Calorimetry

The LAr calorimetry (pre-samplers, EM, hadronic endcaps, and forward calorimeters)

Calorimetry

(based on Bartoletto lectures at CERN)

Particle detection via total absorption

almost all energy transformed into heat -> calorimeter
 Destructive measurement

- Electromagnetic showers
- Hadronic interactions Essential for detection of neutral particles Can identify muons via minimum ionization

Hermetic calorimeter can detect ME - missing energy, difference between

- collision energy and detected energy
- ME can be due to neutrinos or new neutral weakly interacting particles

Electromagnetic cascades (showers)

Electron shower in a cloud chamber with lead absorbers

Consider only Bremsstrahlung and pair production. Assume: X₀ = I_{pair}

$$N(t) = 2^{t} \qquad E(t) / particle = E_0 \cdot 2^{-t}$$

Process continues until E(t)<E_c

$$t_{\max} = \frac{\ln E_0 / E_c}{\ln 2} \qquad \qquad N^{total} = \sum_{t=0}^{t_{\max}} 2^t = 2^{(t_{\max}+1)} - 1 \approx 2 \cdot 2^{t_{\max}} = 2\frac{E_0}{E_c}$$

After t = t_{max} the dominating processes are ionization, Compton effect and photo effect + absorption.

Electromagnetic cascades

Electromagnetic shower

Dominant processes at high energies (E > few MeV) :

Analytic shower Model

- Simplified model [Heitler]: shower development governed by X₀
 - e⁻ loses [1 1/e] = 63% of energy in 1 X₀ (Brems.)
 - the mean free path of a γ is 9/7 X_0 (pair prod.)
 - Assume:
 - E > E_c : no energy loss by ionization/excitation

Simple shower model:

- N(t)=2^t particles after t =x/X₀ each with energy E(t)=E₀/2^t
- Stops if E (t) < $E_c = E_0 2^{tmax}$
- Location of shower maximum at

$$t_{\max} = \frac{\ln(E/Ec)}{\ln 2} \propto \ln \frac{E}{E_c}$$

Different shower shape for electron and photon

- due to difference between brehmsstrahlung and conversion

Longitudinal shower containment

- Since $t_{max} \approx In(E) \rightarrow calorimeter thickness must increase as In(E)$
- After shower max showering will stop in ≈ 1X₀
- To absorb 95% of photons after shower max \approx 9X₀ of material are needed
- The energy leakage is mainly due to photons
- A useful expression to indicate 95% shower containment
- A useful expression to indicate 95% shower containment is:

 $L(95\%) = t_{max} + 0.08 Z + 9.6 [X_0]$

 $E_{C} \approx 10 MeV \qquad E_{0} = 1 GeV \qquad \Rightarrow t_{\max} = \ln 100 / \ln 2 \approx 6.6 \qquad N_{\max} = 100$ $E_{0} = 100 GeV \qquad \Rightarrow t_{\max} = \ln 10,000 / \ln 2 \approx 9.9 \qquad N_{\max} = 10,000$

	Scint.	LAr	Fe	Pb	W
X ₀ (cm)	34	14	1.76	0.56	0.35

Lateral development of EM shower

bremsstrahlung and pair production

 $\left<_{\Theta^2}\right> \approx \frac{m_e c^2}{\frac{m_e c^2}{E_e}} \frac{m_e c^2}{\frac{m_e c^2}{E_e}} - \frac{m_e c^2}{\frac{m_e c^2}{E_e}}$

multiple coulomb scattering [Molière theory]

$$\langle \Theta \rangle = \frac{E_s}{E_e} \sqrt{\frac{x}{X_0}}$$
 where $E_s = \sqrt{\frac{4\pi}{\alpha}} (m_e c^2) = 21.2 MeV$

- Main contribution from low energy e^{-} as $\langle \theta \rangle \sim 1/E_{e}$, i.e. for e^{-} with $E < E_{c}$
 - Molière Radius

$$R_M = \frac{E_s}{E_c} X_0 \approx \frac{21.2 MeV}{E_c} X_0$$

Assuming the approximate range of electrons to be X₀ yields <**θ**>≈ 21.2
 MeV/E_e → lateral extension: R =<**θ**>X

Lateral development of EM shower

Inner part is due to Coulomb's scattering of electron and positron Outer part is due to low energy γ produced in Compton's scattering, photo-electric effect etc.

 Predominant part after shower max especially in high Z absorbers

$$\frac{dE}{dr} = \alpha e^{-r/RM} + \beta e^{-r/\lambda_{\min}}$$

The shower gets wider at larger depth An infinite cylinder of radius $2R_M$ contains 95% of the shower

3D EM Shower development

EM shower development in liquid krypton (Z=36, A=84)

GEANT simulation of a 100 GeV electron shower in the NA48 liquid Krypton calorimeter (D.Schinzel)

Discussion: Explain why they are different

Energy Measurement

How we determine the energy of a particle from the shower?

