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2 High Energy Collider Detectors @

EIROforum

4

* Tracking Detectors (or Trackers) = momentum measurement

— closest to interaction point: vertex detectors (mainly silicon pixel detectors)
* measure the primary interaction vertex and secondary vertices from decay particles

— main or central tracking detectors
* measure the momentum by curvature in magnetic field

» two main technologies: silicon detectors (e.g. strip sensors)
and gaseous detectors (e.g. TPC, TRT)

this lecture

F

e Calorimeters = energy measurement

— electro-magnetic calorimeters
* measure energy of light EM particles (electrons, positrons, photons) based on electro-
magnetic showers by bremsstrahlung and pair production
» two concepts: homogeneous (e.g. CMS) and sampling (e.g. ATLAS) calorimeters

— hadron calorimeters
* measure energy of heavy (hadronic) particles (pions, kaons, protons, neutrons)
based on nuclear showers created by nuclear interactions

* Muon Detectors = momentum measurement for muons
— outermost detector layer, basically a tracking detector
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< Tracker Technologies
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3 major technologies are used for tracking detectors:

* Gaseous detectors A
— lonization in gas (creation of electron —ion pairs)
» typically ~100 electrons/cm
» not sufficient to create significant signal height above noise for standard amplifiers
— Gas amplification needed -
« gas amplification ~10%to reach sufficient signal height over noise 5
o
]
* Silicon detectors ”
— lonization (creation of electron — hole pairs) in solid state material =
» typically ~100 electron- hole pairs/um
— No amplification needed
 signal height in a ~300 um thick detector high enough
* no impact ionization (like used e.g. in avalanche photodetectors) needed
_ L A

e Fiber trackers

— Scintillating fibers
» scintillating light detected with photon detectors (sensitive to single electrons)

2" Eiroforum School of Instrumentation (ESI 2011) — Tracking Detectors Michael Moll, CERN, 15 May 2011 - 3



Gaseous Detectors — lonization of Gases @
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* Primary number of ionizations per unit length is Poisson-distributed

— typically ~30 primary electrons/cm

in gas at 1 atm Lohse and Witzeling,

60 - 1 I I ro ' i Instrumentation In High Energy
C X.e i Physics, World Scientific, 1992
50 | 7
B o ]
Primary ionization : . ]
y 4l WieV) :
V4 BFy 1
. -
30 ¢ B Niotal - NUMber of created
] lectron-ion pairs
26 CaHeOH € P
20 ¢ 2(1}2 gr G.dz 2 o
_ g 9 3B cH, 1 W, = effective <energy
10k g ~hr o ”s 7 loss>/pair
[ :ﬁ . CHy :5
. . 0 o A L [T I B
Total Ionization 0O 10 20 30 40 50
= primary + secondary ionization Nprim (cm=1 atm=1)

* However, primary electrons sometimes receive large energies
— can ionize other atoms (secondary ionization, production of ionization clusters)
— can even create secondary visible track (“delta electrons”)
— large fluctuations of energy loss by ionization
— typically: total ionization = 3 x primary ionization
* on average ~ 90 electrons/cm in gas
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Energy Loss Distribution in detectors
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* Real detectors can not measure <dE/dx>
— The energy 4E deposited in a layer of finite thickness ox is measured.

. i . - i . AEmost probable
For thin layers of solids or low density materials: S

— Few collisions, some with high energy transfer.

o
O electron

— Energy loss distributions show large fluctuations L
towards high losses; Landau distribution with tails T AE

Example: Si sensor: 300 pum thick. AE .« oropaple~ 82 keV  <AE>™~ 115 keV
AE , = <AE>

a

* For thick layers and high density materials:
— Many collisions
— Central Limit Theorem =» Gaussian shaped distril/autions
] | AL
e Y L LL SR :
_ SO : AE

»
»
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e Elastic Scattering
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©

* Most basic interaction of a charged particle in matter

— elastic scattering with a nucleus
= Rutherford (Coulomb) scattering

— An incoming particle with charge z interacts
elastically with a target of nuclear charge Z. _

Cross section for this e.m. process is given by
the Rutherford formula:

d meC ’
O
— = 4zZre2 €

dQ

e Approximations
— non-relativistic
— Nno spins

‘The scattering of alpha and beta
particles by matter and the structure
of the atom’, Philosophical Magazine,

vol. 21 (1911), 669-688.

