Error On The Mean

The purpose of this document is to derive an expression for the error on the average value of a set of measurements. The measurements are assumed to be random and that their histogram is Gaussian. Calculus is used to find an expression for the uncertainty in a function of a single variable given a measurement of the independent variable and its associated uncertainty. These ideas are combined to find an expression for the error on the average of a set of measurements.

Given a measurement $\{x \pm \Delta x\}$ and a function $y=f(x)$, how do we find Δy ?

We approximate the function with a straight line, tangent to the curve at x, as shown in the figure above.

The formula for the slope of this tangent line is: slope $=\frac{\Delta y}{\Delta x}$. Solving for Δy we get $\Delta y=$ slope $\times \Delta x$

The slope of the tangent line is just the first derivative of f evaluated at x. slope $=f^{\prime}(x)$. The slope can be negative but all uncertainties are intrinsically positive, so we take the absolute value.

Solving for Δy we get: $\Delta y=\left|f^{\prime}(x)\right| \times \Delta x$

Given a set of n measurements of x_{i} with their associated uncertainties Δx_{i}, find the average value \bar{x} and its uncertainty $\Delta \bar{x}$.

First we find the sum S and its error ΔS.
$S=x_{1}+x_{2}+x_{3}+\ldots+x_{n}$ with $\Delta S=\sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}+\left(\Delta x_{3}\right)^{2}+\ldots+\left(\Delta x_{n}\right)^{2}}$

If all of the measurements were made with the same instruments e.g. rulers, then all of the uncertainties are the same, that is $\Delta x_{i}=\Delta x$ for all values of i.

Therefore,

$$
\begin{aligned}
\Delta S & =\sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}+\left(\Delta x_{3}\right)^{2}+\ldots+\left(\Delta x_{n}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}+(\Delta x)^{2}+(\Delta x)^{2}+\ldots+(\Delta x)^{2}} \\
& =\sqrt{n(\Delta x)^{2}} \\
& =\sqrt{n} \Delta x
\end{aligned}
$$

If we write the average \bar{x} as a function of S then $\bar{x}=\frac{1}{n} S$ and
$\Delta \bar{x}=\left|\frac{d}{d S}\left(\frac{1}{n} S\right)\right| \Delta S=\frac{1}{n} \Delta S$ but $\Delta S=\sqrt{n} \Delta x$
so $\Delta \bar{x}=\frac{\sqrt{n}}{n} \Delta x$ and we have $\Delta \bar{x}=\frac{\Delta x}{\sqrt{n}}$

References

- John R. Taylor, An Introduction To Error Analysis (2nd ed.), Ch 3: Propagation of Uncertainties, University Science Books, 1997.

