CHAPTER 4

- 8. Our coordinate system has \hat{i} pointed east and \hat{j} pointed north. The first displacement is $\vec{r}_{AB} = (483 \text{ km})\hat{i}$ and the second is $\vec{r}_{BC} = (-966 \text{ km})\hat{j}$.
 - (a) The net displacement is

$$\vec{r}_{AC} = \vec{r}_{AB} + \vec{r}_{BC} = (483 \text{ km})\hat{i} - (966 \text{ km})\hat{j}$$

which yields $|\vec{r}_{AC}| = \sqrt{(483 \text{ km})^2 + (-966 \text{ km})^2} = 1.08 \times 10^3 \text{ km}.$

(b) The angle is given by

$$\theta = \tan^{-1} \left(\frac{-966 \text{ km}}{483 \text{ km}} \right) = -63.4^{\circ}.$$

We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° east of south.

(c) Dividing the magnitude of \vec{r}_{AC} by the total time (2.25 h) gives

$$\vec{v}_{\text{avg}} = \frac{(483 \text{ km})\hat{i} - (966 \text{ km})\hat{j}}{2.25 \text{ h}} = (215 \text{ km/h})\hat{i} - (429 \text{ km/h})\hat{j}$$

with a magnitude $|\vec{v}_{avg}| = \sqrt{(215 \text{ km/h})^2 + (-429 \text{ km/h})^2} = 480 \text{ km/h}.$

- (d) The direction of \vec{v}_{avg} is 26.6° east of south, same as in part (b). In magnitude-angle notation, we would have $\vec{v}_{avg} = (480 \text{ km/h} \angle -63.4^\circ)$.
- (e) Assuming the AB trip was a straight one, and similarly for the BC trip, then $|\vec{r}_{AB}|$ is the distance traveled during the AB trip, and $|\vec{r}_{BC}|$ is the distance traveled during the BC trip. Since the average speed is the total distance divided by the total time, it equals

$$\frac{483 \text{ km} + 966 \text{ km}}{2.25 \text{ h}} = 644 \text{ km/h}.$$

15. Since the acceleration, $\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} = (-1.0 \,\text{m/s}^2) \hat{\mathbf{i}} + (-0.50 \,\text{m/s}^2) \hat{\mathbf{j}}$, is constant in both x and y directions, we may use Table 2-1 for the motion along each direction. This can be handled individually (for x and y) or together with the unit-vector notation (for $\Delta \vec{r}$).

The particle started at the origin, so the coordinates of the particle at any time t are given by $\vec{r} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$. The velocity of the particle at any time t is given by $\vec{v} = \vec{v}_0 + \vec{a}t$, where \vec{v}_0 is the initial velocity and \vec{a} is the (constant) acceleration. Along the x-direction, we have

$$x(t) = v_{0x}t + \frac{1}{2}a_xt^2$$
, $v_x(t) = v_{0x} + a_xt$

Similarly, along the y-direction, we get

$$y(t) = v_{0y}t + \frac{1}{2}a_yt^2$$
, $v_y(t) = v_{0y} + a_yt$

(a) Given that $v_{0x} = 3.0 \text{ m/s}$, $v_{0y} = 0$, $a_x = -1.0 \text{ m/s}^2$, $a_y = -0.5 \text{ m/s}^2$, the components of the velocity are

$$v_x(t) = v_{0x} + a_x t = (3.0 \text{ m/s}) - (1.0 \text{ m/s}^2)t$$

 $v_y(t) = v_{0y} + a_y t = -(0.50 \text{ m/s}^2)t$

When the particle reaches its maximum x coordinate at $t = t_m$, we must have $v_x = 0$. Therefore, $3.0 - 1.0t_m = 0$ or $t_m = 3.0$ s. The y component of the velocity at this time is

$$v_y(t=3.0 \text{ s}) = -(0.50 \text{ m/s}^2)(3.0) = -1.5 \text{ m/s}$$

Thus, $\vec{v}_m = (-1.5 \text{ m/s})\hat{j}$.

(b) At t = 3.0 s, the components of the position are

$$x(t=3.0 \text{ s}) = v_{0x}t + \frac{1}{2}a_xt^2 = (3.0 \text{ m/s})(3.0 \text{ s}) + \frac{1}{2}(-1.0 \text{ m/s}^2)(3.0 \text{ s})^2 = 4.5 \text{ m}$$

$$y(t=3.0 \text{ s}) = v_{0y}t + \frac{1}{2}a_yt^2 = 0 + \frac{1}{2}(-0.5 \text{ m/s}^2)(3.0 \text{ s})^2 = -2.25 \text{ m}$$

Using unit-vector notation, the results can be written as $\vec{r}_m = (4.50 \text{ m})\hat{i} - (2.25 \text{ m})\hat{j}$.

28. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h:

$$h = y_0 + v_0 \sin \theta_0 t - \frac{1}{2} g t^2$$

which yields h = 51.8 m for $y_0 = 0$, $v_0 = 42.0$ m/s, $\theta_0 = 60.0^\circ$, and t = 5.50 s.

(b) The horizontal motion is steady, so $v_x = v_{0x} = v_0 \cos \theta_0$, but the vertical component of velocity varies according to Eq. 4-23. Thus, the speed at impact is

$$v = \sqrt{(v_0 \cos \theta_0)^2 + (v_0 \sin \theta_0 - gt)^2} = 27.4 \text{ m/s}.$$

(c) We use Eq. 4-24 with $v_y = 0$ and y = H:

$$H = \frac{\left(v_0 \sin \theta_0\right)^2}{2g} = 67.5 \text{ m}.$$

- 70. We use Eq. 4-44, noting that the upstream corresponds to the $+\hat{i}$ direction.
- (a) The subscript b is for the boat, w is for the water, and g is for the ground.

$$\vec{v}_{bg} = \vec{v}_{bw} + \vec{v}_{wg} = (14 \text{ km/h}) \hat{i} + (-9 \text{ km/h}) \hat{i} = (5 \text{ km/h}) \hat{i}.$$

Thus, the magnitude is $|\vec{v}_{bg}| = 5 \text{ km/h}$.

- (b) The direction of \vec{v}_{bg} is +x, or upstream.
- (c) We use the subscript c for the child, and obtain

$$\vec{v}_{cg} = \vec{v}_{cb} + \vec{v}_{bg} = (-6 \text{ km/h}) \hat{i} + (5 \text{ km/h}) \hat{i} = (-1 \text{ km/h}) \hat{i}$$
.

The magnitude is $|\vec{v}_{eg}| = 1 \text{ km/h}$.

(d) The direction of \vec{v}_{eg} is -x, or downstream.