Ernest Rutherford
May 1911

Gaigar and Marsden's

i

]”.’I L

data points
Theoretical scattering
of one point charge
off another

Rutherford
¥
10°F | formula

Scattered alpha panticles

10 - ! L 1 i ; ]
0° 20° 40° 60° 80P 100° 120° 140°
Scanering angle

» Scattering angle and energy transfer to nucleus usually small

— No (significant) energy loss of the incoming particle
— Just change of particle direction

UK Science Museum
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Multiple Scattering
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* |In a sufficiently thick material layer a particle will undergo
multiple scattering

— after passing material layer of thickness L particle leaves with some
displacement r;,,. and some deflection angle @,

P A

distribution of
deflection angle

>

approximation
(except for tails)

®, = width of distribution /
| 4
oC

1
* Multiple scattering dominates the @ | 6,
momentum measurement resolution
for low momenta (see later) /

— X, = radiation length (see later) >
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Momentum Measurement
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* Moving charged particles are deflected by magnetic fields

Lorentz Force

— In a homogeneous B field particle follows circle with radius r FL =( -V xB

p.[GeV/c]=0.3-B[T]-r[m]

— P, is the component of the momentum

Centripetal Force

FC:m-v%

p=q-B-r

orthogonal to B field

measurement of p, via
measuring the radius

p; : transverse momentum

— no particle deflection parallel to magnetic field

— if particle has longitudinal momentum component,
the particle will follow a helix

ptrans A p

plong

total momentum p to be
measured via dip angle A

sin A
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Momentum measurement — Relative Error
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* How to measure the radius r (curvature) ?

— Tracking Detectors measure the positions of the track along various points along
the track (circle)

measure the sagitta s of the track

L s |2
r=—+—  ifs<<L r~—
8s 2 8s

sagitta s / radius r is obtained by a circle fit
through measurement points along the track
with point resolution o,,for each point

. A o with statistical
sagita O = N_. " factor A, =720
error N +4 8 R.L. Gluckstern, NIM 24 (1963), 381

relative transverse momentum resolution o,/p,

* degrades linearly with momentum N

e improves linearly with B field O, 8 Pr O-pT

) ) ) — .GS ———— =~ oC pT
* improves quadratically with P 0.3BL? P,

radial extension of detector !
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Momentum resolution
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* The (transverse) momentum resolution is dominated by two contributions

— contribution from measurement error

O-pT

Pr

oc Py

— contribution form multiple scattering
(remember)

MS ™)
O, oC
1 [L g
Oy c — |[— -
Py X0 Pr P; ‘o
Pr J
More precise: Ms

B/LX,

Example: Detector (L=1m) filled with 1atm
Argon gas (X,=110m); B=1T

Pr

MS
o)l _ 5%
ol

Opr

Pr

MS

= constant

transverse momentum error is constant
(i.e. independent of the momentum)

A

S(p)/p

total error cF(F))/ P

7
0 > multiple scattering contribution to the
O

meas.

o(p)/p "

[
»

p

2" Eiroforum School of Instrumentation (ESI 2011) — Tracking Detectors

Michael Moll, CERN, 15 May 2011 - 10



Vertex Detectors
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Besides momentum measurement tracking detectors have to measure:

* Primary and Secondary Decay Vertices
— Example: B lifetime 7z~ 1.6 ps = yc¢ 7z = - 500 um with y=
— Figure of merit: Impact parameter resolution =

— Physics example from LHCb (2010): B*— J/¥ K*

[mm] XY Projection
— :;7-_;::_\_\_; \ \ f‘ \ . ’:’ / —
5 —= Facks Poriziined ol _——rHch—
0.2 —? g N
— - ‘ '
1.2

[mm] |

©
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Impact parameter resolution
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e Uncertainty on the transverse impact parameter, dO,
depends on the detector radii and space point precisions.

. - - : 2 2 2 __2
Simplified formula for just two layers: . r2 o 4+ "1 o,

Oy = >
e

— Suggests small r, large r,,
small ,, o,

2
+ O s

— But precision is degraded
by multiple scattering....

