
Vertex Detectors

Besides momentum measurement tracking detectors have to measure:

• Primary and Secondary Decay Vertices
1– Example: B lifetime WB ~ 1.6 ps � J�c WB = J � 500 Pm  with 

– Figure of merit: Impact parameter resolution

Physics example from LHCb (2010) : B+ o J/< K+
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Impact parameter resolution

• Uncertainty on the transverse impact parameter, d0, 
depends on the detector radii and space point precisions.

• Simplified formula for just two layers:
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– Suggests small r1, large r2,
small V�, V�

� �

– But precision is degraded 
by multiple scattering .y p g

Example: LHCb (VELO )  
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V(IP)= ( 10 + 29/pT[GeV/c] ) Pm [PoS VERTEX2010:014,2010.]
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Introduc@on	
  
Tracking is concerned with the reconstruction 
of charged particles trajectory ( tracks ) in 
experimental particle physics 
the aim is to measure ( not a full list ) 

momentum (magnetic field) 

the sign of the charge 

particle ID (mass), not necessarily 
with the same detector 

p = mo γ β
secondary vertex 

primary vertex 

lifetime tag 

F = q v × B 
 
 
v 
 

B 
p = 0.3·B·R 

impact parameter 
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MoBon	
  in	
  MagneBc	
  Field	
  
In a magnetic field the motion of a char- 
ged particle is determined by the Lorentz 
Force 

Since magnetic forces do not change the 
energy of the particle 

using the path length s along the track 
instead of the time t 

ds = vdt 

we have 

and finally 

In case of inhomogeneus magnetic field, 
B(s) varies along the track and to find 
the trajectory r(s) one has to solve a 
differential equation 
In case of homogeneus magnetic field the 
trajectory is given by an helix 

dp = e v × B 
dt 

o 
m γ dv = e v × B 

dt 

d2r moγ = e  × B 
dt2  dt 

dr 

d2r moγv  = e  × B 
ds2  ds 

dr 

d2 r  e dr 
ds2 

= × B 
p ds 

B 
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MagneBc	
  Spectrometers	
  
Almost all High Energy experiments done 
at accelerators have a magnetic spectro- 
meter to measure the momentum of 
charged particles 
2 main configurations: 

solenoidal magnetic field 
dipole field 

Solenoidal field 
x 

 
B 

 
z 

 
 

y 
 
cylindrical symmetry 

deflection in x - y ( ρ - φ  ) plane 

tracking detectors arranged in 
cylindrical shells 
measurement of curved trajectories 
in ρ - φ  planes at fixed ρ

Dipole field 
 
 

B 
x 

z 
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rectangular symmetry 
deflection in y - z plane 

tracking detectors arranged in 
parallel planes 
measurement of curved trajectories 
in y - z planes at fixed z 

y 



Tracking	
  Systems:	
  ATLAS	
  
Pixel Detector 

3   barrels, 3+3 disks: 80×106  pixels 
barrel radii: 4.7, 10.5, 13.5 cm 
pixel size 50×400 µm 

σrφ= 6-10 µm σz  = 66 µm 
SCT 

4   barrels, disks: 6.3×106  strips 
barrel radii:30, 37, 44 ,51 cm 
strip pitch 80 µm 
stereo angle ~40 mr 
σrφ= 16 µm σz  = 580µm 

TRT 
barrel: 55 cm < R < 105 cm 
36 layers of straw tubes 
σrφ= 170  µm 
400.000 channels 
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Tracking	
  Systems:	
  ATLAS	
  &	
  CMS	
  

ATLAS 
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CMS 



Momentum	
  Measurement	
  

ρ

in the ρ - z plane we measure the 
dip angle λ

 
ρ

λ

assume a track length of 1 m 

P⊥   = P cos λ  = 0.3BR 2α =  L  2α
R α2  L2 

2  8R 
s ≈ R =

z 

The momentum of the particle is 
projected along two directions 

 ︎

in ρ - φ  plane we measure the 
transverse momentum P⊥

orders of magnitude 

P⊥   = 1GeV 

P⊥   = 10GeV 

the sagitta s 

R 

s 
 
 

s = R ( 1 − cos α )

B = 2T 

B = 2T 

R = 1.67 m 

R = 16.7 m 

φ

P⊥   = 1GeV   s = 7.4 cm 

P⊥   = 10GeV  s = 0.74 cm 

λ

P 

P⊥
z 
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Momentum	
  Measurement	
  

Once we have measured the transverse 
momentum and the dip angle the total 
momentum is 

the error on the momentum is easely 
calculated 
 

∂P =  
P⊥

∂R  R 

We need to study 
the error on the radius measured in 
the bending plane ρ - φ
the error on the dip angle in the 
ρ - z plane 

We need to study also 
contrubution of multiple scattering to 
momentum resolution 

 
 
Comment: 

in an hadronic collider the main 
emphasis is on transverse momentum 
elementary processes among partons 
that are not at rest in the 
laboratory frame 
use of momentum conservation only in 
the transverse plane 

=  0.3BR 
cos λ cos λ
P⊥P =

∂P = −P  tan λ
∂λ ⊥
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The Helix Equation 
The helix is described in parametric form 

λ  is the dip angle 
h =±1 is the sense of rotation on the helix 
The projection on th x-y plane is a circle 

( x − xo  + R cos Φo )2  + ( y − yo  + R sin Φo )2  = R2 

xo  and yo  the coordinates at s = 0 

Φo  is also related to the slope of the 
tangent to the circle at s = 0 

x (  s )   =x ( )hs cos λ
+ R  cos  Φ — cos Φ0o o R 

⎡ ⎤+⎢
⎣ ⎦

y (  s )   = y  + R  sin  Φ( )hs cos λ
— sin Φ0o o R 

⎡ ⎤+⎢
⎣ ⎦

z (  s )   = zo  + s sinλ

R cos Φo 

( xo , yo )

