and points in a direction 250° from the positive di-
rection of the x axis. Also, vector b has a magnitude of
12 units and points in the positive direction of the 7 axis. What
is the vector product T =@ X b7

Sweep @ into b.

This is the resulting
vector, perpendicular to
both @ and b.

=3 ¥

Fig. 3-20 Vector ¢ (in the xy plane) is the vector (or cross)
product of vectors @ and b.

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and

the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write
¢ =absin ¢ =(18)(12)(sin90°) =216.  (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of @ and b (the line on which € is shown) such that
your fingers sweep @ into b. Your outstretched thumb then

gives the direction of €. Thus, as shown in the figure, € lies in
the xy plane. Because its direction i1s perpendicular to the

direction of @ (a cross product always gives a perpendicular

vector), it is at an angle of
250° = 90° = 160° (Answer)

from the positive direction of the x axis.



Example: Vector product; unit vector notation

If@ =31 —4jand b = —2i + 3k, whatis€ =d@ x b?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

Calculations: Here we write
7= (31 — 4)) x (=2i + 3k)

= 3} * (—2;} + 3; X :'“:l + (_‘4]]‘ X (_21}

+ (—4j) x 3k. \

We next evaluate each term with Eq. 3-27. finding the
direction with the right-hand rule. For the first term here,
the angle ¢ between the two vectors being crossed is (). For
the other terms, ¢ 1s 90°. We find

€= —6(0) + 9(—]) + 8(—k) — 12i
= —12i — 9j — 8k. (Answer)
This vector ¢ is perpendicular to both @ and b, a fact you
can check by showing that ¢-@ =0 and ¢- b = 0: that is,

there is no component of ¢ along the direction of either
daorb.



Example

Fig. 11-11 z z C_alculations: Becau_sg we want the torque;
] /i ~ with respect to the origin O, the vector required
// ?C__ 1 gy =150° for each cross product is the given position
/ v OESe—e— vectorT.
(5) f To determine the angle 6 between the direction

of r and the direction of each force, we shift the
& force vectors of Fig. 11-11, each in turn, so that
their tails are at the origin.
Figures b, ¢, and d, which are direct views of the
xz plane, show the shifted force vectors F,, F,,
and F5, respectively.

(a)

(9 v In Fig. d, the angle between the directions of
i and is 90°. Now, we find the magnitudes of the
i torques to be:
6 = 30°] B

sy r = rfsingy = (30 m)20N)(sin130°) = 30N m,
n=rhsing, = (30m)(20 N)(sin 120°) = 32N+ m,
7= rhysin g = (3.0 m)(20 N)(sin 90°)

=60N-m, (Answer)

(d)

fall

J o -




11.7 Angular Momentum

z

—

{=7x p=m(r X V) (angular momentum defined),

C(=TXP)

b (redrawn, with
tail at origin)

y L=rmvsing =rp =rmv, =y p=rmy

X
(a)
z Fig. 11-12 Defining angular momen-
A tum. A particle passing through point A has
> linear momentum p (= mV), with the vec-
tor p lying in an xy plane. The particle has
0 ) angular momentum € (= 7 X p) with re-
spect to the origin O. By the right-hand
=7 rule, the angular momentum vector points
* ) - in the pc::sn,we direction of z. (@) The mag-
: ~ AP nitude of € is givenby € = rp, = rmv,
R— (b) The magnitude of T is also given by
X

(b) C=r.p=rmv.



Example: Angular Momentum

Figure 11-13 shows an overhead view of two particles moving
at constant momentum along horizontal paths. Particle 1, with
momentum magnitude p; = 5.0 kg - m/s, has position vector 7
and will pass 2.0 m from point O. Particle 2, with momentum
magnitude p, = 2.0 kg - m/s, has position vector 7, and will pass
4.0 m from point O. What are the magnitude and direction of
the net angular momentum L about point O of the two-
particle system?

KEY IDEA

To find _E: we can first find the individual angular momenta
¢, and ¢, and then add them. To evaluate their magnitudes,
we can use any one of Eqs. 11-18 through 11-21. However,
Eq. 11-21 is easiest, because we are given the perpendicular
distances r,, (=2.0m) and r,, (= 4.0m) and the momen-

tum magnitudes p; and p,.

Calculations: For particle 1, Eq. 11-21 yields
€, =r,pr = (20m)(5.0kg-m/s)
=10 kg-m%s.
To find the direction of vector {7; we use Eq. 11-18 and the
right-hand rule for vector products. For r; X pj, the vector
product is out of the page, perpendicular to the plane of Fig.

11-13. This is the positive direction, consistent with the
counterclockwise rotation of the particle’s position vector

Fig. 11-13 Two particles
pass near point O.