Example: LHCb (VELO)

o(IP)= (10 + 29/p;[GeV/c] ) um [PoS VERTEX2010:014,2010.]
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Gaseous Detectors — Geiger-Muller Tube @

* The Geiger-Miller tube (1928 by Hans Geiger and Walther Mdiller)
— Tube filled with inert gas (He, Ne, Ar) + organic vapour
— Central thin wire (20 — 50 um &) , high voltage (several 100V) between wire and tube

i — Strong increase of E-field close to the wire
E |
cathode , * Electrons gain more and more energy
gas T N
\/ b s \ ! \ Ethreshold
o h | — above some threshold (>10 kV/cm)
|'.I a . l.I ! !
|' -~ I| : II\\.
3 | b . . .
\ T » L\ A » electron energy high enough to ionize
andde N other gas molecules
\ L | \“‘*\H_ * newly created electrons also start ionizing
— \' ! o h’
\ a r . 0
\ — avalanche effect: exponential increase of
\ c
\ electrons (and ions)
\
\
\ . c
v primary electron| — measurable signal on wire
e 4 |starting to ionize
' e organic substances responsible for “guenching”
[Gncoe wire] | 100um | (stopping) the discharge
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& Wire Chamber — Signal Formation @

 Signal formation depending on electron and ion drift
— signal on cathode and anode is induced

e by the moving electrons and ions
1 i_ — electrons from the avalanche are
@ produced very close to the wire and
. . . collected in a very short time (t < ns)
= small contribution of electrons to signal
a b C d e
dolr | - length of cylinder
dv = Q . ¢( ) dr C — capacitance
|CV0 dr V, - voltage applied
Q - moving charge
i i i 50’15/—&‘
* Main part of signal produced by ions v(t) ——
— lons drift back to cathode over 100 ns //_
long distance (several mm or cm)
and time (many ps or even ms) \ 300 ns
signal after electronics shaping /
(RC high-pass filter with different —
time constants) /
pure signal (no electronics shaping) / L | I | !
from ions drifting away from anode wire 0 100 200 300 400 500
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MWPC and Drift Chambers
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» MWPC — Multi Wire Proportional Chamber i

— Simple idea: Multiply the SWPC (Nobel Price by Charpak in 1992)

— Usually binary read out L

— Resolution limited to (d = distance between wires):
o~ d
V12 |
Typical geometry
ford =1 mm o, =300 um L~5mm, d~1mm,

. gwire ~20 HM

* Drift Chamber
g e TP - VREAYH se| | — Obtain position from drift time of electrons
Vgl_s”‘m = Advantage: requires less wires, less channels

— needs external source for start signal
(scintillator or beam crossing signal)

£ drift v & anode :>n_eed to know d_rlft velocity vy to calculate
distance s to wire

tstop
) J e,
) ! " =
low field region  high field region S VD dt

— drift — gas amplification t
] start
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TPC — Time Projection Chamber
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e Full 3D track reconstruction

— x-y from wires and segmented
cathode of MWPC (or GEM)

/particle track .
— z from drift time

1 E /Iiberated e
* Momentum resolution

LY — Space resolution + B-Field
4 _ e l * Energy resolution
= . ya = === - ating pl — Measure of primary ionization
g N S EREUESERETR W —f— cathode plane P y
5 // z I ” l\w\\\ ANARA j ikt
N| / £, pads | e Positive lon backflow

/////wum IJ VDAY
[/ — Needs a gating plane to stop

ez iz e 0 diz plans ions from backdrift into chamber

Michael Moll, CERN, 15 May 2011 - 16
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ALICE — TPC - Taking Data

e Alice TPC

HV central electrode at —100 kV

Drift length: 250 cm at E=400 V/cm

Gas: Ne-CO, 90-10

Space point resolution ~500 um

dp/p = 2%@1GeV; dp/p = 10%@10GeV

 Alice: Heavy lon Event Display

» 08.Nov.2010

* Pb+Pb

* sqrt(s)
= 2.76 ATeV
= 575 TeVl/ion
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RPC - Resistive Plate Chambers
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* RPC - No wires! - Resistive plates from Bakelite (p=101°-1012Qcm)
or window glass (p=10*'2-1013Qcm) in front of metal electrodes
— gas gap: 0.25 — 2 mm; electric fields: 50-100 KV/cm
— time resolution: 50ps (100 KV/cm), 1ns (50KV/cm)
— Application: Trigger Detectors, Time of Flight (TOF)

— Resistivity limits rate capability (kHz/cm?2 for 101°Qcm)
* Time to remove avalanche charge from the surface of the resistive plate is in ms to s range.

useful gap ( only primary ionization produced close to

readout strips the cathode generates detectable avalanches)

)
— HV
resistive electrode (Cathode)

s e * MRPC — Multi gap RPC

T — higher efficiency
E — exceptional time resolution

gas gap

0.25-2 mm

resistive electrode GND N — 1/
[

1
/ readout strips —_— [ —

[ —
=
GND
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Micro Strip Gas Chambers - MSGCs
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e Gain is not provided by wires but by ¢ Due to small pitch and fast ion collection
metal strips on resistive electrodes. MSGCs have very high rate capability.