Φo 

R sin Φo 

R ( m )  =
p  (GeV )
0.3B (T )
⊥

B 

λ

P 
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The	
  Helix	
  EquaBon	
  
To reconstruct the trajectory we put position 
measuring planes along the particle path 
We will consider the track fit separately in 
the the 2 planes 

perpendicular to B (x,y): circle 

containing B (x,z), (y,z) or (ρ,z) 

In the plane containing B (for example y - z plane) 
the trajectory is a periodic function of z 

however, for large momenta, i.e. R tanλ >> ( z-zo ), 
assuming for simplicity h = 1, Φo  = 0 

sin λ
s =  z − zo 

( )
h ( z − z  )(y  z  = y  + R  sin  Φ — sin Φ
R tan λ

o 
o o o   

⎥

⎡ ⎤+⎢⎢⎣⎦

( ) ( z − z  )
1 

tan λo o y  z  ≈ y  +

y (  s )   = y  + R  sin  Φ( )hs cos λ
— sin Φo o o 

R 
⎡ ⎤+⎢
⎣ ⎦

(x1, y1, z1 )
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(x2, y2, z2 )

y (  z )   = yo  + ctanλ ( z − zo )

straight line 

straight line 



The	
  Helix	
  Equa@on	
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Straight	
  Line	
  Fit	
  
This is a well known problem 

a reference frame 
N+1 measuring detetectors at z0,…, zn, …,zN 

a particle crossing the detectors 
N+1 coordinate measurements y0,…, yn, …,yN 

each measurement affected by uncorrelated 
errors σ0,…, σn, …,σN 

Find the best line y = a + b z that fit the track 

The solution is found by minimizing the χ2 

the covariance matrix (at z = 0) is 

zo zn zN 

N y yo yn 

( yn  − a − bzn )
2 

χ2 

σ2 

N 

∑
n =0 n 

=

a = (SySzz  − Sz Szy )/ D 

b = (S1Szy  − Sz Sy )/ D 

2 

2 
1 

1 ⎛ Szz ⎛ σa −Sz ⎞
cab ⎞⎟

z ab b  ⎠⎟
D ⎜⎜−S S ⎜⎜c σ

⎜⎜ ⎟⎟⎜⎜⎟⎟ =
⎟⎟⎟ ⎠⎟⎟⎜⎝⎜ ⎝

1 
1 
2 

yn 
2 

N 

∑
n =0 
N 

N 

∑
n =0 
N 

∑
n =0 

2 2 
n =0 σn 
N 

z 2 

1 
n 
2 zz  ∑

n =0 

y 
n n 

zn ynzn 
z yz 

σn 

zz z  z 
n 

S  = S  =

S S  =

S  = D = S S  − S S 

σ σ

σ

= ∑

a 

θ b = tg θ = ctg λ
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depends only 
on σ,  zn and N 
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Straight Line Fit: Matrix Formalism
It is useful to restate the problem using 
a matrix formalism [4:Avery 1991]
This is useful because:

it is more compact
it is easely extensible to other linear
problems
it is more useful to formulate an 
iterative procedure

With the same assumption as before
the linear model is given by f = Ap

measurements and errors are 

The χ2 can be written as

The minimum χ2 is obtained by

The covariance matrix of the parameters 
is obtained from the measurements 
covariance matrix V

please notice (N+1 measurements, M
parameters)

dimensions A = (N+1) × M
dimensions V = (N+1) × (N+1)
dimensions ATWA = M × M
dimensions ATW = M × (N+1)
dimensions Vp = M × M

0 0

...

N N

f a bz

f a bz

� ¬ � ¬­ ­+� �­ ­� �­ ­� �­ ­� �­ ­= =� �­ ­� �­ ­­ ­� �­ ­� �­ ­+­ ­� �� �� ® � ®­ ­

f

0

...

N

y

y

� ¬­� ­� ­� ­�= ­� ­� ­­� ­­��� ®­

Y

( ) ( )2 1Tχ −= − − =Y Ap W Y Ap W V

( ) 1T T−=p A WA A WY�

( ) 11T −−=PV A V A
01

1 ...

1 N

z a

b
z

� ¬­� ­� � ¬­� ­ ­�� ­ ­= =�� ­ ­�� ­­� ­� ®­� ­� ­­��� ®­

Ap

( ) ( )( )ij i i j jy y y y= − −V

( ) 2
ij i ijσ δ=V if uncorrelated



Straight	
  Line	
  Fit	
  

The S are easily computed in finite form 

The errors on the intercept and the 
slope are 

Let’s consider the case of equal spacing 
between zo  and zN  with equal errors on 
coordinates σn  = σ

L 

important features: 
both errors are linearly dependent 
on the measurement error σ
both errors decrease as 1/  N + 1 

the error on the slope decrease as 
the inverse of the lever arm L 

the error on the intercept increases 
if zc  increase 

zo zN 

Sz  = ( N + 1)

N + 1 ⎡ ( N + 2 ) L2 

( N + 1)2 ( N + 2 )

1 
σ2  σ2 

2 
c 

   

σ2 

L2 
D =

12σ4 

N + 1  z 

N  12 

c 

Szz 

S  =

+ z 

N 

⎤⎢

⎢
⎣

⎥

⎥
⎦

=

2 

z  + z 
= N  o 

o  c N L = z  − z z 

zc 

2  2 

σ2 
2 

=  ⎢1 + 12 
N + 2 

⎥
⎥⎦ N + 1 

  N  zc  ⎤    σ   
a 

L

⎡
⎢

⎣

( N + 1) L2 ( N + 2 )
σ2 

σ2 
12N 

b =

S and errors: all computed at z = 0 

a 
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Errors	
  At	
  The	
  Center	
  Of	
  The	
  Track	
  
We can choose the origin at the center 
of the track: z = zc 

L 
 

ip 

zo 

It is easely seen that for uniform 
spacing and equal errors 

S1  and D do not change 

Sz and Szz change 

The errors are now 

The intercept is  different from the 
previous case (origin at z = 0) 