7 around O as particle 1 moves. Thus, the angular momen-
tum vector for particle 1 is

¢, = +10 kg- m?s.
Similarly, the magnitude of f; I8
€, =r,p; = (40m)(2.0 kg-m/s)
= 8.0 kg-m?s,

and the vector product ; X pj is into the page, which is the
negative direction, consistent with the clockwise rotation of
7, around O as particle 2 moves. Thus, the angular momen-
tum vector for particle 2 is

€, = —8.0 kg-m?s.
The net angular momentum for the two-particle system is
L=+¢+¢=+10kg-m?s + (—8.0 kg m?%s)
= +2.0 kg-m?s. (Answer)

The plus sign means that the system’s net angular momen-
tum about point O is out of the page.



11.8: Newton’s 2" Law in Angular Form

The (vector) sum of all the torques acting on a particle is equal to the time
rate of change of the angular momentum of that particle.

— L de dv  dr
€ =m(r X V), — = 7 v
} " Hl(f X o + " X L)

=m(r¥r Xda—+ vV XxXYV).

=m(7¥ Xd)=T X ma.

=T X Foue = X(7 x F).

L de
Toet — —df (single particle)




Example: Torque, Penguin Fall

¥
Fig. 11-14 "~

O
7€

) 3
-

In Fig. 11-14, a penguin of mass m falls from rest at point A,
a horizontal distance D from the origin O of an xyz coordi-
nate system. (The positive direction of the z axis is directly
outward from the plane of the figure.)

(a) Whatis the angular momentum { of the falling penguin
about 0?

Calculations: The magnitude of | can be found

by using:
=r,p=r,my

The perpendicular distance between O and an
extension of vector p is the given distance D. The
speed of an object that has fallen from rest for a
time t is v = gt. Therefore,

€ = rymv = Dmgt.

To find the direction of we use the right-hand rule
for the vector product, and find that the direction
Is into the plane of the figure. The vector changes
with time in magnitude only; its direction remains
unchanged.

(b) About the origin O, what is the torque on the
penguin due to the gravitational force ?

Calculations: T = r| F ™= 7=DF, = Dmg

Using the right-hand rule for the vector product
we find that the direction of t is the negative
direction of the z axis, the same as I.



11.9: The Angular Momentum of a System of Particles

The total angular momentum L of the system is the (vector) sum of the
angular momenta | of the individual particles (here with label i):

E:?1+?2+F3+".+?r1:2?i'
i=1

With time, the angular momenta of individual particles may change
because of interactions between the particles or with the outside.

dl & dt,
dt =

H
21 d; = 2 ?netj'
i=1

I

Therefore, the net external torque acting on a system of particles is equal
to the time rate of change of the system’s total angular momentum L.

. dL

Tonet — —df (system of particles)



11.10: Angular Momentum of a Rigid Body Rotating About a Fixed Axis

Z

Fig. 11-15 &>

(b)

a) Arigid body rotates about a z axis with angular speed w.
A mass element of mass Am, within the body moves
about the z axis in a circle with radius r,; . The mass
element has linear momentum p; and it is located relative
to the origin O by position vector r,. Here the mass
element is shown when r; is parallel to the x axis.

b) The angular momentum [, with respect to O, of the mass
element in (a). The z component | ;, is also shown.

ti= (ry)(p)(sin 90°) = (r;)(Am; v;)
€. = {€;sin 0 = (r;sin 0)(Am; v;) = r ; Am; v,

i

n n
L — E ff:’ = 2 5‘”“ Villi = E ‘fi”?f(mr_f}rj_f
i=1 i=1 =1

Y

’ H
= w ( > ,ﬁm,-rf,-}
i=1

¥

L=1Iw (rigid body, fixed axis).



11.10: More Corresponding Variables and Relations for Translational
and Rotational Motion?2

Translational Rotational

Force F Torque (=T XF)
Linear momentum P Angular momentum ((=7 x p)
Linear momentum® P(=2p, Angular momentum” L(=37)
Linear momentum” P=Mv,, Angular momentum* L=lw

S dP dL
Newton’s second law” Fpet = —— Newton's second law” Tt = ——

d i

Conservation law* P = aconstant | Conservation law’ L. = a constant

“See also Table 10-3.

*For systems of particles, including rigid bodies.

‘For arigid body about a fixed axis, with L being the component along that axis.
For a closed, isolated system.



11.11: Conservation of Angular Momentum

If the net external torque acting on a system is zero, the
angular momentum L of the system remains constant, no
matter what changes take place within the system.

—

L = aconstant  (isolated system)

(

— —

L. = Lf (1solated system

[



11.11: Conservation of Angular Momentum

If the component of the net external torque on a system along a certain axis is zero,
then the component of the angular momentum of the system along that axis cannot
change, no matter what changes take place within the system.