MWPC-MSGC Rates thick

DRIFT ELECTRODE -

RELATIVE GAIN

S ] > 10%/mm?3s
/ - 1MHz/cm? e
e 0.2 | : -
T [ RATES) (mm? s™)
ANODE STRIP 0 o2 - = - =3
\ )z
CATHODE STRIPS

— 1990s: Candidates for inner tracking system of ATLAS and CMS
— Unfortunately MSGCs are rather prone to discharge, particularly in hostile environments.
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MPGDs - Micro Pattern Gas Detectors @
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* MICROMEGA Micro Mesh Gas detector * GEM Gas Electron Multiplier
Drift electrode (-HV) L i

thin metal-
coated polmer
foils with holes

3 mm

LTIV
£ LA\ \
/7 N\

L)t A s

pENNRARRA
@ 50-70 um

micromesh \? A " )

E 100/um

readout electrode

ml'ﬂ
—S>e——\-->»

e B
— E,/E;~50: -secure electron transparency

- positive ion flowback supression.

Kapton Copper
HV
Anode strips
... being implemented now in HEP experiments
Pillar ... many ongoing developments (see CERN RD51)
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Solid State Detectors — Why Silicon?

 Some characteristics of Silicon crystals
E,=1.12 eV = E(e-h pair) = 3.6 eV (= 30 eV for gas detectors)

e Alternative semiconductors

Small band gap
High specific density 2.33 g/cm3 ; dE/dx (M.I.P.) ~ 3.8 MeV/cm ~ 106 e-h/um (average)

High carrier mobility p, =1450 cm?/Vs, p, = 450 cm?/VVs = fast charge collection (<10 ns)

Very pure

Rigidity of silicon allows thin self supporting structures

< lppm impurities and < 0.1ppb electrical active impurities

Detector production by microelectronic techniques

= well known industrial technology, relatively low price, small structures easily possible

Diamond | SiC (4H) | GaAs| Si | Ge

. ferane Atomic number Z 6 14/6  |31/33] 14 | 32
Bandgap E, [eV] 5.5 ) 1.42 | 1.12 | 0.66

— Gallium arsenide (GaAs) E(e-h pair) [eV] 13 76-84 | 43 | 36 | 2.9

density [g/cm”] 3.515 3.22 532 | 2.33 | 5.32
— Silicon Carbide (SiC) e-mobility p [cm?/Vs] | 1800 800 | 8500 | 1450 | 3900
_ h-mobility p, [cm*/Vs] | 1200 115 | 400 | 450 | 1900

— Germanium (Ge)
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How to obtain the signal? @J

cA
e e In a pure intrinsic (undoped) semiconductor the
electron density n and hole density p are equal.
E -
f n=p=n; ForSilicon: n.~1.45-10%° cm3
®

valence band

\%

4.5 -108 free charge carriers in this volume, ~ 300um
but only 3.2 -10% e-h pairs produced by a M.I.P. 4‘( \ >

1cm

1cm

— Reduce number of free charge carriers, i.e. deplete the detector

—> Most detectors make use of reverse biased p-n junctions
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Doping, resistivity and p-n junction @m
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e Doping: n-type silicon e Doping: p-type silicon
— add elements from V" group — add elements from III"¥ group
e.g. Phosphorus — donors (P, As,..) — acceptors (B,..)
o~ ¢~ %  — electrons are majority carriers — holes are majority carriers
.. . ..... .;::. ‘:".-.-.-.-..:::; E E
103 - HO¥ CB CB
.:.Z'..-':::.-:f: '::;.r-'.'.'.:'-':,': ::.’.:::-.-.Q:I:: Ef 7777% —
] L 9 KL TR L P PR
HOMOHOY
O @ @
Ef I z'(;'r;"""
o VB VB
* resistivity p

