
Chapter 11 

Rolling, Torque, and  

Angular Momentum 

Hyperphysics: Circular Motion and Rotation 

http://hyperphysics.phy-astr.gsu.edu/hbase/circ.html


11.2 Rolling as Translational and Rotation Combined 

 

 

• Although the center of the object moves in a straight line parallel to the surface, a 

point on the rim certainly does not.  

 

• This motion can be studied by treating it as a combination of translation of the 

center of mass and rotation of the rest of the object around that center. 



11.2 Rolling 



11.3 The Kinetic Energy of Rolling 

• If we view the rolling as pure rotation about an axis 

through P, then: 

 

 

 

• ω is the angular speed of the wheel; IP is the rotational 

inertia of the wheel about the axis through P.  

 

• Using the parallel-axis theorem (IP = Icom + Mh2): 

 

 

 

• M is the mass of the wheel, Icom is its rotational inertia 

about an axis through its center of mass, and R is the 

wheel’s radius, at a perpendicular distance h. 

 

• Using the relation vcom = ωR, we get: 

 

 

A rolling object, therefore has two types of kinetic energy:  

1. A rotational kinetic energy due to rotation about the center of mass (= ½ Icomω
2); 

2. A translational kinetic energy due to translation of the center of mass (= ½ Mv2
com) 



11.4: The Forces of Rolling: 

Friction and Rolling 

A wheel rolls horizontally without sliding while 

accelerating with linear acceleration acom. A static 

frictional force fs acts on the wheel at P, opposing 

its tendency to slide. 

 

The magnitudes of the linear acceleration acom, 

and the angular acceleration a can be related by: 

 

 

 

where R is the radius of the wheel. 

 

If the wheel does slide when the net force acts on 

it, the frictional force that acts at P in Fig. 11-3 is a 

kinetic frictional force, fk .The motion then is not 

smooth rolling, and the above relation does not 

apply to the motion. 



11.4: The Forces of Rolling: Rolling Down a Ramp 

A round uniform body of radius 

R rolls down a ramp. The forces 

that act on it are the gravitational 

force Fg, a normal force FN, and 

a frictional force fs pointing up 

the ramp.  



• A rotating object has kinetic energy                            associated with its 

rotational motion alone. 

– It may also have translational kinetic energy: 

 

• In problems involving energy conservation with rotating objects, both 

forms of kinetic energy must be considered. 

– For rolling objects, the two are related: 

– The relation depends on the rotational inertia. 
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A solid ball rolls down a hill. 

How fast is it moving at the 

bottom? 

Equation for energy conservation: Energy bar graphs 

Solution: 
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11.4: The Forces of Rolling: Rolling Down a Ramp 



Example: Rolling Down a Ramp 

A uniform ball, of mass M = 6.00 kg and radius R, 

rolls smoothly from rest down a ramp at angle  

Ө = 30.0°. 

a) The ball descends a vertical height h=1.20 m to 

reach the bottom of the ramp. What is its speed 

at the bottom? 

 

Calculations: Where Icom is the ball’s rotational 

inertia about an axis through its center of mass, vcom 

is the requested speed at the bottom, and w is the 

angular speed there. 

Substituting, vcom/R for ω, and 2/5 MR2 for Icom,: 

b) What are the magnitude and direction of 

the frictional force on the ball as it rolls 

down the ramp? 

 

Calculations: First we need to determine 

the ball’s acceleration acom,x : 

 

 

 

 

 

 

 

We can now solve for the frictional force: 



Clicker question 

A hollow ball and a solid ball roll without slipping down 

an inclined plane. Which ball reaches the bottom of 

the incline first? 

A.  The solid ball reaches the bottom first. 

B.  The hollow ball reaches the bottom first. 

C. Both balls reach the bottom at the same time. 

D. We can’t determine this without information about the mass. 



11.5: The Yo-Yo 



11.6: Torque Revisited 

Fig. 11-10 (a) A force F, lying in an x-y plane, acts on a particle at point A. (b) This force produces a 

torque τ = r x F on the particle with respect to the origin O. By the right-hand rule for vector (cross) 

products, the torque vector points in the positive direction of z. Its magnitude is given by       in (b) 

and by        in (c).  



 

 

 

The vector product between two 

vectors a and b can be written as:  

The right-hand rule allows us to find 

the direction of vector c. 

3.8: Multiplying vectors: Vector (Cross) Product 

The result is a new vector c, 

which is: 

Here a and b are the magnitudes 

of vectors a and b respectively, 

and Φ is the smaller of the two 

angles between a and b vectors. 



