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23-1  Electric Flux 

Electric field vectors and field 

lines pierce an imaginary, 

spherical Gaussian surface 

that encloses a particle with 

charge +Q. 

Now the enclosed particle 

has charge +2Q. 

Can you tell what the 

enclosed charge is now? 

Answer: -0.5Q 
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23-1  Electric Flux 

The area vector dA for an area element (patch element) on a surface is a vector 

that is perpendicular to the element and has a magnitude equal to the area dA of the 

element. 

 

The electric flux dϕ through a patch element with area vector dA is given by a dot 

product: 

(a) An electric field vector pierces a 

small square patch on a flat 

surface.  

(b) Only the x component actually 

pierces the patch; the y component 

skims across it.  

(c) The area vector of the patch is 

perpendicular to the patch, with a 

magnitude equal to the patch’s 

area. 
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Now we can find the total flux by integrating the 

dot product over the full surface. 

The total flux through a surface is given by 

 

 

 

The net flux through a closed surface (which is 

used in Gauss’ law) is given by 

 

 

 

where the integration is carried out over the 

entire surface.  

 

 

 

 

23-1  Electric Flux 
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23-1  Electric Flux 

Flux through a closed cylinder, uniform field 
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23-2  Gauss’ Law 

Gauss’ law relates the net flux ϕ of an electric 

field through a closed surface (a Gaussian 

surface) to the net charge qenc that is enclosed by 

that surface. It tells us that 

 

 

we can also write Gauss’ law as 

Two charges, equal in magnitude but opposite in sign, and 

the field lines that represent their net electric field. Four 

Gaussian surfaces are shown in cross section. 
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23-2  Gauss’ Law 

Surface S1.The electric field is outward for all 

points on this surface. Thus, the flux of the electric 

field through this surface is positive, and so is the 

net charge within the surface, as Gauss’ law 

requires 

 

Surface S2.The electric field is inward for all 

points on this surface. Thus, the flux of the electric 

field through this surface is negative and so is the 

enclosed charge, as Gauss’ law requires. 
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Two charges, equal in magnitude but opposite in sign, and 

the field lines that represent their net electric field. Four 

Gaussian surfaces are shown in cross section. 



23-2  Gauss’ Law 

Surface S3.This surface encloses no charge, and 

thus qenc = 0. Gauss’ law requires that the net flux 

of the electric field through this surface be zero. 

That is reasonable because all the field lines pass 

entirely through the surface, entering it at the top 

and leaving at the bottom. 

 

Surface S4.This surface encloses no net charge, 

because the enclosed positive and negative 

charges have equal magnitudes. Gauss’ law 

requires that the net flux of the electric field 

through this surface be zero. That is reasonable 

because there are as many field lines leaving 

surface S4 as entering it. 
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Two charges, equal in magnitude but opposite in sign, and 

the field lines that represent their net electric field. Four 

Gaussian surfaces are shown in cross section. 



23-3  A Charged Isolated Conductor  

(a) Perspective view   

 

(b) Side view of a tiny portion of a large, isolated 

conductor with excess positive charge on its 

surface. A (closed) cylindrical Gaussian surface, 

embedded perpendicularly in the conductor, 

encloses some of the charge. Electric field lines 

pierce the external end cap of the cylinder, but 

not the internal end cap. The external end cap 

has area A and area vector A. 
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23-4  Applying Gauss’ Law: Cylindrical Symmetry  

Figure  shows a section of an infinitely long cylindrical 

plastic rod with a uniform charge density λ. The 

charge distribution and the field have cylindrical 

symmetry. To find the field at radius r, we enclose a 

section of the rod with a concentric Gaussian cylinder 

of radius r and height h.  

The net flux through the cylinder from Gauss’ Law 

reduces to 

 

 

yielding  

 A Gaussian surface in the 

form of a closed cylinder 

surrounds a section of a very 

long, uniformly charged, 

cylindrical plastic rod. 
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23-5  Applying Gauss’ Law: Planar Symmetry  

Figure (a-b) shows a portion of a thin, infinite, non-

conducting sheet with a uniform (positive) surface 

charge density σ. A sheet of thin plastic wrap,  

uniformly charged on one side, can serve as a  

simple model. Here,  

 

Is simply EdA and thus Gauss’ Law, 

 

 

 

becomes 

        

where σA is the charge enclosed by the Gaussian 

surface. This gives 

 

  

Non-conducting Sheet 
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23-5  Applying Gauss’ Law: Planar Symmetry  

Figure (a) shows a cross section of a thin, 

infinite conducting plate with excess 

positive charge. Figure (b) shows an 

identical plate with excess negative charge 

having the same magnitude of surface 

charge density σ1.  

Suppose we arrange for the plates of Figs. 

a and b to be close to each other and 

parallel (c). Since the plates are 

conductors, when we bring them into this 

arrangement, the excess charge on one 

plate attracts the excess charge  

Two conducting Plates 

on the other plate, and all the excess charge moves onto the inner faces of the 

plates as in Fig.c. With twice as much charge now on each inner face, the electric 

field at any point between the plates has the magnitude 

© 2014 John Wiley & Sons, Inc. All rights reserved. 



23-6  Applying Gauss’ Law: Spherical Symmetry  

A thin, uniformly charged, spherical 

shell with total charge q, in cross 

section. Two Gaussian surfaces S1 

and S2 are also shown in cross 

section. Surface S2 encloses the 

shell, and S1 encloses only the 

empty interior of the shell. 

In the  figure, applying Gauss’ law to surface 

S2, for which r ≥ R, we would find that 

 

 

 

 

And, applying Gauss’ law to surface S1, for 

which r < R,  
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23-6  Applying Gauss’ Law: Spherical Symmetry  

Inside a sphere with a uniform volume charge density, the 

field is radial and has the magnitude 

 

 

 

 

 

where q is the total charge, R is the sphere’s radius, and r is 

the radial distance from the center of the sphere to the point 

of measurement as shown in figure. 

A concentric spherical Gaussian surface 

with r > R is shown in (a). A similar 

Gaussian surface with r < R is shown in (b). 
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23  Summary 

Gauss’ Law 
• Gauss’ law is 

 

 

• the net flux of the electric field 

through the surface: 

 

 

• Infinite non-conducting sheet 

 

 

 

• Outside a spherical shell of charge 

 

 

 

•  Inside a uniform spherical shell 

 

 

 

• Inside a uniform sphere of charge 

 

 

Eq. 23-15 

Eq. 23-20 

Applications of Gauss’ Law 
• surface of a charged conductor 

 

 

 

• Within the surface E=0. 

• line of charge 

 

 

 

Eq. 23-6 

Eq. 23-11 

Eq. 23-6 

Eq. 23-12 

Eq. 23-13 

Eq. 23-16 
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