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The height to which rings will jump in a Thomson jumping ring apparatus is the central question
posed by this popular lecture demonstration. We develop a simple time-averaged
inductive-phase-lag model for the dependence of the jump height on the ring material, its mass, and
temperature and apply it to measurements of the jump height for a set of rings made by slicing
copper and aluminum alloy pipe into varying lengths. The data confirm a peak jump height that
grows, narrows, and shifts to smaller optimal mass when the rings are cooled to 77 K. The model
explains the ratio of the cooled/warm jump heights for a given ring, the reduction in optimal mass
as the ring is cooled, and the shape of the mass resonance. The ring that jumps the highest is found
to have a characteristic resistance equal to the inductive reactance of the set of rings. © 2011 American
Association of Physics Teachers.
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I. INTRODUCTION

Thomson’s ac jumping ring1 is a mainstay of physics lec-
ture demonstrations2 invoking Faraday’s law and is often en-
hanced by chilling the rings with liquid nitrogen.3 A conduct-
ing ring placed over the extended core of a vertical solenoid
will jump in the air when the primary circuit is connected to
an ac power line !see Fig. 1". The nature of the jump defies a
simple Lenz law interpretation,4 and the interplay between
the ring’s inductance and resistance can be dramatic and puz-
zling: two or three rings together will often jump higher than
one; a copper ring that barely moves by itself will jump
vigorously when weighted down by an aluminum ring placed
on top of it, moving together despite the greater density of
the copper. A small ring chilled in liquid nitrogen jumps
much higher than its reduced resistance would suggest, but
some larger rings will jump no higher upon chilling. To these
effects Baylie et al.5 added this latest puzzle: the jump height
as a function of ring mass shows a resonance that varies with
mass and temperature.

In this paper we confirm the mass resonance for copper
and aluminum alloy rings of tubular geometry. We find the
inductance of the rings to be independent of their axial
length and exploit this simplification to develop a time-
averaged inductive-phase-lag model that explains all of the
observations for any material at any temperature. We exam-
ine several limiting cases that serve to enhance the demon-
stration.

II. THEORY

The Lorentz force on the floating ring arises from the in-
teraction between the circumferential current induced in the
ring by the large axial alternating magnetic field of the sole-
noid and the radial component of the solenoid’s fringing
magnetic field. The derivation of the electromagnetic force
on the floating ring is given in Refs. 6 and 7, where it is
shown that the time-averaged upward electromagnetic force
on the ring can be written as

%F& = I2'S!z"(sin2 ! = I2'S!z"(
1

!R/"L"2 + 1
, !1"

where I is the ac in the solenoid, S!z" represents the spatial
variation of the force with height z along the extended core,

independent of the ring’s impedance, and the sin2 ! term is
due to the inductive-phase-lag angle ! between the induced
emf in the ring and its current. Equation !1" requires that !
!0 for there to be a nonzero time-averaged upward force.
The phase lag depends on the ratio of the ring’s inductive
reactance to its resistance according to

tan ! =
"L

R
, !2"

where " is the natural frequency of the ac power source, R is
the ring resistance, and L is the dressed !that is, core-
enhanced" inductance of the ring while sitting on the iron
core of the apparatus. Equation !1" assumes that the current
in the solenoid has a fixed rms value. In practice, the jump-
ing ring is usually powered with fixed rms voltage, but be-
cause the Thomson coil is a lossy step-down transformer that
operates in the limit of weak coupling, the primary current
does not vary appreciably with ring impedance.7

Rings of different axial lengths sliced from a metal pipe
with constant wall thickness have a circumferential resis-
tance that varies inversely with the length and might be ex-
pected to have an inductance that increases with length in a
more complicated way.8,9 However, the design of the typical
Thomson jumping ring apparatus is such that the dressed
inductance !self and mutual" of a ring on the magnetic core is
largely fixed for rings of nearly any length, as was found in
Ref. 7 and confirmed recently.10 The inductance is fixed be-
cause most of the magnetic flux due to the ring current is
effectively channeled by the core, so that longer rings do not
capture any more of their own flux. In terms of magnetic
energy, the volume of the region containing most of the mag-
netic field is fixed by the core and not by the ring. Thus,
changing the length of the ring and thereby its conduction
cross section mainly affects its resistance, greatly simplifying
Eq. !1" so that the inductance remains fixed at L for any
length ring while on the iron core of the apparatus.