Obviously, taking properly into account 
error propagation ve get the same result 
for the impact parameter ip 

ip =  f (−zc ) = a − bzc N + 1 ⎡ ( N + 2 ) L2 ⎤

( N + 1)2 ( N + 2 )

S1  =
σ2 σ2 

L2 

12σ4 

N + 1 
Sz  = 0 ⎥

N  12 
Szz 

D =
N 

⎢

⎢
⎣

=
⎥

⎦

σ2 
σ2 

N + 1 a =

( N + 1) L2 ( N + 2 )
σ2 

σ2 
12N 

b =

changed 

unchanged 

z c 

zN 

2 = σ2  + z 2σ2 
a  c   b 

σip 

σ2  σ2 z 2 2 
2 

12N 
N + 1  N + 1 N + 2 L 

c 
ip σ = +

σa and σb uncorrela- 
ted if origin at zc 
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Vertex	
  Detectors	
  

we extrapolate 
by the size of the measurement error 

The previous result shows clearly the need 
for vertex detectors to achieve a precise 
measurements of the impact parameter 
 
 

L 

zc 

zo  zc 

The “amplitude” of the error is determined 
by the error on the slope 
by the distance of the point to which 

zc/L 

We should have 
small measurement errors σ
large lever arm L 

place first plane as near as possible 
to the production point: small zc 

Increasing the number of points also 
improves but only as  N + 1  

The technology used is silicon detectors 
with resolution of the order of σ  ~ 10 µm 

expensive 
small N 

small L 

zN 

σ/L 

2 σ2  12N  zc 
2 

σ2 
N + 1  N + 1 N + 2 L2 ip 
σ

= +
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Vertex	
  Detectors	
  (before	
  IBL	
  inserBon)	
  
Summarizing:the error on the impact 
parameter is 

for the ATLAS pixel detector 
N+1 = 3, σ = 10 µm 

z0 = 4.1 cm, z2 = 13.5 cm 

L = 9.4, zc=6.8, r = 0.72 
σip = 12 µ 

zo zN 

L 

zc 

ip 
σ = Z ( r, N )

N + 1 ip 
σ

Z ( r, N ) = 2 1 + 12 
  N   
N + 2 

r 

r = zc 

L 
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N  r 5.0 3.0 2.0 1.5 1.0 0.75 0.60 0.50 
1 10.1 6.08 4.12 3.16 2.24 1.80 1.56 1.41 
2 12.3 7.42 5.00 3.81 2.65 2.09 1.78 1.58 
5 14.7 8.84 5.94 4.50 3.09 2.41 2.02 1.77 
9 15.7 9.45 6.35 4.81 3.29 2.55 2.13 1.86 
19 16.5 9.94 6.67 5.04 3.44 2.67 2.22 1.93 
∞ 17.3 10.4 7.00 5.29 3.61 2.78 2.31 2.00 



Vertex	
  Detector	
  +	
  Central	
  Detector	
  

We have seen that the error on the 
impact parameter is 

•  The first term: 
• depend only on the precision 
of the vertex detector 

•  it is equivalent to a very precise 

measurement (σa	
  ~ 5 µ    ) very 
near to the primary vertex (zc) 

The second term depends on the error on 
the slope and is limited by the small lever 
arm L typical of vertex detectors       
(~ 10 cm) 

It is usually very expensive to increase 
this lever arm 
A solution is a bigger detector (Central 
Detector) less precise (usually less 
expensive) but with a much bigger lever 
arm L 

The error on the slope then become 
smaller 
The error on the extrapolation 
become smaller 

This is the arrangement usually adopted 
by experiments who want to measure the 
impact parameter 

σ2 = σ2  + z 2σ2 
a  c ip b 

zN 
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z0	
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Momentum Measurement: Sagitta

To introduce the problem of momentum
measurement let’s go back to the sagitta

a particle moving in a plane perpendicular 
to a uniform magnetic field B

the trajectory of the particle is an arc of 
radius R of length L

assume we have 3 measurements: y1, y2, y3

the error on the radius is related to the 
sagitta error by

important features

the percentage error on the momentum 
is proportional to the momentum itself

the error on the momentum is inverse-
ly proportional to B

the error on the momentum is inverse-
ly proportional to 1/L2

the error on the momentum is propor-
tional to coordinate measurement error

2α

R

s

2 L
R

α =
( )1 coss R α= −
2 2

2 8
Ls R
R

α≈ =

sagitta

y1 y2
y3

0.3
p p RR
B p R

δ δ= =

1 2
3 2
y y

s y
+

= −
3
2

s y yδ δ δ= ∼

2

8
L Rs y
R R
δδ δ= ∼

2

8
L p y
R p
δ δ=

2
8p R y

p L
δ δ= 2

8
0.3

p p y
p BL
δ δ=

2 2
8
0.3

p y
p BL
δ δ=



Tracking	
  In	
  MagneBc	
  Field	
  

we are led to the parabolic approximation 
of the trajectory 

let’s stress that as far as the track pa- 
rameters is concerned the dependence is 
linear 
The parameters a,b,c are 

intercept at the origin 
slope at the origin 
radius of curvature (momentum) 

The previous example showed the basic 
features of momentum measurement 
Let’s now turn to a more complete trea- 
tement of the measurement of the char- 
ged particle trajectory 
We have already seen that for an homo- 
geneus magnetic field the trajectory 
projected on a plane perpendicular to the 
magnetic field is a circle 

( y − yo )2  + ( x − xo )2  = R2 

for not too low momenta we can use a 
linear approximation 

a = y (  0 )

x =0 
b = dy 

dx 

1 c = −
2R 

+ R2  − ( x − xo )2 

y = yo 

y ≈ yo 

( x − xo )2 ⎞⎟
2R2 + R ⎜1 −

⎛⎜ ⎟⎟⎠⎟⎜⎝

+ R −( )xo  + xo x −  1  x 2 
2 R  2R 2R 

o y = y 

y = a + bx + cx 2 
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Quadratic Fit
Assume N detectors measuring the y
coordinate [Gluckstern 63]

The detectors are placed at positions
xo, …, xn, …, xN

A track crossing the detectors

gives the measurements y0, …,yn, …, yN

Each measurement has an error σn

Using the parabola approximation, the track 
parameters are found by minimizing the χ2

However we can use the matrix formalism
developed for the straight line:

let’s recall the solution

( )222
2

0

N
n n n

nn

y a bx cx
χ

σ=

− − −
= ∑

ox nx Nx

Nyoy ny

2
0 0

2

1
... ... ...

