Chapter 23

Gauss’ Law
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23-1 Electric Flu

X

A
“.‘ Guass’ law relates the electric field at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

Gaussian
surface

Field line
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Electric field vectors and field
lines pierce an imaginary,
spherical Gaussian surface
that encloses a particle with
charge +Q.
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Now the enclosed patrticle
has charge +2Q.
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Can you tell what the
enclosed charge is now?
Answer: -0.5Q



23-1 Electric Flux

The area vector dA for an area element (patch element) on a surface is a vector

that is perpendicular to the element and has a magnitude equal to the area dA of the
element.

The electric flux d¢ through a patch element with area vector dA is given by a dot

product:
dd =E - dA.
‘ ?\\)‘I\ Ad = (E cos 6) AA.
Q€
y y y (a) An electric field vector pierces a
. ( small square patch on a flat
/VE /u surface.
/ (b) Only the x component actually
X ﬂ—T’“ :7“* * pierces the patch; the y component
o A M skims across it.
(c) The area vector of the patch is
" " " perpendicular to the patch, with a

magnitude equal to the patch’s
area.
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23-1 Electric Flux

Now we can find the total flux by integrating the
dot product over the full surface.
The total flux through a surface is given by

b = ff' dA {total flux).

The net flux through a closed surface (which is
used in Gauss’ law) is given by

b = % E-dA (net flux).

where the integration is carried out over the
entire surface.

A
“' An inward piercing field is negative flux. An outward piercing field is positive
flux. A skimming field is zero flux.
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Gaussian
surface

D<) Dd>0

Pierce (V E  Pierce
inward: outward:
negative 2 . positive
flux a4 flux

d=0
Skim: zero flux
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23-1 Electric Flux

Flux through a closed cylinder, uniform field

Figure 23-6 shows a Gaussian surface in the form of a
closed cylinder (a Gaussian cylinder or G- cylmder) of
radius R. It lies in a uniform electric field E with the
cylinder’s central axis (along the length of the cylinder)
parallel to the field. What is the net flux ® of the electric
field through the cylinder?

KEY IDEAS

We can find the net flux ® with Eq. 23-4 by integrating the
dot product E - dA over the cylinder’s surface. However,
we cannot write out functions so that we can do that with
one integral. Instead, we need to be a bit clever: We break
up the surface into sections with which we can actually eval-
uate an integral.

Calculations: We break the integral of Eq. 23-4 into three
terms: integrals over the left cylinder cap a, the curved cylin-
drical surface b, and the right cap c:

<1>=3§E’-d2
=jﬁ-d2+fﬁ-d2+Jﬁ-dz.
a b

c

(23-5)

Pick a patch element on the left cap. Its area vector dA
must be perpendicular to the patch and pointing away from
the interior of the cylinder. In Fig. 23-6, that means the angle
between it and the field piercing the patch is 180°. Also, note
that the electric field through the end cap is uniform and
thus E can be pulled out of the integration. So, we can write the
flux through the left cap as

JE’-dZ = JE(cos 180°) dA = —EJdA = —EA,
a

where [ dA gives the cap’s area A (= 7wR?). Similarly, for the
right cap, where # = 0 for all points,

JE-dZ =jE(cosO)dA = EA.

Finally, for the cylindrical surface, where the angle 6 is 90° at
all points,

f E-dA = jE(cos90°)dA = 0.
b
Substituting these results into Eq. 23-5 leads us to
© == EA L O HIEA= )
The net flux is zero because the field lines that represent the

electric field all pass entirely through the Gaussian surface,
from the left to the right.

(Answer)

dA Gaussian
/ surface

E
=)

Figure 23-6 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field. The cylinder axis is parallel to
the field direction.
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23-2 Gauss’ Law

Gauss’ law relates the net flux ¢ of an electric
field through a closed surface (a Gaussian
surface) to the net charge q.,. that is enclosed by
that surface. It tells us that

P = g.,. (Gauss’ law).
we can also write Gauss’ law as

Ep E-dA = Gone  (Gauss’ law).

Two charges, equal in magnitude but opposite in sign, and
the field lines that represent their net electric field. Four
Gaussian surfaces are shown in cross section.
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23-2 Gauss’ Law

Surface S1.The electric field is outward for all |
points on this surface. Thus, the flux of the electric
field through this surface is positive, and so is the
net charge within the surface, as Gauss’ law
requires

Surface S2.The electric field is inward for all
points on this surface. Thus, the flux of the electric
field through this surface is negative and so is the
enclosed charge, as Gauss’ law requires.
S5 \

Two charges, equal in magnitude but opposite in sign, and )
the field lines that represent their net electric field. Four
Gaussian surfaces are shown in cross section. '
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23-2 Gauss’ Law

Surface S3.This surface encloses no charge, and |
thus g, = 0. Gauss’ law requires that the net flux
of the electric field through this surface be zero.

That is reasonable because all the field lines pass
entirely through the surface, entering it at the top I/
and leaving at the bottom. |

Surface S4.This surface encloses no net charge,
because the enclosed positive and negative
charges have equal magnitudes. Gauss’ law
requires that the net flux of the electric field
through this surface be zero. That is reasonable
because there are as many field lines leaving
surface S4 as entering it.

Two charges, equal in magnitude but opposite in sign, and 4
the field lines that represent their net electric field. Four
Gaussian surfaces are shown in cross section. '
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23-3 A Charged Isolated Conductor

A
‘ul-‘ If an excess charge 1s placed on an i1solated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be

found within the body of the conductor.