Fig.11-16 7
|
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(b)

Rotation axis

(a)

(a) The student has a relatively large rotational inertia about the rotation
axis and a relatively small angular speed.

(b) By decreasing his rotational inertia, the student automatically increases
his angular speed. The angular momentum of the rotating system
remains constant or unchanged.



Example

Fig. 11-20 Its angular momentum is now - L. The inversion results
I, in the student, the stool, and the wheel’s center rotating
j[ﬁ — together as a composite rigid body about the stool’s
@ L J, rotation axis, with rotational inertia 1,= 6.8 kg m2. With
T=ow, ' what angular speed w,, and in what direction does the
' composite body rotate after the inversion of the wheel?

Calculations: The conservation of L, is represented with

“ ~ N vectors in Fig. 11-20c. We can also write this conservation in
TZ ~ l - lerms of components along a vertical axis as

wh ] —Swh

Lh,_f + Lwh.f = Lb.r' + Lwh,i' (l 1'35)

where i and f refer to the initial state (before inversion of
Figure 11-20 a shows a student, sitting on a stool the wheel) and the final state (after inversion). Because
that can rotate freely about a vertical axis. The inversion of the wheel inverted the angular momentum
student, initially at rest, Is holding a bicycle wheel  vector of the wheel’s rotation, we substitute —L,,; for L,, .
whose rim is loaded with lead and whose rotational  Then, if we set L,; = 0 (because the student, the stool. and
inertia 1,,,, about its central axis is 1.2 kg m* (The  the wheel’s center were initially at rest). Eq. 11-35 yields

rim contains lead in order to make the value of I, | ool

substantial.) The wheel is rotating at an angular bf S Twhi

speed w,, of 3.9 rev/s; as seen from overhead, the  Using Eq. 11-31. we next substitute /,w, for L, and [,
rotation is counterclockwise. The axis of the wheel  for L, ; and solve for w,, finding

is vertical, and the angular momentum L, of the

~lyh

wheel points vertically upward. The student now Wy, = W,
inverts the wheel (Fig. 11-20b) so L, that, as seen Iy
from overhead, it is rotating clockwise. (2)(1.2 kg-m?)(3.9 rev/s)

= 6.8 ka1’ = l.4revls. (Answer)



Example

Fig. 11-21 0.
ig Do,

In Fig. 11-21, a cockroach with mass m rides on a disk of mass
6.00m and radius R. The disk rotates like a merry-go-round

around its central axis at angular speed w; = 1.50 rad/s. The
cockroach is initially at radius r = 0.800R, but then it crawls
out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

Rotation axis

Calculations: We want to find the final angular speed. Our
key is to equate the final angular momentum L, to the initial
angular momentum L;, because both involve angular speed.
They also involve rotational inertia /. So, let’s start by finding
the rotational inertia of the system of cockroach and disk
before and after the crawl.

The rotational inertia of a disk rotating about its central
axis i1s given by Table 10-2¢ as %MRQ. Substituting 6.00m for
the mass M. our disk here has rotational inertia

I; = 3.00mR> (11-36)

(We don’t have values for m and R, but we shall continue
with physics courage.)

From Eq. 10-33, we know that the rotational inertia of
the cockroach (a particle) is equal to mr2. Substituting the
cockroach’s initial radius (r = 0.800R) and final radius
(r = R), we find that its initial rotational inertia about the

rotation axis is
L; = 0.64mR? (11-37)

and its final rotational inertia about the rotation axis is

I;= mR

(11-38)

So, the cockroach—disk system initially has the rotational
inertia

[ =1+ I; =3.64mR>, (11-39)
and finally has the rotational inertia
I =1, + I, = 400mR*~ (11-40)

Next, we use Eq. 11-31 (L = Iw) to write the fact that
the system’s final angular momentum L, is equal to the sys-
tem’s initial angular momentum L;:

oy = Lo,
or 4.00mR*w; = 3.64mR*(1.50 rad/s).

After canceling the unknowns m and R, we come to

wr = 1.37 rad/s. (Answer)

Note that the angular speed decreased because part of the
mass moved outward from the rotation axis, thus increasing
the rotational inertia of the system.



11.12: Precession of a Gyroscope
(a) A non-spinning gyroscope falls by rotating in an xz . G ?
plane because of torque T. T
dL .
T =——=Mgrsin90° = Mgr
df Support

(b) A rapidly spinning gyroscope, with angular momentum,
L, precesses around the z axis. The precessional motion is z
In the xy plane.

(c) The change in angular momentum, dL/dt, leads to a
rotation of L about O.

dl. = 7dt = Mgr dt.

(b)

dLl Mgr dt

—_— —_— Circular path
d('t L fEﬂ taken by head

of T vector i
Q = ddldt. — 1,
PO SN aed—
¢- >

Q= Mgr / i

] (precession rate) dt
0]

(c)



