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Probability Functions 
When dealing with discrete random variables, define a 
Probability Function as probability for ith  possibility 

 
P (x i ) =  pi  

 
Defined as limit of long term frequency 
‣  probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials) 

● you don’t need an infinite sample for definition to be useful 
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Probability Mass Functions
When dealing with discrete random variables, define a 
Probability Mass Function as probability for ith possibility

Defined as limit of long term frequency
‣ probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials)

● you don’t need an infinite sample for definition to be useful

And it is normalized
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P (xi) = pi

X

i

P (xi) = 1

Normalization 



Probability Density Functions 
When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 

 

P (x  E [x, x  +  dx]) =  f  (x )dx 

Note, f  (x ) is NOT a probability 

PDFs are always normalized 
to unity: 
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Probability Density Functions
When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 

Note,          is NOT a probability

PDFs are always normalized to unity:
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P (x � [x, x + dx]) = f(x)dx

� ⇥

�⇥
f(x)dx = 1

f(x)
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•  Axioms of probability: Kolmogorov (1933)
•  𝑷    𝑨 
≥  𝟎


•  ∫𝑼  𝑷    𝑨    𝒅𝑼  =  𝟏


•  if: (𝑨  𝐚𝐧𝐝  𝑩)  ≡  (𝑨  ∩  𝑩)  =  𝟎



(i.e disjoint/independent/exclusive)
 𝑷  (  𝑨  𝐨𝐫  𝑩 
≡ 
𝑨  ∪  𝑩 
=  𝑷    𝑨 
+  𝑷(𝑩)


 define e.g.: conditional probability 

𝑷    𝑨  𝑩

 ≡  𝑷(𝑨  𝐠𝐢𝐯𝐞𝐧  𝑩  is  true)  =  𝑷    𝑨∩𝑩

𝑷    𝑩
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•  Axioms of probability:  - pure “set-theory” 
 
1) a measure of how likely an event will occur, expressed 

as a the ratio of favourable—to—all possible cases in 
repeatable trials

•  Frequentist (classical) probability 

P(“Event”) =  lim  (   #out come is "Event" )
𝑛→∞


2) the “degree of belief” that an event is going to happen 

•  Bayesian probability: 
•  P(“Event”): degree of belief that “Event” is going 

to happen -> no need for “repeatable trials” 

•  degree of belief (in view of the data AND previous 

knowledge(belief) about the parameter) that a 

parameter has a certain “true” value 

ntrials	
  



Bayes’ Theorem 𝑷    𝑨  𝑩 
=
 	
  A    
𝑷(𝑩|𝑨)𝑷


𝑷(𝑩)


= 𝑷    𝑩  𝑨

 𝑷    𝑨


𝑷    𝑩



•  This follows simply from the “conditional probabilities”: 



Derivation of Bayes’ Theorem 
… in picture  …taken from Bob Cousins 



Bayes’ Theorem 

•  This follows simply from the “conditional probabilities”: 

Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  𝑷 𝑨

𝑷 𝑩
 

� This follows simply from the “conditional probabilities”: 

Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  𝑷 𝑨

𝑷 𝑩
 

� This follows simply from the “conditional probabilities”: 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑨 ∩ 𝑩) = 𝑷(𝑩 ∩ 𝑨 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷 𝑨

𝑷 𝑩
 



Bayes’ Theorem 

.:  Nobody doubts Bayes’ Theorem: 
discussion starts ONLY if it is used to turn

 
frequentist statements:

 
•  probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂|𝑴𝒐𝒅𝒆𝒍)

 

into Bayesian probability statements:
•  probability of a the model being correct (given data): 𝑷    𝑴𝒐𝒅𝒆𝒍 
  𝑫𝒂𝒕𝒂)


•𝑷    𝒏  𝝁    :  Likelihood function
•𝑷    𝝁  𝒏    :posterior probability of µ 
•𝑷    𝝁    :  the “prior” 
•𝑷    𝒏    :  just some normalisation

• … there can be heated debates about ‘pro’ and ‘cons’ of either…. 

Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝝁 𝒏 =
𝑷(𝒏 𝝁)𝑷 𝝁

𝑷(𝒏)
 

B.t.w.:   Nobody doubts Bayes’ Theorem:  
discussion starts ONLY if it is used to turn  

 
frequentist statements: 

 
 
 

 into Bayesian probability statements: 

� probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂 𝑴𝒐𝒅𝒆𝒍)  
 
 
 

� probability of a the model begin correct (given data): 𝑷 𝑴𝒐𝒅𝒆𝒍 𝑫𝒂𝒕𝒂) 

�𝑷 𝒏 𝝁 : Likelihood function  
�𝑷 𝝁 𝒏 :posterior probability of μ  
�𝑷 𝝁 : the “prior” 
�𝑷 𝒏 : just some normalisation 

� … there can be heated debates about ‘pro’ and ‘cons’ of either…. 



An easy example:
Theory = fish (hypothesis) .. mammal (alternative)
Data =     swimming or not swimming

P(swimming | fish) ~ 100% but P(fish | swimming) = ??

... OK... but what does it SAY?



we know: P (Data | Theory) ≠ P (Theory | Data)

 Bayes Theorem: P (Data|Theory) = P (Theory|Data) 

Frequentists answer ONLY: P (Data | Theory)

in reality  -  we are all interested in P(Theory…) 

𝐏(𝐓𝐡𝐞𝐨𝐫𝐲)

𝐏(𝐃𝐚𝐭𝐚)


We only learn about the “probability” to observe certain data under a 
given theory. Without knowledge of how likely the theory (or a possible 
“alternative” theory ) is .. we cannot say anything about how unlikely our 
current theory is !
We can define “confidence levels” … e.g., if P(data) < 5%, discard theory.
- can accept/discard theory and state how often/likely we will be 

wrong in doing so. But again: It does not say how “likely” the 
theory itself (or the alternative) is true

- note the subtle difference !!



• Certainly: both have their “right-to-exist” 

•  Some “probably” reasonable and interesting questions cannot even 
be ASKED in a frequentist framework :

 
•  “How much do I trust the simulation” 
•  “How likely is it that it will raining tomorrow?” 
•  “How likely is it that climate change is going to… 

•  after all.. the “Bayesian” answer sounds much more like what you 
really want to know: i.e.

“How likely is the “parameter value” to be correct/true ?” 
 
• BUT:

• NO Bayesian interpretation exist w/o “prior probability” of the 
parameter 

•  where do we get that from?
•  all the actual measurement can provide is “frequentist”! 



•  “flat” prior 𝝅(𝜽)  to state “no previous” knowledge (assumptions) 
about the theory?

often done, BUT WRONG:
•   e.g. flat prior in 𝑀𝐻𝑖𝑔𝑔𝑠    -> not flat in 𝑀𝐻𝑖𝑔𝑔𝑠



Choose a prior that is invariant under parameter transformations
Jeffrey’s Prior à  objective Bayesian”: 

•  “flat” prior in Fisher’s information space 
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•  𝜋    𝜃 
∝ 
I    𝜃 
(𝜋    𝜃 
∝ 
det  I    𝜃 
if several parameters) 

𝐼    𝜃

 =  −𝐸𝑥 [

𝜕 2

𝜕𝜃 2
𝑙𝑜𝑔(𝑓(𝑥 
;  𝜃)]  : 

•𝑓    𝑥;  𝜃    : Likelihood function of 𝜃,  probability to observe 𝑥  for a give parameter 𝜃


•amount of “information” that data 𝑥 
is ‘expected’ to contain about the 
parameter 𝜃



•  personal remark: nice idea, but “WHY” would you want to do that? 
•  still use a “arbitrary” prior, only make sure everyone does the same way 
•  loose all “advantages” of using a “reasonable” prior if you choose already to 