1 N N

x x

x x

� ¬­� ­� ­� ­� ­�= ­� ­­� ­� ­� ­­��� ®­

A

2
0

2

1
0 0

0 ... ..0

10 0
N

σ

σ

� ¬­� ­� ­� ­� ­� ­� ­­�= ­� ­� ­� ­� ­� ­� ­� ­­­��� ®­� ­

W

a

b
c

� ¬­� ­� ­� ­�= ­� ­� ­­� ­­��� ®­

p...
o

N

y

y

� ¬­� ­� ­� ­�= ­� ­� ­­� ­­��� ®­

Y

( ) 1T T−=p A WA A WY�

( )

1
0 1 2

1
1 2 3

2 3 4

T

F F F

F F F

F F F

−

−

� ¬­� ­� ­� ­� ­= � ­� ­­� ­� ­­��� ®­

A WA 2
0

N k
n

k
nn
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σ=

= ∑

0

1

2

T

M

M

M

� ¬­� ­� ­� ­� ­= � ­� ­­� ­� ­­��� ®­

A WY 2
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n n

k
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= ∑



QuadraBc	
  Fit	
  

The result is [4: Avery 1991, Blum- 
Rolandi 1993 p.204, Gluckstern 63] 

The quantities Fij  are the determinants 
of the 2x2 matrices obtained from the 
3x3 matrix F by removing row i, column j 

The covariance matrix 

The result can be found in [Blum-Rolandi, 
p. 206] 
To get some idea of the covariance 
matrix let’s first compute it by setting 
the origin at the center of the track 

with this choice one can “easely” find 

2 
n  n n  n n  n 

∑Gn ∑ xnGn ∑  n  n 

y G y G y G a =  ∑ b =  ∑ c =  ∑
x G 

Gn  = F 11 − xn F 21  + x 2F 
n 

 
Pn  = −F 
 
Qn 

31 

12  22  2  32 + xn F  − xn F 

= F 13  − xn F 23  + x 2F 
n 

33 

Vp  = ( AT WA )

⎞−1 
0 1 2 

−1 

⎜⎜ 1  2  3 

2 3 4 ⎠⎟

⎛F F
 

F 
= ⎜⎜ F  F  F 

⎜⎜ F F  F 

⎜⎜ ⎟⎟

⎝

n =0 

∑ N + 1 
N 

n 
c 

x 
x  =

L2  ( N + 1) ( N + 2 )
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L4  ( N + 1) ( N + 2 )( 3N 2  + 6N − 4 )

L   (  N  − 1) (  N  + 1)   (  N  + 2 ) ( N  + 3 )

F1  = F3  = 0 

F0  =
σ2 

F2  =  
σ2 

4  σ2 240N 3 

2 4 
2 

0   4  2 
σ4 180N 3 

N + 1 

12N 

F  =

S = F F  − F  =
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Momentum Resolution
The covariance matrix is 

we are mostly interested on the error on 
the curvature

it can be shown that the error on the 
curvature do not depend on the position of 
the origin along the track

Let’s recall from the discussion on the 
sagitta

also recall that

and finally the momentum error

the formula shows the same basic features
we noticed in the sagitta discussion
we have also found the dependence on the 
number of measurements (weak)

4 2

0 4 2 2

0 4 2 2 2

02

0

1 0 0

0

F F

F F F F
F F F F F

F F

� ¬− ­� ­� ­� ­� − ­� ­= � ­­�− ­� ­� ­� ­�− ­­�� ®� ­

pV

2
2 0

4
0 4 2 2

c N
F
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F F F F L

σσ = =
−

( )( )( )( )

3180
1 1 2 3N

NC
N N N N

=
− + + +

0.3
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δ δ= =

1
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c
R

= 2
1
2c R
R

σ δ=
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p C
p BL
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Momentum	
  ResoluBon	
  

We stress again that a good momentum 
resolution call for a long track 
 

δp ∼   1 
p2  L2 

 
any trick that can extend the track length 
can produce significant improvements on 
the momentum resolution 
the use of the vertex can also improve 
momentum resolution: 

the common vertex from which all the 
tracks originate can be fitted 
the point found can be added to every 
track to extend the track length at 
Rmin → 0 

the position of the beam spot can also be 
used as constraint 
Extending Rmax  can be very expensive 
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Momentum	
  ResoluBon	
  

We can now give a rough estimate of the 
momentum resolution of the ATLAS 
tracking systems 
There are different systems: some 
simplifying guess 

TRT: 36 point with σ = 170 µm from 
55 cm to 105 cm: as a single point 
with σ = 28 µm at Rmax = 80 cm 

Rmin = 4.7 cm, L = 75 cm 

N+1= 3 + 4 + 1 = 8 

σ = 12, 16, 28 ~ 20 µm 

CN  ≈ 12  4CN  ≈ 7 

At 500 GeV 

η

δp ( % )
p 

p  = 500 GeV ⊥

δp ∼  4 × 10−4  GeV −1 

p2 

δp = 20 × 10−2 
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Slope	
  And	
  Intercept	
  ResoluBon	
  

For completeness we give also the errors 
on the slope and intercept 
The error on the slope is given by 

We find the same qualitative behaviour 
we had for the straight line fit 
The error on the intercept is 

The only off diagonal element of the 
covariance matrix different from 0 is 
between intercept and curvature and we 
have 