- Detector response \rightarrow Linearity
 - The average calorimeter signal vs. the energy of the particle
 - Homogenous and sampling calorimeters
 - Compensation (for hadronic showers)
- Detector resolution \rightarrow Fluctuations
 - Event to event variations of the signal
 - What limits the accuracy at different energies?

Signal per unit of deposited energy

EM calorimeters are linear Hadronic calorimeters are not linear

Sources of Non Linearity

- Instrumental effects
 - saturation of gas detectors, scintillators, photo-detectors, electronics
- Response varies with something that varies with energy
- Examples:
 - Deposited energy "counts" differently, depending on depth
 and depth increases with energy
- Leakage (increases with energy)

Signal linearity for electromagnetic showers

FIG. 3.1. The em calorimeter response as a function of energy, measured with the QFCAL calorimeter, before (a) and after (b) precautions were taken against PMT saturation effects. Data from [Akc 97].

EM Calorimeter configurations

Total absorption

- Electrons and photons stop in calorimeter
- Scintillation proportional to energy of electron
- Usually non-organic scintillator (BGO, PbWO_{4,...}) or liquid Xe
- Advantage: Excellent energy resolution

see all charged particles in the shower (but for shower leakage) best statistical precision

- -> uniform response, good linearity
- Disadvantages:

cost and limited segmentation

Si photodiode or PMT

If W is the mean energy required to produce a signal (eg an e-ion pair in a noble liquid or a 'visible' photon in a crystal)

Homogenous calorimeters

Barrel: 62K 2.2x2.2x23 cm³ crystals

Endcap: 15K 3x3x22 cm³ crystals

PbWO₄ radiation hard crystals

1% resolution at 30 GeV

EM Calorimeter configurations

Sampling Calorimeter

- One material to induce showering (high Z)
- Another to detect particles (typically by counting number of charged tracks)
- Many layers sandwiched together
- Resolution $\propto E^{-1/2}$
- Advantages
 - Depth segmentation
 - Spatial segmentation
- Disadvantages:
 - Only part of shower seen, less precise
- Examples
 - ATLAS ECAL
 - Most HCALs

Sampling fraction

*f*_{sampling}

Evisible

ATLAS Liquid Argon ECAL

~220,000 individual readout channels multiplexed into towers for trigger

Spacers define LAr gap $2 \times 2 \text{ mm}$

2 mm Pb absorber clad in stainless steel.

hexel spacers

Signatures

Energy resolution

Ideally, if all shower particles counted

In practice

$$\sigma_E = a\sqrt{E} \oplus bE \oplus c$$

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

 $\underline{\mathbf{\sigma}}_{E} \approx \sqrt{N} \approx \sqrt{E}$

a: stochastic term

- intrinsic statistical shower fluctuations
- sampling fluctuations
- signal quantum fluctuations (e.g. photo-electron statistics)

b: constant term

- inhomogeneities (hardware or calibration)
- imperfections in calorimeter construction (dimensional variations, etc.)
- non-linearity of readout electronics

 $E \propto N$

- fluctuations in longitudinal energy containment (leakage can also be ~ E-1/4)
- fluctuations in energy lost in dead material before or within the calorimeter

- c: noise term
 - readout electronic noise
 - Radio-activity, pile-up fluctuations

Effects on energy resolution

ATLAS EM calorimeter

Different effects have different energy dependence

- Sampling fluctuations
 σ/Ε ~ E^{-1/2}
- shower leakage
 σ/Ε ~ E^{-1/4}
- electronic noise $\sigma/E \sim E^{-1}$
- structural nonuniformities:
 o/E = constant

•
$$\sigma_{2\text{tot}} = \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \sigma_{4}^{2}$$

+ ...

Picture Book of US ATLAS Liquid Argon Calorimeter Construction

Electromagnetic module

Electrode

Summing boards

Mother boards

Electrode bending

HV boards

Module assembly

Completed module

Electromagnetic modules

Half-barrel wheel assembly 16 modules

Installation into the cryostat

Cryostat

Construction

Feedthrough assembly

Transport

Testing

Integration

Cryogenics components

Separation Dewar

Quality meter

Proximity piping

Cryogenics in SH1

Helium main refrigerator compressor station

Helium shield refrigerator compressor station

Nitrogen refrigerator compressor station

Feedthroughs

Signal Feedthrough

Signal Feedthrough –ready for installation

HV filter box

HV Feedthrough

Feedthrough's installation completed

Forward Calorimeter

First module

Module assembly

Ready for installation

Summing board

Installation

Electronics installation complete

Endcap assembly complete

Crates and Power supplies

DC-DC converter module

Power supply installed on the barrel

Front End crate

Power supply unit

Cooling and services

Low voltage cables and connectors

Cooling pipes, cable trays and local cables

Cable trays for the calorimeters services

Cooling plate

Front End Board

Readout electronics

Preamplifiers

Layer sums board

Level 1 Receiver

LV1 Receiver board

Variable Gain Amplifier

Front

Back