MAGNETIC MONOPOLES

Maddie McKay Southern Methodist University 11/5/14

Outline

- Motivation why do we care?
- Theoretical history
- Properties
 - How to Detect
 - Where to Look
- Some Previous Searches
- Current State
- Future Research

Motivation

- All known magnets are bipolar, have north and south pole
- Even when split, get two more magnetic dipoles
- Not the case for electricity can have electric monopoles
- Why have we seen electric monopoles but only magnetic dipoles?
- Is there a fundamental magnetic charge?

Motivation

Symmetry in Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \qquad \nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho_e$$
$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \cdot \mathbf{B} = \mu_0 \rho_m$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial \mathbf{t}} = -\mu_0 \mathbf{J}_m$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{B} - \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial \mathbf{t}} = \mu_0 \mathbf{J}_e$$

Motivation

- All known magnets are bipolar, have north and south pole
- Even when split, get two more magnetic dipoles
- Not the case for electricity can have electric monopoles
- Why have we seen electric monopoles but only magnetic dipoles?
- Is there a fundamental magnetic charge?
- Symmetry of Maxwell's equations

Dirac's Monopole

- Paper published in 1931 by Paul Dirac
- Quantum theory did not prohibit magnetic monopoles
- Existence would explain quantization of electric charge:

$$g_D = \frac{c\hbar}{2e} = \frac{e}{2\alpha_E} = \approx 137e/2,$$

Other monopoles

- Polyakov and t'Hooft (1974) magnetic monopoles follow from general ideas of a grand unified theory
 - Predicted independently
 - A GUT necessarily contains magnetic monopoles
 - Properties of an MM in a given GUT are calculable and unambiguous

Properties of Magnetic Monopoles

Properties of Magnetic Monopoles

• Magnetic charge: $ge = 1 \rightarrow g = 1$

$$\frac{1}{\hbar c} = \frac{1}{2} \Rightarrow \frac{1}{e} = \frac{1}{2\alpha_e} \approx 68.5,$$

Coupling constant – analogous to fine structure constant

$$lpha_m = rac{(geta)^2}{\hbar c} = rac{1}{4lpha_e}eta^2,$$

- Energy acquired in a magnetic field, $W = ng_D BI$
- Follow a non-helical path in a magnetic field
- Highly ionizing interact with matter like an ion with charge 68.5e

Properties of Magnetic Monopoles

- No specific mass predicted
- Can estimate "classical monopole" mass using radius of electron: 2.4 GeV
- Super String monopoles: 10³ GeV
- GUT monopoles: 10¹⁷ GeV

LHC reach primordial GUT monopole 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹² 10¹³ 10¹⁴ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁸ Possible monopole mass rage (GeV) 2

Where to look for monopoles

- Bound monopoles
- Monopoles produced in accelerators
- Cosmic ray monopoles
- No theory predicts any level of abundance

How to detect a monopole

- Induction Detector
 - MM induce an emf and a current in the ring
 - SQUID sensitive to extremely subtle magnetic fields, magnetic monopole of any mass or velocity
- Ionization Detector
 - Works well for MMs with $\beta~\sim 10^{\text{-4}}$

How to detect a monopole

- Nuclear Track Detectors
 - Highly ionizing particle leaves damage zone as it passes through
 - Plastic is etched away, depth of cone is dependent on velocity

- Cherenkov Detectors
- Scintillation Counters

Previous Searches

Searches in material

- 1969, Paul Buford Price, GE labs in NY
 - Searched in samples of deep-ocean sludge
 - Found nothing
- 1970, Luis Alvarez, UC Berkeley
 - Searched in moon rock from Apollo missions
 - Passed through loop of superconducting wire
 - Found nothing

Searches in cosmic rays

- 1970s, Paul Burford Price again, UC Berkeley
 - Balloon experiments to search in cosmic rays
 - 1975 thought he found one, was challenged by Alvarez
 - Couldn't reproduce data
- 1982, Blas Cabrera, Stanford University
 - "Valentine's Day Monopole"
 - Set up superconducting induction coil, passing cosmic ray should induce a jump in current
 - Feb. 14 detected one very obvious jump in current
 - Could not reproduce data
 - Decided it was a rare "release of mechanical stress"

Searches in cosmic rays

MACRO

- Monopole Astrophysics and Cosmic Ray Observatory
- Searched for GUT MMs with
- Liquid scintillators, streamer tubes, NTDs
- No candidates detected
 - Global limit was computed by combining limits from each analysis.