2 

σ2 BN  L2 
2 

1 
F b 

σ
= =

σ2 
F4 = A  σ2 

F F40  − F2F2 
a N =

DN   = −
( N − 1) ( N + 1) ( N + 3 )

15N 2 
( N + 1) ( N + 2 )

=    12N   
N B 

3 ( 3N 2  + 6N − 4 )
AN   =  4 ( N − 1) ( N + 1) ( N + 3 )

σ2 2 
N  L2 F F40  − F2F2 

σac  = −
F 

= −D 
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ExtrapolaBon	
  To	
  Vertex	
  

We want now compute the extrapolation 
to vertex and compare the behaviour of 
the results of the fit: 

inside magnetic field 
no magnetic field 

having measured the parameters a,b,c at 
the center of the track, the intercept is 

Propagation of the errors gives 

The calculation gives [Blum-Rolandi 1993] 

where Baa(r,N) is analogous to Z(r,N) 
defined for the straight line fit (see 
next slide for a table of values) 

xv  xc 

let’s compare the error assuming the 
geometry of the ATLAS pixel detector: 

Rmin = 4.7, Rmax = 13.5, N+1 = 3 

we have r = 1 and from the 2 tables we get 
Baa(1,2) = 7.63 

Z(1,2) = 2.65 

We see that the error is degraded by a 
factor ~ 2.9 

The reason is that the error on momentum 
cause an additional contribution to the error 
in the extrapolation 

y  = a + bxv  + cx 2 
v ip 

σ2 = σ2  + x 2σ2  + x 4σ2  + 2x 2σa  v  v  c  v   ac ip  b 

L 

x c 

( r, N )
N + 1 aa ip =    σ  B σ

a central tracking detector is needed 

L = 8.8 cm 
xc = 9.1 cm  
r  = xc/L ~ 1 
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Extrapola@on	
  To	
  Vertex	
  
B  ( r, N )

N + 1 aa ip 
σ

σ =

Baa ( r, N )
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N  r 5.0 3.0 2.0 1.5 1.0 0.75 0.60 0.50 
2 211 75/3 32.9 18.1 7.63 4.10 2.65 2.05 
3 224 80.2 35.2 19.5 8.29 4.48 2.84 2.07 
5 250 89.5 39.4 21.9 9.39 5.10 3.20 2.26 
10 282 101 44.6 24.8 10.7 5.84 3.65 2.54 
19 304 109 48.1 26.8 11.6 6.32 3.95 2.72 
∞ 335 120 53.0 29.5 12.8 7.00 4.37 3.00 



Parameters	
  PropagaBon	
  

We have seen that changing the origin of 
the reference frame 

the track parameters change 
the covariance matrix changes 

It is often useful to propagate the 
parameters describing the track from one 
“origin” (point 0) to “another” (point 1) 
For linear models this is very easely 
expressed in matrix form 

To better understand the above formulas 
let’s apply them to the straight line and 
to the parabola 

Using the matrix D we can also propagate 
the covariance matrix of the parameters 

0 

⎛a ⎞

⎝⎜b ⎟⎟
⎟⎟= ⎜⎜
⎠

p 

= fi ( pk ) = Di pk pi 

⎛ 1  z1 ⎞⎟∂f1  ∂p1 

∂p0  ∂p0 
⎜⎜ 0 1 ⎟

= ⎜⎜ ⎟⎟=
⎝ ⎠

2 
1 1 

1 1 
1 

0 0 

⎛ 1 

= ⎜ 0 1  2x  ⎟⎟

0 ⎜⎜ 0 1  ⎟⎟

x  x ⎞⎟⎜⎜ ⎟⎟∂f ∂p 
= ⎜⎜ ⎟⎟∂p ∂p ⎟⎜

⎝ ⎠⎟

∂fi 
i ∂pk 

D  =

xo  x1 

o z  z1 

1 ⎟⎟1  ⎜⎜b 

⎛a + bz  ⎞⎟p  = ⎜⎜
⎟⎝ ⎠

straight line 

parabola 
0  ⎜⎜

⎛a ⎞⎟
p  = ⎜⎜b ⎟⎟

⎜⎜c ⎟⎟

⎜⎜ ⎟⎟
⎟⎟

⎝⎠⎟

⎛a + bx  + cx 2 ⎞
1 1 ⎟⎟

p1  = ⎜⎜b + 2cx1 ⎜⎜c 

⎜⎜ ⎟⎟⎜ ⎟⎟⎟⎟
⎠⎟⎜⎝⎜

= ( DT V−1D )−1 
0 1 V 
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Multiple Scattering
Particles moving through the detector 
material suffer innumerable EM collisions
which alter the trajectory in a random
fashion (stochastic process)

Few examples:

Argon Xo = 110 m

Silicon Xo = 9.4 cm
consider a 10 GeV pion

The effect goes as 1/p: for a pion of 
1 GeV the effect is 10 times larger

The lateral displacement is proportional 
to the thickness of the detector: usually 
can be neglected for thin detectors
In what follow we will consider only thin 
detectors
For thick detectors ( for example large 
volume gas detectors) see [Gluckstern 63 
Blum-Rolandi 93, Block et al. 90]

X

εp

θp

2
2 0.0136K z
pβ

� ¬­�= ­� ­�� ®
2

0
p

XK
X

θ =

2 2
0.87p p

p p

ε θ
ρ

ε θ
= =

 θp εp 

Argon:      1 m 0.10 × 10-3 80    µm

Silicon: 300 µm 0.08 × 10-3 0.01 µm 
 

0

1
2p p
XK X
X

ε θ =

2 2

0

1
3p
XK X
X

ε = strongly correlated
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Multiple Scattering
The scattering angle has a distribution that is almost gaussian

At large angles deviations from gaussian distributions appear 
that manifest as a long tail going as sin-4θ/2
In thick detectors the distribution of the lateral 
displacement should also be considered
The joint distribution of the scattering angle 
and the lateral displacement is