— carrier concentration n, p

e N-N I I A
— carrier mobility 1., 4, SR IS _ = P :
There must be a single CB
= . |
P %O(/unn + 4, p) Fermi level! |
— band structure deformation eV
detector |electronics — potential difference R L N —

grade grade — depleted zone VB ¥
doping | ~102cm= (=10 cm?3

resistivity p| =5kQ-cm | =1 Q-cm
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Reverse biased p-n junction
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Positive space charge, N =[P]

Poisson’s equation (ionized Phosphorus atoms)
d? do p' n'  neutral bulk
_Wﬂx) . 5_50 N depleted (no electric field)
zone

* Depleted zone growth with

Electrical increasing voltage (w oV, )

charge density

o

Electrical
field strength

* Full charge collection only for
fully depleted detector (Vg>Vye)

| depletion voltage V, detector thickness d

/

Electron

potential energy
Tpllir 1

I \

n |

dep ~—
P E

\4 _i"Neff|'d;
&y /

. / .
effective space charge density N«
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Single Sided Strip Detector @m

* Segmentation of the p* layer into strips (Diode Strip Detector) and connection of strips
to individual read-out channels gives spatial information

pitch

A
A 4

typical thickness: 300um (150um - 500um used)

* using n-type silicon with a resistivity of
p =2 KQcm (Np ~2.2:10*2cm-3)

results in a depletion voltage ~ 150 V

* Resolution o depends on the pitch p (distance from strip to strip)

- e.g. detection of charge in binary way (threshold discrimination) ~ p

and using center of strip as measured coordinate results in o= h2

typical pitch values are 20 um— 150 um = 50 um pitch results in 14.4 um resolution
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Signal to noise ratio

EIROforum
e Landau distribution has a low energy tail A
— becomes even lower by noise broadening | Landau distribution
Noise sources: (ENC = Equivalent Noise Charge) Noise y

Landau distribution

— Capacitance ENC o C, | ith noisa

— Leakage Current ENC « JI

— Thermal Noise T i > P o
(bias resistor) ENC oc /"B A 07 100 { 200 300 400 500
L ADC channel (arb. units)
* Good hits selected by requiring N,y > noise tail Nc:)isie ’
If cuttoo high = efficiency loss - Signal
If cut too low — Nnoise occupancy

e Figure of Merit: Signal-to-Noise Ratio S/N
Cut (threshold)

e Typical values >10-15, people get nervous below 10

Radiation damage severely degrades the S/N !
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Detector Module @
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* Detector Modules “Basic building block of silicon based tracking detectors”

e Silicon Sensors
e Mechanical support (cooling)
e Front end electronics and signal routing (connectivity)

« Example: ATLAS SCT Barrel Module B cr oo
- < 128 mm — Integrated CircuitS
e Silicon sensors (X4) TPG = Thermal Pyrolytic Graphite
- 2 b
64 x 64 e e ASICS (x12)
- p-In-Nn, single side
) iC-couplegd - ABCD chip (binary readout)
- 768 strips - DMILL technology

- 128 channels

e Wire bonds (~3500)

- 80um pitch/12um width

e Mechanical support - 25 um Al wires
- TPG baseboard
- BeO facings e ATLAS — SCT

15.552 microstrip sensors
2.112 barrel modules
1.976 forward modules
61 m? silicon, 6.3:108strips

e Hybrid (x1) c(rg) ~ 16 um, o(z) ~ 850um [NIMA538 (2005) 384]

- flexible 4 layer copper/kapton hybrid
- mounted directly over two of the four silicon sensors
- carrying front end electronics, pitch adapter, signal routing, connector
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Pixel Detectors
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* HAPS — Hybrid Active Pixel Sensors Solder Bump: Pb-Sn

— segment silicon to diode matrix with high granularity
(= true 2D, no reconstruction ambiguity)

— readout electronic with same geometry
(every cell connected to its own processing electronics)

— connection by “bump bonding”
— requires sophisticated readout architecture

— Hybrid pixel detectors are used in all LHC experiments:
ATLAS, ALICE, CMS and LHCDb

s

PARTICLE

DETECTOR CHIP  ,* ’

o

) I gt gt ; / , PCHIP CONTRCTS
e . P “:/ -3 < : % e 3.3 BoMP STGHRL OUF
Rl Y g
ﬂ(;\\\‘\ __Hnu
o l]t Q\; Ee
~Ship

