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Probability Functions

When dealing with discrete random variables, define a
Probability Function as probability for ith possibility

P(x;) = pi -
W e

N

Defined as limit of long term frequency

» probability of rolling a 3 := limit #rias—- (# rolls with 3 / # trials)
* you don't need an infinite sample for definition to be useful

ZP(:CZ-) =1

Normalization



Probability Density Functions

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x E [x,x+ dx])= f(x)dx

Note, f (x) is NOT a probability
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What is Probability

- Axioms of probability: Kolmogorov (1933)
- P(4) =0
* JyP(A)dU =1
cif:(AandB)=(ANnB)=0
(i.e disjoint/independent/exclusive)
P(AorB )= (AUB) =P(A) + P(B)

define e.g.:  conditional probability

PUnB)
P(B)

P(A|B) = P(A given B is true) =

U niverse U niverse

Venn-Diagram Venn-Diagram



What is Probability

« Axioms of probability: - pure “set-theory”

1) a measure of how likely an event will occur, expressed
as a the ratio of favourable—to—all possible cases in
repeatable trials

» Frequentist (classical) probability

P(”Event”) = lim ( soutcome is "Event" )

7 — 00
ntrials

2)the “degree of belief” that an event is going to happen

« Bayesian probability:
« P(“Event”): degree of belief that "Event” is going
to happen -> no need for “repeatable trials”

 degree of belief (in view of the data AND previous
knowledge(belief) about the parameter) that a

parameter has a certain “true” value




Frequentist vs. Bayesian

PBIOPG)  _ p(g|p) 22

Bayes’ Theorem —
y P(4IB) P(B) &)

 This follows simply from the “conditional probabilities”:



Derivation of Bayes’ Theorem

... in picture ...taken from Bob Cousins

Whole space

18>

Bob Cousins, CMS, 2008

P(A) =

P(B) =




Frequentist vs. Bayesian

P(B|A)P(A) _ P(4)
e = pel) 2

Bayes’ Theorem P(A|B) =

* This follows simply from the “conditional probabilities”:
P(A|B)P(B) =P(ANnB)=P(BnA) =P(B|AP(A)
P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)

P(A|B) = P(E)




Frequentist vs. Bayesian

P (nlp): Likelihood function
P(n|p)P(u) - P(uln):posterior probability of p
P(n) « P(u): the “prior”
- P(n): just some normalisation

Bayes’ Theorem P(u|n) =

Nobody doubts Bayes’ Theorem:
discussion starts ONLY if it is used to turn
frequentist statements:

« probability of the observed data given a certain model: P(Data| Model)

into Bayesian probability statements:

- probability of a the model being correct (given data): P(Model | Data)

- ... there can be heated debates about ‘pro’ and ‘cons’ of either....



P (Data|Theory) # P (Theory|Data)

- Higgs search at LEP: the statement
+ the probability that the data is in agreement with the Standard
Model background is less than 1% (i.e. P(datal SMbkg) < 1%)
went out to the press and got turned round to:

P(datalSMbk Mbkgldata) < 1% P(Higgsldata) > 99% !

WRONG!

An easy example:
Theory = fish (hypothesis) .. mammal (alternative)
Data= swimming or not swimming

P(swimming | fish) ~ 100% but P(fish | swimming) = ??

... OK... but what does it SAY?



The correct frequentist

interpretation

we know: P (Data | Theory) # P (Theory | Data)
P(Theory)
Bayes Theorem: P (DatalTheory) = P (TheoryiData) P(Data)

Frequentists answer ONLY: P (Data | Theory)
In reality - we are all interested in P(Theory...)

We only learn about the “probability” to observe certain data under a
given theory. Without knowledge of how likely the theory (or a possible
“alternative” theory ) is .. we cannot say anything about how unlikely our
current theory is !

We can define “confidence levels” ... e.g., if P(data) < 5%, discard theory.

- can accept/discard theory and state how often/likely we will be
wrong in doing so. But again: It does not say how “likely” the
theory itself (or the alternative) is true

- note the subtle difference !!



Frequentist vs. Bayesian

 Certainly: both have their “right-to-exist”

- Some “probably” reasonable and interesting questions cannot even
be ASKED in a frequentist framework :

* “How much do | trust the simulation”
* “How likely is it that it will raining tomorrow?”
- “How likely is it that climate change is going to...

- after all.. the “Bayesian” answer sounds much more like what you
really want to know: i.e.
“How likely is the “parameter value” to be correct/true ?”

« BUT:
« NO Bayesian interpretation exist w/o “prior probability” of the
parameter
- where do we get that from?
- all the actual measurement can provide is “frequentist’!




Bayesian Prior Probabilties

- “flat” prior (0) to state “no previous” knowledge (assumptions)
about the theory?
» often done, BUT WRONG:
- e.g. flat prior in My, 445 -> not flat in MHzl-ggS
® Choose a prior that is invariant under parameter transformations
Jeffrey’s Prior - objective Bayesian”:
- “flat” prior in Fisher’s information space

- (@) x V1) (@) /detl 6 ) if several parameters)

10) = —Ex [Z51log(f(x ;0)]:

« f (x; 8 ) Likelihood function of 6, probability to observe x for a give parameter 6
«amount of “information” that data x is ‘expected’ to contain about the
parameter 6
 personal remark: nice idea, but “WHY” would you want to do that?
- still use a “arbitrary” prior, only make sure everyone does the same way
 loose all “advantages” of using a “reasonable” prior if you choose already to



DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA,

THEN, TROWS TWO DICE. IF THEY
BOTH COME.UP SiX, ITUES TO US.
OHERWISE,, I TELLS THE. TRUF.




FREQUENTIST STANSTICIAN- BAYESIAN STATISTIOAN:

THE PROGABILITY OF THIS RESULT
HAPPENING BY' CHANCE 15 220027 BET YOU $50

GNCE p<0.05, T. CONCLUDE T HANT.
THAT THE SUN HAS EXPLODED. )