( )
2

2
2 2 2 2

3 33 2, exp p p p
p p p

p p
P

XX X
ε θ ε

ε θ θ
π θ θ

  ¯� ¬­�¡ °­= − − +� ­�¡ °­� ­� ®¢ ±

( ) 2
22

1 1exp
22

p p
pp

P θ θ
θπ θ

  ¯
¡ °= −¡ °¢ ±

4

1

sin 2
θp

2
2 0.0136K z
pβ

� ¬­�= ­� ­�� ®
2

0
p

XK
X

θ =



Mul@ple	
  ScaVering	
  

Since 

yj  = y-
j 

yk  = y- k yi  = y- i 

y- i 
j 

Multiple scattering is a cumulative effect 
and introduces correlation among the 
coordinate measurements 
The treatment of multiple scattering is 
different for: 

discrete detectors 
continous detectors 

Here we consider only the simplest case 
of discrete and thin detectors 
For continous detectors see for example 
[5: Avery 1991] 
Let’s consider 3 thin detectors 
 

yj 

A track cross the 3 planes at positions 
y- i  y- j  y- k 

The 3 coordinate have measurement 
errors σi, σj, σk  due to the detector 
resolution 
They also have mean value 

y- i  = y- i  y- j  = y- j  y- k  = y- k 

 
on plane i  yi  = y- i 

Because of multiple scattering on plane i 
the actual trajectory cross plane j at 

yj  = y- j  + (z j  − zi )δθi 
Because of multiple scattering on planes 
i,j the actual trajectory cross plane k at 

yk  = y- k  + (zk  − zi )δθi  + (zk  − z j )δθj 
δθ = 0 

y- ︎ y- k 

zi zj zk 

yi 

δθi 

yk 

 
δθj 
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Multiple Scattering
we can now compute the covariance matrix of the coordinate 
measurements including multiple scattering

First the diagonal elements

it easy to verify that

( )( )nm m m n nV y y y y= − −

( )2ii i iV y y= −

( ) ( )222 2 2
i i j jkk k k kV z z z zσ δθ δθ= + − + −

( )2i iy y= − �

2
ii iV σ=

( )2jj j jV y y= − ( )( )2j j j i iy y z z δθ= − + −�

( )2j jy y= − � ( )2 2
j i iz z δθ+ − ( ) ( )2 j i j j iz z y y δθ+ − − �

( )22 2
jj j j i iV z zσ δθ= + −

�iy
�jy

�ky

iz jz kz

iy
jy

ky

iδθ

jδθ
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Multiple Scattering

The off-diagonal elements are

( )( )nm m m n nV y y y y= − −

( )( )ij i i j jV y y y y= − − ( ) ( )( )i i j j j i iy y y y z z δθ= − − + −� � 0ijV =

( )( )i iik k kV y y y y= − −

( ) ( ) ( )( )i i i i j jk k k ky y y y z z z zδθ δθ= − − + − + −� � 0ikV =

( )( )j jjk k kV y y y y= − −

( )( ) ( ) ( )( )j j j i i i i j jk k k ky y z z y y z z z zδθ δθ δθ= − + − − + − + −� �

( ) ( )j i i i ikz z z zδθ δθ= − −

( )( ) 2
j i i ijk kV z z z z δθ= − −

�iy
�jy

�ky

iz jz kz

iy
jy

ky

iδθ

jδθ

uncorrelated: <>=0

uncorrelated: <>=0
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Multiple Scattering
Summarizing, the covariance matrix is

The second matrix has
diagonal elements due to any previous material affecting
the trajectory impact point at the given plane
off diagonal elements: only presents if a previous material layer
affects at the same time the trajectory impact points for the 2 planes

the same scattering at plane i
affects the trajectory at plane j and plane k

( ) ( )( )
( )( ) ( ) ( )

2

22 2 2

2 222 2 2

0 0 00 0

0 0 0

0 0 0

i

j j i i i j i ik

k i j i i i i j i jk k

V z z z z z z

z z z z z z z z

σ

σ δθ δθ

σ δθ δθ δθ

� ¬� ¬ ­�­ ­� �­ ­� �­ ­� �­ ­� �­ ­�= + − − −­ � ­� ­ ­�­� ­�­� ­�­ ­� �­­ ­�� �� ® − − − + − ­­ � ­� ®� ­

�iy
�jy

�ky

iz jz kz

iy
jy

ky

iδθ

jδθ
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Track Fit With Multiple Scattering
The methods developed to fit a track to 
the measured points can be used to 
perform a fit taking into account M.S.

the covariance matrix is computed
the same fit procedure is applied

Let’s now try to understand qualitatively
the effect of multiple scattering on the 
determination of tracks parameters:

the size of the effect goes as 1/p
then the effect is important for low 
momentum track

Assume we are dominated by multiple 
scattering

the momentum resolution is given by

the coordinate error due to M.S. is 

we have then

We conclude:
for low momentum the percentage 
momentum resolution reach a almost 
constant value (still dependent on β)

The momentum resolution only 
improves as 1/L
The additional factor 1/N can help 
but in this case uniform spacing is 
essential2 2 4

0.3 N
p

A
p BL
δ σ=

0.0136
o

L L X
N N p X

σ δθ
β

=∼

p
p
δ → constant

0

40.0136 1
0.3

NAp X
p X BL N
δ

β
∼



Momentum	
  ResoluBon	
  with	
  M.S.	
  

solenoidal field 
no beam constraint 

solenoidal field 
with beam constraint 

uniform field 
no beam constraint 

δp 
p2 

[TeV −1 ]

δp 
p2 

[TeV −1 ]

δp 
p2 

[TeV −1 ]

δp 
p2 

[TeV −1 ]
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Track	
  Fit	
  With	
  Mul@ple	
  ScaVering	
  

we cannot improve anymore the error on 
the slope (direction) by increasing the 
lever arm 

the limit is set by the multiple 
scattering angle itself 

Same kind of considerations for the 
error on the slope and on the intercept 
the multiple scattering error is 
 