Searches in accelerators

CERN – ATLAS Detector

- 7 TeV pp collisions
- Relevant components: TRT and LAr calorimeter
- Model-independent 95% CL upper cross-section limit: 2 fb for MM with mas between 200 and 1500 GeV
- 95% CL lower mass limit of 870 GeV

Searches in accelerators (summary)

Accele-	Reaction	Beam	√s GeV	Mass	Cross	MM	TECN	Year
Rator		Energy		limit	Section	Charge		
		Gev		GeV	cm^2	-		
CERN	pp	63	63	<20	1.e-37	<24	CNTR	1978
SLAC	e+e-	29	29	<30	4.e-38	<3	PLAS	1982
CERN	pp	52	52	<20	8.e-36		CNTR	1982
CERN	e+e-	34	34	10	4.e-38	<6	PLAS	1983
CERN	pp	540	540		1.e-31	1,3	PLAS	1983
SLAC	e+e-	29	29		3.e-38	<3	PLAS	1984
FNAL	pap	1800	1800	<800	3.e-38	>=1	PLAS	1987
CLEO	e+e-	10.6	10.6	<4	9.e-37	< 0.15	CLEO	1987
CERN	e+e-	50-52	50-52	<24	8.e-37	1	PLAS	1988
DESY	e+e-	35	35	<17	1.e-38	<1	CNTR	1988
KEK	e+e-	50-61	50-61	<29	1.e-37	1	PLAS	1989
FNAL	pp	1800	1800	<850	2.e-34	>=0.5	PLAS	1990
CERN	e+e-	88-94	88-94	<45	3.e-37	1	PLAS	1992
CERN	e+e-	88-94	88-94				PLAS	1993
CERN	PbA	160A	17.9	<8.1	1.9e-33	>=2	PLAS	1997
AGS	AuAu	11A	4.87	<3.3	0.65e-33	>=2	PLAS	1997
FNAL	pap	1800	1800	260-420	7.8e-36	2-6	INDU	2000
FNAL	pap	1800	1800	265-410	0.2e-36	1-6	INDU	2004
HERA	e+p	300	300		0.5e-37	1-6	INDU	2005
FNAL	pap	1800	1800	369	0.2e-36	>=1	CNTR	2006

Current State: Spin Ice

- Spin ice geometrically frustrated magnetic system
 - Complex structure of atoms in a lattice leads to many distinct ground states.

 Magnetic monopoles observed as an emergent phenomena

http://www.nature.com/nature/journal/v461/n7266/full/nature08500.html

Future Plans

- Higher energies probed at accelerators
 - MoEDAL at CERN
 - Monopole and Exotics Detector At the LHC
 - NTD look for monopoles, dyons, doubly charged Higgs
- More searches in cosmic rays
- Mass lower limits and cross sections providing more narrow regions to search in

Summary

- If found, magnetic monopoles would
 - provide an explanation for quantization of electric charge
 - symmetrize Maxwell's equations
 - provide direction in search for unified theory
- Many searches have been done but none have been successful yet
- Macroscopic emergent phenomena can help us understand properties and may provide direction for later experiments
- We might not be looking for the right things
 - Dyons?

Sources

- http://users.physik.fu-berlin.de/~kleinert/files/dirac1931.pdf (Dirac's 1931 paper)
- http://www.theory.caltech.edu/~preskill/pubs/preskill-1984monopoles.pdf
- http://pdg.lbl.gov/2004/listings/s028.pdf
- http://users.ictp.it/~pub_off/lectures/Ins014/Giacomelli/ Giacomelli.pdf
- http://www.nature.com/nature/journal/v461/n7266/full/ nature08500.html
- http://moriond.in2p3.fr/J13/transparencies/mermod.pdf
- http://iopscience.iop.org/0034-4885/69/6/R02