The ring stays on the core for many quarter cycles of the
alternating current in the solenoid, and thus the force in Eq.
!1" can be considered to be steady over the time scale of a
typical jump.7,10 The force delivers an impulse to the ring
after which the ring undergoes free fall. The drop in the force
with height is accounted for by the shape function S!z",
which reaches zero just after the end of the core !where

353 353Am. J. Phys. 79 !4", April 2011 http://aapt.org/ajp © 2011 American Association of Physics Teachers



z=d", mostly because the emf induced in the ring decreases
with height and partly because the magnetic field has less of
a radial component with increasing height.7,10,11 Thus, the
work done on the jumping ring is due to the square of the
solenoid current times the integral of S!z" over a fixed inter-
action length !approximately the core extension d", which is
the same for all rings, times a phase factor that varies with
ring resistance. We ignore the rapid decline in the inductance
of the ring just as it leaves the core because the majority of
the work is done before any appreciable change in induc-
tance occurs.7

With the simplification that the inductance L is indepen-
dent of ring length, we define the characteristic ring resis-
tance as

R0 ) "L = XL, !3"

which is the inductive reactance XL of the ring while on top
of the core. This characteristic resistance has special signifi-
cance for the jumping ring apparatus. We will show that a
ring with this resistance, whose phase lag !=45°, will jump
higher than any other ring in a set of rings with fixed resis-
tivity but differing mass. Note that XL is still a function of the
core dimensions, the ring diameter, and its wall thickness,
and therefore we keep these parameters and the frequency "
fixed in the analysis that follows.

The mechanical work done by the electromagnetic force
on a ring of resistance R over the length of the extended core
d raises its gravitational potential energy to a maximum of
mgh,

W!R" = *
0

d

%F&dz = I2+*
0

d

S!z"dz,sin2 ! !4a"

=I2S
1

!R/R0"2 + 1
= mgh , !4b"

where S is a constant defined implicitly in Eq. !4", m is the
ring mass, and h is the jump height measured from the start-
ing position of the ring.

We define the standard ring to be the ring of mass m0 and
room-temperature resistivity #0 that has the characteristic re-
sistance R0 of Eq. !3". This standard ring will have work

W!R0" = I2S
1

!R0/R0"2 + 1
= I2S

1
2

= m0gh0 !5"

done on it, causing it to jump to height h0. The resistance of
any other ring in the set is directly proportional to its resis-
tivity # and inversely proportional to its axial length or
equivalently its mass,

R = R0
m0

m

#

#0
. !6"

We divide Eq. !4" by Eq. !5" and use Eq. !6" to obtain the
normalized jump height for any ring in the set,

h

h0
= -m0

m
. 2

!R/R0"2 + 1
= -m0

m
. 2

!!m0/m"!#/#0""2 + 1
, !7"

with the corresponding phase angle given by

tan ! =
m/m0

#/#0
=

R0

R
. !8"

The mechanical work W!R" done on the ring depends only
on R, whereas the height to which it jumps depends on both
W!R" and m. There are two independent ways to vary the
ring’s resistance: either by changing its resistivity or by
changing its cross sectional area, that is, its mass.

If we fix the mass at m=m0 and optimize Eq. !7" by
changing the resistivity # !for example, by cooling", the nor-
malized jump height monotonically reaches a maximum
value of 2 as #→0. !Even for zero resistance, the ring cur-
rent does not increase without limit—it is constrained by the
inductance of the ring." From Eq. !8" the phase angle then
goes to 90°, which is the angle that maximizes the force on
the floating ring.7 If, instead, we optimize Eq. !7" with re-
spect to the mass m at fixed resistivity #=#0 !that is, by
slicing a ring of different axial length", the normalized jump
height peaks at 1 when m=m0, which is the standard ring
with characteristic resistance R0. Equation !8" then becomes

tan ! =
m

m0

#0

#
= 1, !9"

corresponding to the optimal phase lag ! of 45°. This optimal
phase shift for the jump was derived recently12 and is the
same angle that maximizes the force per unit weight of a
collection of small floating rings of identical mass.7 Equation
!7" should hold in the impulse approximation for short rings
!axial length$diameter" of various lengths sliced from thin-
walled homogeneous pipe of fixed diameter and wall thick-
ness. Schneider and Ertel13 found a similar expression #their
Eq. !14"$ but obscured the simplicity of the apparatus by
assuming that the ring inductance followed Nagaoka’s !air-
core" expressions.8