+
+
E = — (conducting surface). P
EU + ¥ ¥
<7 * *\*b—\
+ . -
(a) Perspective view , - MY
o o
(b) Side view of a tiny portion of a large, isolated ot There is flux only

(a) through the

conductor with excess positive charge on its
external end face.

surface. A (closed) cylindrical Gaussian surface,
embedded perpendicularly in the conductor,
encloses some of the charge. Electric field lines /.:=‘>‘>;;
pierce the external end cap of the cylinder, but . E
not the internal end cap. The external end cap =0 H
has area A and area vector A.
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(b)
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WILEY

23-4 Applying Gauss’ Law: Cylindrical Symmetry

A
Figure shows a section of an infinitely long cylindrical =
plastic rod with a uniform charge density A. The I { |
charge distribution and the field have cylindrical B ii‘;;z‘:“
symmetry. To find the field at radius r, we enclose a h :
section of the rod with a concentric Gaussian cylinder A \E
of radius r and height h. ! B R
The net flux through the cylinder from Gauss’ Law a ki/
reduces to There is flux only
® = EA cos 8 = E(2mrh)cos 0 = E(2arh). Lhurg‘;%hsﬂ‘:ace'
ielding EU{I} Fenc A Gaussian surface in the
epE(2mrh) = Ah, form of a closed cylinder
surrounds a section of a very
A long, uniformly charged,
E = (line of charge). cylindrical plastic rod.
2 e
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23-5 Applying Gauss’ Law: Planar Symmetry

Non-conducting Sheet

Figure (a-b) shows a portion of a thin, infinite, non-
conducting sheet with a uniform (positive) surface

4
4 5
. . . Gaussian
charge density o. A sheet of thin plastic wrap, B " v 4 surface
uniformly charged on one side, can serve as a N ue ) T

X M X X X

simple model. Here, e through the
E«dA (a) L t, : , x two end faces.
. y e
Is simply EdA and thus Gauss’ Law, o
kg
Eﬂ%‘E"d‘q:QEm: - : -
< } =
- } i
becomes si(EA + EA) = oA, = —
A 4 ——
where oA is the charge enclosed by the Gaussian E ! oL
surface. This gives = : -
< t |
L b
E (sheet of charge). —— REM)

ZEH
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23-5 Applying Gauss’ Law: Planar Symmetry

Two conducting Plates A PR AN
Figure (a) shows a cross section of a thin, ~ W ~ =
infinite conducting plate with excess — . — B
positive charge. Figure (b) shows an . g B
identical plate with excess negative charge - -

having the same magnitude of surface (@) ()
charge density o7.

Suppose we arrange for the plates of Figs. +/jo‘\—

a and b to be close to each other and i - F
parallel (c). Since the plates are g E — 0
conductors, when we bring them into this i -
arrangement, the excess charge on one . i
plate attracts the excess charge (0

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

on the other plate, and all the excess charge moves onto the inner faces of the
plates as in Fig.c. With twice as much charge now on each inner face, the electric

field at any point between the plates has the magnitude
E= 1oy _ T
En En
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23-6 Applying Gauss’ Law: Spherical Symmetry

A
‘4‘ A shell of uniform charge attracts or repels a charpged particle that is outside the
shell as if all the shell’s charge were concentrated at the center of the shell.

In the figure, applying Gauss’ law to surface
S,, for which r 2 R, we would find that

1 4 _
E= e, P (spherical shell, field at r = R).

And, applying Gauss’ law to surface S, for
which r < R,
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A thin, uniformly charged, spherical E =0 (sphericalshell, field at r < R),
shell with total charge q, in cross

section. Two Gaussian surfaces S1

and S2 are also shown in cross

section. Surface S2 encloses the

shell, and S1 encloses only the

empty interior of the shell.
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23-6 Applying Gauss’ Law: Spherical Symmetry

Enclosed
charge is ¢

Gaussian rF Ay

e "' If a charged particle is located inside a shell of uniform charge, there is no electro-
static force on the particle from the shell.

Inside a sphere with a uniform volume charge density, the
field is radial and has the magnitude

(a) q . .
E= (—)!‘ uniform charge, field at r = R).
4re, R E = )

Enclosed
charge is ¢’

“.0. o Gaussian
i s'Llllrface
where ¢ is the total charge, R is the sphere’s radius, and r is
the radial distance from the center of the sphere to the point

of measurement as shown in figure.

(b)

The flux through th - - -
A A concentric spherical Gaussian surface
surface depends on . . . ..
only the enclosed with r > R is shown in (a). A similar
charge. Gaussian surface with r < R is shown in (b).
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23 Summary

Gauss’ Law
 Gauss’law is

E=—— _
&P = Gy Eq. 23-6 2e, Eq. 23-13

Infinite non-conducting sheet

« the net flux of the electric field Outside a spherical shell of charge
through the surface: 1

E = 4 Eq. 23-15
q:-=j§E'-iE[ Eq. 23-6

4‘11'E.‘ﬂ ?‘1

Inside a uniform spherical shell
Applications of Gauss’ Law

« surface of a charged conductor E=0 Eq. 23-16
E= i Eq. 23-11 « Inside a uniform sphere of charge

(o) o
E= z;ur Eq. 23-12
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