σ  ∼   L δθ  =  L 0.0136   X   
N  N  pβ Xo 

 
the error on the slope is 

σ

As far as the impact parameter 
resolution 

large lever arm degrade the impact 
parameter resolution 

for a given error on the slope set by 
the multiple scattering angle the 
error on the extrapolation goes as 
the lever arm 

Unfortunately both ATLAS and CMS have 
a lot of material 

silicon detectors for high precision 
silicon for radiation hardness 
silicon for rate capabilities 

Baa ( r, N )
N + 1 ip 
σ

σ =

b N σ = B 
L 

L  0.0136 X 
b N LN  pβ Xo 
σ = B 

0.0136  X 
N  pβ Xo 

BN 
b σ =

=  Baa ( r, N ) L 0.0136   X   
N + 1  N  pβ Xo 

ip σ
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Material	
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  ATLAS	
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Material Budget

• Tracking Detectors should be light-weighted and thin
– multiple scattering by material degrades resolution at low momenta
– unwanted photon conversions in front of calorimeters

t i l ft i h (i ti l Si d t t )– material often very inhomogeneous (in particular Si detectors)

• Power & cooling adds most of the material
– not the Si sensor materialnot the Si sensor material

CMS ATLAS 

2nd Eiroforum School of Instrumentation (ESI 2011) – Tracking Detectors                       Michael Moll, CERN, 15 May 2011   - 31



Tracker	
  Resolu@ons	
  With	
  M.S.	
  

We have seen that for low momentum 
track the momentum resolution and the 
impact parameter resolution are domi- 
nated by multiple scattering 

the momentum resolution tend to 

the impact parameter resolution tend 
to 

The amount of material actually traversed 
by the particles depend on the polar angle 
 
 

X 
sin θ

θ

Since the multiple scattering error and 
the measurement error are independent to 
total error is sum in quadrature of the 2 
term 
For the ATLAS detector montecarlo 
studies have shown that the resolutions 
can be parametrised as 

δp →  
kp  X 

p2  p  X 
o 

kip  X 
σip  → p  X o 

[GeV −1 ]
p2 

0.013 
= 0.00036 ⊕

p⊥ sin θ
δp⊥
⊥

[ µm ]
73 

= 11 ⊕
p⊥ sin θ

σip 

σip 
140 

p⊥   = 1 GeV 
p⊥   = 20 GeV 
p⊥   = 200 GeV 

 

 
0  0.5  1  1.5  2  2.5  η
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40 

20 

0 

p2 p2 p  sin θ
δp →  

kp  X  δp →
Xo 

Kp 

p 

p  sin θ

kip  X  Kip 

p  Xo 
σip σip → →
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Sign	
  Of	
  The	
  Charge	
  
The sign of the charge is defined by the 
sign of 1/R 

This measurement becomes more and more 
difficult as the momentum increases 
Let’s find up to which momentum the 
ATLAS tracker will be able to measure 
the sign of a charged particle 
We recall taht the error on the radius 
as determined from the parabola fit is 

We remember that in our exemple we 
had 

CN = 12, L = 75 cm, s = 20 µ 

if we require a 3 σ  identification 

inserting numerical values we find 

1 > 0  1  < 0 
Q = +1 

R  R 
Q = −1 

σ2 2     
4  N σc   = C 

L 

> 3σ = 6σ =
R  1  c 

R L2 

3σy 1 
4CN 

0.3BL2 
3σy 1 

4C 
0.3BR N >

0.3BL2 

3  4CN σy 
p <

p < 800 GeV 
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SystemaBc	
  Effects	
  
Recall the formulas we found for the 
parabola fit 

Using those formulas it is easy to eva- 
luate systematic effects on the track 
parameters due to systematic errors on 
the position measurements 
Examples: 

displacement of vertex detector with 
respect to the central detector 

Inserting, for example, in the formula 
for the curvature 

a more sofistcated effect could be 
the rotation of the vertex detector 

x 2G 
∑ynGn  ∑ynGn  ∑ynGn 

∑ n  ∑  n  n  ∑  n  n 

a = b = c =
G  x G 

y0  → y0  + δ y1  → y1  + δ y2  → y2  + δ

2 
∑ynGn 

∑  n  n  ∑
c =

x G 

3 

∑Gn 
n =0 

2 
n  n x G 

+δ true ≡ c  + δc 

y0  → y0  + δ0  y1  → y1  + δ1  y2  → y2  + δ2 

x 2G 
∑ynGn 

∑  n  n  ∑
c =

3 

∑ δnGn 

+ n = 0   
x 2G n  n 

≡ ctrue  + δc 
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Systema@c	
  Effects:	
  Misalignment	
  

Let’s assume that one measurement is 
systematically displaced: misalignment or 
distortion (systematic error) 

Recall the formula for the radius from the 
parabola fit 

introducing the coordinate with error 

the second term is the systematic effect 
on the radius due to the systematic error 
on the measurement 
Since the coefficients Gk are know the 
effect can be precisely estimated 
Please notice 

the sign of the systematic error on 
1/R is fixed by the sign of δ

yk  → yk  + δ

xo xk  xN 

y 

x 2G 
 1  
2R 
∑ynGn 

∑  n  n 

=

x 2G  x 2G 
1 
2R 

=  ∑ynGn Gk 

∑  n  n  ∑  n  n 

+ δ

x 2G 
1  1 

2R  2R 
Gk 

true  ∑  n  n 

1 
R 

Q = +1 > 0  Q = −1 
1 
R 

< 0 

1 
R increases 1 

R decreases 

δ ∆ 1  ∼  2 δ
= + 2 R L 
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SystemaBc	
  Effects:	
  Misalignment	
  
As an example consider a systematic 
effect as seen in the ALEPH TPC 
The resolution was studied using muon 
pairs produced in e+ e-  annihilation at the 
Z0 peak 

The muon are produced back to back and 
have exactly half the c.m. energy each 
The plot show the momentum reconstruc- 
ted separately for positive and negative 
muons 