The optimal mass and the width of the mass resonance
result from two competing tendencies: at !=0° there is no
time-averaged Lorentz force on the ring !the force would
alternate up and down every 1/4 cycle of the alternating cur-
rent, and all the power would be dissipated as Joule heating
of the ring".4,7 In contrast, the maximum time-averaged Lor-
entz force occurs as R→0, !→90°. The added mass needed
to reduce the resistance in order to approach this limit even-

z

h
d

Fig. 1. The jumping ring apparatus consists of a solenoid, an iron core, and
a set of rings of various axial lengths sliced from copper and aluminum alloy
pipe of fixed wall thickness. The core was extended by d=14 cm for these
measurements and the jump height h measured from the starting position of
the ring.
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tually lowers the jump height.7 If we express the normalized
jump height in Eq. !7" using Eqs. !1" and !8" and exclude
#=0, we obtain

h

h0
= 2

m0

m
sin2 ! = 2

m0

m
sin !

sin !

cos !
cos ! !10a"

=2
m0

m
sin !- m

m0

#0

#
.cos ! !10b"

=2
#0

#
sin ! cos ! =

#0

#
sin 2! , !10c"

which reaches a maximum of #0 /# at !=45°. The derivation
leading to Eq. !10c" needs to exclude #=0 to avoid division
by zero. In that case, !=90° and hence h /h0=2m0 /m from
Eq. !7", and there is no resonance except for the singularity
at m=0.

In terms of angles, Eq. !10c" reaches its half-values when
sin 2!=1 /2 or 15° and 75°. In terms of mass, at fixed
#=#0, Eq. !7" falls to half of its peak value where

m

m0
= !2 % /3" = arctan!45 ° % 30°" 0 0.27,3.73. !11"

Thus, we expect to see an asymmetric resonance centered at
m0, with full width at half maximum &m=2/3m0, which
tails toward the high mass side of the peak.

Three limiting cases illustrate the expected behavior of the
jumping ring as its resistance changes:

Peak heights for warm and cold rings. If the standard ring
!m=m0" is chilled in liquid nitrogen, its resistivity falls from
#0 to # such that

#0

#
=

#295 K

#77 K
) ' , !12"

and Eq. !7" shows that it will jump higher, to 2'2 / !'2+1",
but no more than twice the standard height even if '→(,
allowing the demonstrator to reject any notion that the jump
height is proportional to the resistivity ratio.5 Reducing the
mass to m0 /' restores ! to 45° via Eq. !9",

m

m0

#0

#
=

m

m0
' = 1, !13"

where its resistance is R0. This shorter ring of mass
m=m0 /' gives

h = h0-m0

m
. 2

!!m0/m"!1/'""2 + 1
= h0-m0

m
. = 'h0, !14"

so that the new smaller ring will jump ' times higher, which
is the warm/cold resistivity ratio. This result follows directly
from the work-energy theorem: the smaller chilled ring, hav-
ing the same resistance R0 as the standard ring, has the same
mechanical work W!R0"=m0gh0 done on it, but because it
has 1 /' times the mass, it jumps ' times higher. The product
of optimal ring mass m0 and peak jump height h0 is thus a
constant of the apparatus for a set of rings of any material
and temperature fixed by W!R0".

Cold/warm jump ratio for a cold-optimized ring. For the
cold-optimized !m=m0 /'" ring, the ratio of jump heights for
cold versus warm rings can become quite large,

hcold

hwarm
=

h0!m0/m"'2/#!1"2 + 1$(
h0!m0/m"'2/#!!m0/m"!#0/#0""2 + 1$(

=
'2 + 1

2
,

!15"

a ratio that exceeds ' for any ')1. A cold-optimized alu-
minum alloy ring whose resistivity falls by a factor of 3
!'=3, m=m0 /3" will jump five times higher when chilled.
A cold-optimized copper ring, whose resistivity falls by a
factor of 7 upon chilling in liquid nitrogen, will jump 25
times higher than at room temperature, providing a more
impressive demonstration than the approximately two times
improvement in the standard !m=m0" ring.