3.8: Multiplying vectors: Vector product in unit-vector notation: 

 
Note that: 

 

  

And,  



Example: Vector product 



Example: Vector product; unit vector notation 



Example 

Calculations: Because we want the torques 

with respect to the origin O, the vector required 

for each cross product is the given position 

vector r.  

To determine the angle θ between the direction 

of r and the direction of each force, we shift the 

force vectors of Fig. 11-11, each in turn, so that 

their tails are at the origin.  

Figures b, c, and d, which are direct views of the 

xz plane, show the shifted force vectors F1, F2, 

and F3, respectively.  

 

In Fig. d, the angle between the directions of 

and is 90°. Now, we find the magnitudes of the 

torques to be: 



11.7 Angular Momentum 



Example: Angular Momentum 



11.8: Newton’s 2nd Law in Angular Form 

The (vector) sum of all the torques acting on a particle is equal to the time 

rate of change of the angular momentum of that particle. 



Example: Torque, Penguin Fall Calculations: The magnitude of l can be found 

by using:  

 

 

The perpendicular distance between O and an 

extension of vector p is the given distance D. The 

speed of an object that has fallen from rest for a 

time t is v = gt. Therefore,  

 

 

 

To find the direction of we use the right-hand rule 

for the vector product, and find that the direction 

is into the plane of the figure. The vector changes 

with time in magnitude only; its direction remains 

unchanged. 

 

(b) About the origin O, what is the torque on the 

penguin due to the gravitational force ? 

 

Calculations: 

 

Using the right-hand rule for the vector product 

we find that the direction of t is the negative 

direction of the z axis, the same as l.  



11.9: The Angular Momentum of a System of Particles 

The total angular momentum L of the system is the (vector) sum of the 

angular momenta l of the individual particles (here with label i): 

 

 

 

 

With time, the angular momenta of individual particles may change 

because  of interactions between the particles or with the outside. 

 

 

 

 

 

Therefore, the net external torque acting on a system of particles is equal 

to the time rate of change of the system’s total angular momentum L. 
 



11.10: Angular Momentum of a Rigid Body Rotating About a Fixed Axis 

a) A rigid body rotates about a z axis with angular speed w.  

A mass element of mass Δmi within the body moves 

about the z axis in a circle with radius       . The mass 

element has linear momentum pi  and it is located relative 

to the origin O by position vector ri. Here the mass 

element is shown when        is parallel to the x axis. 

 

b) The angular momentum li, with respect to O, of the mass 

element in (a). The z component l iz is also shown. 



11.10: More Corresponding Variables and Relations for Translational 

and Rotational Motiona 



11.11: Conservation of Angular Momentum 

If the net external torque acting on a system is zero, the 

angular momentum L of the system remains constant, no 

matter what changes take place within the system. 



11.11: Conservation of Angular Momentum 

If the component of the net external torque on a system along a certain axis is zero, 

then the component of the angular momentum of the system along that axis cannot 

change, no matter what changes take place within the system. 

(a) The student has a relatively large rotational inertia about the rotation 

axis and a relatively small angular speed. 

 

(b) By decreasing his rotational inertia, the student automatically increases 

his angular speed. The angular momentum of the rotating system 

remains constant or unchanged. 



Example 

Figure 11-20 a shows a student, sitting on a stool 

that can rotate freely about a vertical axis. The 

student, initially at rest, is holding a bicycle wheel 

whose rim is loaded with lead and whose rotational 

inertia Iwh about its central axis is 1.2 kg m2. (The 

rim contains lead in order to make the value of Iwh 

substantial.) The wheel is rotating at an angular 

speed wh of 3.9 rev/s; as seen from overhead, the 

rotation is counterclockwise. The axis of the wheel 

is vertical, and the angular momentum Lwh of the 

wheel points vertically upward. The student now 

inverts the wheel (Fig. 11-20b) so Lwh that, as seen 

from overhead, it is rotating clockwise.  

Its angular momentum is now - Lwh. The inversion results 

in the student, the stool, and the wheel’s center rotating 

together as a composite rigid body about the stool’s 

rotation axis, with rotational inertia Ib= 6.8 kg m2. With 

what angular speed wb and in what direction does the 

composite body rotate after the inversion of the wheel?  



Example 



11.12: Precession of a Gyroscope 

 

(b) A rapidly spinning gyroscope, with angular momentum, 

L, precesses around the z axis. The precessional motion is 

in the xy plane.  

 

(c) The change in angular momentum, dL/dt, leads to a 

rotation of L about O. 

 

 

(a) A non-spinning gyroscope falls by rotating in an xz 

plane because of torque τ. 