As the plot clearly show the error is 
quite large 
To account for this error δ  ~ 1 mm ! 
Magnetic field distortion 
A correction procedure is the essential 
The following plot shows the same 
distribution after proper magnetic 
distortion corrections are applied 

Ebeam/ptrack Ebeam/ptrack 
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Problems	
  With	
  The	
  Fit	
  Procedure	
  

We have learned how to use linear 
models to fit the projection of the 
charged particle track 
The method could be extendend to non 
linear problems (inhomogeneous magnetic 
field) by linearization and iteration 
The solution of the problem is given by 

to solve the problem the matrix V 
has to be inverted 
easy if V diagonal ( time O(n) ) 

We have seen that multiple scattering 
introduces correlation among measure- 
ments and makes V non diagonal 

For large detectors the dimension of V 
can be prohibitively large (time O(n3)) 

The fit is normally used to rank track 
candidates during pattern recognition 

The fit procedure gives the track 
parameters at a given surface or plane 

Often prediction of the track crossing 
point at a different plane is needed 

impact parameter match 
with calorimeters 
match with particle ID (RICH) 

The fit procedure described is not 
optimal for this problem: 

multiple scattering makes prediction 
(extrapolation) non optimal 

p-  = ( AT WA )−1 AT WY  W =  V-1 

47	
  



Kalman	
  Filter	
  

to start the Kalman Filter we need a seed 
the position on the next plane is predicted 
the measurement is considered 

prediction and measurement are merged 
(filtered) 
then new 
filtering … 
filtering … 

prediction … 
prediction … 

prediction … 

The filtered trajectory 
The smoothed trajectory 

measurement … 
measurement … 
measurement … 

filtered 
predicted 
measured 

smoothed 

  filtered trajectory 
predicted trajectory 

smoothed trajectory 
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Kalman	
  Filter	
  
The filtering is nothing but a weighted 
average of the 

new measurement yn 

the prediction yp 

Clearly if the new measurement has a 
very large error 

If the prediction has a large error (for 
example large multiple scattering) 

The effect of multiple scattering, or any 
other stochastic effect, can be handled 
in the prediction 
The advantages of this procedure are 

is an iterative procedure 

not necessary to invert large 
matrices 
is a local procedure: at any step the 
estimate at the given plane is the 
best that make use of the prevoius 
measurements 

1  1 
2 2 

σ2 2 
1 1 

p n 
p n yf   =

p n 

y  + y 
σ σ

σ
+

2 2 

2 2 2 2 

σp σn 
p n yf   =

p  n  p  n 
y  + y 

σ + σ σ + σ

σn  → ∞ yf   → yp 
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σp  → ∞ yf   → yn 

measurement ignored 

prediction ignored 



Kalman	
  Filter	
  

The consequence is that if you want the 
optimal measurement at the origin you 
have to start the filter from the end of 
the track 

After all the measurements have been 
used (filtered) it is possible possible to 
build a procedure that 

uses the (stored) intermediate 
results of the filter 
gives the best parameter estimation 
at any point 

This is the smoother 

production vertex 

direction of flight 
-7 
 
production vertex 

� direction of filter 
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Applications of Kalman Filter: 
navigation 
radar tracking 
sonar ranging 

satellite orbit computation 
stock prize prediction 

It is used in all sort of fields 
Eagle landed on the moon using KF 
Gyroscopes in airplanes use KF 

Usually the problem is to estimate a 
state of some sort and its uncertainty 

location and velocity of airplane 
track parameters of charged 
particles in HEP experiments 

However we do not observe the state 
directly 

We only observe some measurements 
from sensors which are noisy: 

radar tracking 
charged particle tracking detectors 

As an additional complication the state 
evolve in time with is own uncertainties: 
process stochastic noise 

deviation from trajectory due to 
random wind 
multiple scattering 

In case of tracking in HEP instead of 
time we can consider the evolution of the 
track parameter at the discrete layers 
where the detectors perform the 
measurement 
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We give here the basics equations of the 
Kalman Filter 
Detailed discussion can be found in [2: 
Bock et al 1990], [6: Avery 1992], [7: 
Frühwirth 1987], [8: Billoir 1985] 
Consider 2 planes of our system 

pk −1 

 
 

k − 1  k 
 
The measurements up to plane k - 1 
allowed us to get an estimate of the 
track parameters pk-1 

We then propagate pk-1  to plane k 

p- k 

k 
−1 

∂fk 
k F  =

∂p 
= Fk pk 

−1 

p-
k 

k  k   k y  = H p 

p- k 

= ( y  ) V−1 ( y )χ2 

track parameter at plane k: 
T 
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k  k  k  k — m  − m 

( )T −1 

(
)2 χ = Hk pk  − mk  V  Hk pk  − mk 

q-
k 

The covariance matrix of pk-1  is Ck-1 

The covariance matrix Ck of is 

The matrix Mms accounts for the effect 
of multiple scattering on the parameters 
covariance matrix 

we have some measurements On plane k 
mk with a covariance matrix V 

Using the track model (k means: origin at 
plane k ! ) 

we can obtain a second estimate of the 

minimizing χ2  gives the second estimate q- k 

Ck=FkCk-1 Fk
T+Mms  



Kalman	
  Filter	
  

53	
  

Summarising we have 
the estimate propagated 

with its covariance matrix 
The second estimate from the 
measurement at plane k 

with its covariance matrix 
We can obtain a proper weigthed average 
of those 2 estimate 
This is the filtered value at plane k 

Details and formulas can be found in the 
cited references 

The advantage of this method are 
it is clearly iterative 
at each step the problem has low 
dimensionality and no large matrix 
has to be inverted 
the computation time increases only 
linearly with the number of 
detectors 
The estimated track parameters 
closely follows the real path of the 
particle 
the linear approximation of the track 
does not need to be valid over the 
whole track length but only from one 
detector to the next 

p- k 

q- k 
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thank you for reading this lecture note: 
I hope you found it useful. 
If you find errors I will be grateful if 
you send me an email at
 francesco.ragusa@mi.infn.it 