Mass for which the cold/warm jump ratio equals '. If a
ring is sized so that

m1 =
m0

/'
, !16"

it is neither optimized for the warm nor the cold, but it will
jump to a height h1=2h0

/' / !'+1" given by Eq. !7" at room
temperature. Upon being cooled to 77 K the jump height
becomes 2h0'/' / !'+1"='h1 for the same ring. This ring is
both /' smaller than the standard ring and /' larger than the
cold-optimized ring. Only for this specially sized ring can
the demonstrator say that the increased jump height is di-
rectly proportional to the increased conductivity of the ma-
terial.

III. EXPERIMENTS

As discussed by numerous authors, most recently
Bostock-Smith,12 aluminum is traditionally preferred to cop-
per in the jumping ring demonstration because its density is
3.3 times lower but its resistivity is 1.6 times higher, which
permits double the peak jump height at room temperature.14

The resistivity of aluminum or its alloys !' is in the range of
2–15" at 77 K is highly dependent on composition, work
hardening, aging, and annealing.15,16 Baylie et al. pointed out
the importance of annealing a new aluminum ring so that it
will jump as high as an old one.17 Depending on how hot the
rings are while being machined or the subsequent inductive
heating of the ring, the rings undergo periodic heating/
cooling cycles. A tempered aluminum jumping ring probably
partially anneals itself if held down long enough on the ap-
paratus. !One of the typical demonstrations is to see how
long a student can hold a powered ring down by hand—the
answer is not long because the ring currents can be hundreds
of amperes, leading to rapid Joule heating.18" Hence, a well-
used older ring will likely have lower resistivity.

For these measurements the more predictable electrical
properties of oxygen-free high-conductivity copper14 enabled
us to confirm the cold/warm jump behavior while avoiding
the need for heat treating. Copper rings were gently ma-
chined from seamless pipe stock !50.8 mm outer diameter,
3.18 mm wall thickness, and 0.35–28.5 mm length"19 and
used without further annealing. For comparison, we used
6061-T6 pipe, a readily available heat-treatable aluminum
alloy of the same dimensions, although 6063-T52, with
fewer impurities, is likely to be a better choice. !Pure el-
emental aluminum, with '115, would be better still but is
too soft to be readily available in pipe form."
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The 6061-T6 rings were machined, annealed at 415 °C for
2 h, then allowed to cool slowly to room temperature. An-
nealing the 6061 rings left their room-temperature resistance
nearly unchanged but increased ' from 3 to 4. The resistivity
of the rings was measured with a four-wire sourcemeter/
nanovoltmeter !Keithley 2400/2182" operated in current-
reversal mode, whereby thermal contact potentials are aver-
aged out. For our copper pipe the room-temperature
resistivity #0 was 1.8%0.2 *+ cm and upon cooling,
'=6.8%0.6. The 6061-O !annealed" rings had
#0=3.3%0.3 *+ cm and '=4.0%0.4.

The CENCO Thomson coil7 was operated at 75 VAC to
keep the rings from bouncing off the ceiling, and the core
was extended d=14 cm beyond the solenoid end cap. The
rings were centered and kept cold prior to launching by set-
ting them on a shallow chilled phenolic plastic tray !not
shown in Fig. 1" that rested over the core and atop the sole-
noid end cap. Results for jump height as a function of mass
for the copper rings, each of identical wall thickness, are
shown at 295 and 77 K in Fig. 2. The room-temperature
curve peaks at m0=32 g and the chilled peak is 6.7 times
higher and lies at 6.7 times lower mass, as predicted from the
work-energy theorem via Eqs. !13" and !14". The smooth
curves follow Eqs. !7" and !14" with a fitted value of
'=6.7, in agreement with our measured resistance ratio for
copper and from published data !6.7:1".14,20 Annealed 6061
alloy rings behaved similarly with a lower '=4.0. The alu-
minum rings had 1.8 times the optimal jump height as copper
at room temperature. This result follows from Eq. !7". To
achieve R0 at room temperature, the alloy ring needed to be
#Al6061-O /#Cu=1.8 times longer than the standard copper ring,
but because its density is 3.3 times lower, it had 1.8 /3.3
=0.55, the mass of the standard copper ring, and hence
jumped 1 /0.55=1.8 times as high.14,15