Flip-chip technique
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Example: The CMS Silicon Tracker

Eumy
e

e e i - Outer Barrel
* CMS " 7 Inner Tracker Inner Barrel (TOB 6-layer)
(TIB - 4 layer) = EndCap
Inner Disks /(TEC)

N (TID)

S—L

2.4 m

TotalWejght  © 1:53&&
Wﬁ%%| 14,60 gt
ﬂwﬂilmﬁg ]
agnstie fi 1 4 Tesl

e CMS - Compact Muon Solenoid

Micro Strip:

e ~ 214 m? of silicon strip sensors

e 11.4 million strips

Pixel:

e Inner 3 layers: silicon pixels (~ 1m?)
66 million pixels (100x150um)
Precision: o(rd) ~ o(z) ~ 15um
Most challenging operating environments (LHC)
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< Alignment @

* Silicon Detectors have a very good point resolution ~10 um
— but where is the point exactly in space w.r.t. the global detector coordinate system?
— resolution is not absolute accuracy

o - /L/T
—

* Point is usually defined by strip number or pixel number
— i.e. within the local Si detector frame (10 x 10 cm? scale)
— Limited mechanical positioning of one Si detector element to each other

» Shift and rotation of the elements, bowing (non flatness) etc.
* Need to know all positions of the detector elements

* Possible alignment strategies

— Can measure positions in the lab before installation (survey)
» Stability after installation?
» Use alignment system (e.qg. laser tracks, piezo) to measure positions
» Align with LHC tracks, e.g. minimize deviations from track in 2 fit
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Material Budget
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* Tracking Detectors should be light-weighted and thin
— multiple scattering by material degrades resolution at low momenta
— unwanted photon conversions in front of calorimeters
— material often very inhomogeneous (in particular Si detectors)

* Power & cooling adds most of the material
— not the Si sensor material

ATLAS CMS

~ 25 Taa -
E B services g :
2 S [ 3 181
5 - EscT E -
Eg::rlﬁ-pipe b 1.6
1.4
o L
1.2
1=
08
=| :
mi 0.6
— . . 0.4f
|| radiation length interaction length -
<1 ~ 0.2 Xo ~ 0.05 )\ 021

<33 < 0.5 X <02\
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Ongoing R&D activities (LHC upgrade)
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Tracking Detector Developments ongoing for several projects

Example: LHC upgrade (High Luminosity LHC):
Larger Occupancy and Higher Radiation levels

* Need higher granularities at larger radius

{4 n”
— Pixel detectors reaching out further in radius 3D sensors

and coming closer to beam ncolumns - p-golumns L ee
— Silicon Strip Sensors with shorter strips
— New trigger concepts using silicon detectors

____________________________

* Need radiation tolerant detectors

— R&D on sensor materials |
(Defect Engineered Silicon, Diamond, ..) g

— R&D on sensor concepts
(n-in-p sensors, 3D sensors, ...)

n-type substrate

* Exploit industrial developments “3D integrate
— ‘3D integration’ (Combine sensor and electronics)

* Many other issues BICMOS analogue 008

— Powering, cooling, reduction of power

consumption, cost, mass reduction, ... CMOS digital

2" Eiroforum School of Instrumentation (ESI 2011) — Tracking Detectors Michael Moll, CERN, 15 May 2011 - 32



< Summary
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Tracking: Particle Track Reconstruction

* Vertexing
— distinguish primary vertices
— measure impact parameter and secondary vertices, lifetime tagging

* Momentum Measurement (from curvature of track in magnetic field)

— Momentum resolution has two main contributions

* Error from multiple scattering, independent of momentum,
dominates at low momentum, requires thin/light detectors

* Error from point measurements, dominates at high momenta, large track length and strong B-Field
helps: o 1/(BL?), need big detectors and strong B-Field to measure high momenta

e Tracking Performance
— Material budget (Trade off between precision and material!)
— Alignment (Improve quality of tracks)

e Tracking Detectors (Choice of Technology)
Mainly two (three) types of track detectors

— Silicon detectors since early 1990s, very good point resolution, _
many electronics channels, “thick” compared to wire chambers

— Gaseous detectors (with wires) since 1960s, point resolution limited to ~50-150 pm
— Fiber trackers with scintillating fibers + photon detectors

* Intensive tracking detector R&D ongoing for LHC upgrade, LC, CLIC, ....
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