Rings that jumped less than 14 cm did not clear the ex-
tended core and thus did not receive the full measure of work
done on them according to Eq. !4". If we use the measured
room-temperature resistivity of our copper rings, we find that
R0="L=9.8,10−5 + for our apparatus and set of rings.
This relation gives L=2.6,10−7 H, a few times larger than

the calculated free-space value for the standard ring9 and
consistent with a relative permeability of *r13, as found for
other Thomson coils.7,13,21,22 Under typical operating condi-
tions, the peak jump height of the cold-optimized copper ring
at 143 VAC was 4.4%0.6 m, in agreement with the scaling
expected from the !143 VAC /75 VAC"2 ratio, showing that
air resistance is negligible.

IV. DISCUSSION

The simple inductive-phase-lag model, developed under
the assumptions of constant solenoid current, fixed ring in-
ductance, and fixed electromagnetic interaction length, fits
our data for both warm and chilled rings except at the ex-
tremes of high mass !length" where the dressed inductance of
the ring is expected to drop23 and the interaction length is
reduced as the middle of the ring starts higher above the
center of the apparatus. A key finding is that the ring induc-
tance is independent of the axial length for rings of fixed
wall thickness and diameter. The ring that jumps the highest
for a given resistivity is the one whose resistance is equal to
the characteristic resistance R0="L, as given by Eq. !3", and
whose inductive-phase-lag angle is 45°. Rings shorter than
1 //' times the optimal room-temperature length make par-
ticularly spectacular jumps when chilled in liquid nitrogen,
far exceeding their warm/cold resistivity ratio.

A. A further puzzle: The phase angle

The two different phase angles !45°, 90°" that optimize
Eq. !7", depending on whether we vary mass !via axial
length" or resistivity !via temperature", are initially discon-
certing. In a two-dimensional space !varying m or varying
resistivity #", the mass parameter implicitly contains the
resistance, whereas the other axis is independent of the mass.
We plot the normalized jump height in Eq. !7" as a function
of the normalized mass m /m0 and the normalized resistivity
# /#0 in Fig. 3. The standard ring !S" lies at !1,1,1". Equation
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Fig. 2. The jump height for cold and room-temperature copper rings fitted to
Eq. !7" at room temperature and Eq. !14" with the warm/cold resistivity ratio
'=6.7 at 77 K. The work-energy theorem locks the two curves together as
shown, reducing the optimal mass by a factor of ' while increasing the peak
jump by '. For rings of mass m$m0 //', the cold/warm jump height ratio
exceeds '.

Fig. 3. Normalized jump height as a function of normalized mass and re-
sistivity, showing the semicircular level surfaces and the increasingly sharp
mass resonance as resistivity is reduced. The jump height reaches a maxi-
mum for a given resistivity at m /m0=# /#0, where !=45°. The standard ring
lies at S= !1,1 ,1".
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!8" shows that angles on this plot are the phase lag !; that is,
we replace the usual complex i"L axis on a phasor diagram
by m /m0 and the usual real resistance axis by # /#0. Cooling
a ring changes its resistivity without affecting its mass and
results in a displacement parallel to the # /#0 axis. A set of
rings made of fixed resistivity but different masses will fall
on a line parallel to the m /m0 axis, similar to the measure-
ments in Fig. 2. In this mapping, all rings with the charac-
teristic resistance R0 lie on the 45° line, satisfying Eq. !9".
The normalized jump height in Fig. 3 shows the mass reso-
nance for a set of rings at constant resistivity, the peak at 45°,
and the narrowing of the peak as the resistivity drops.

Figure 4 is a contour plot of the same normalized jump
height and shows more clearly the semicircular contours.
The figure of merit for a given ring material is the reciprocal
of the product of its mass and resistivity,12 which in dimen-
sionless form becomes

m0

m

#0

#
= p2 !17"

for some constant p. Contours of equal height form semi-
circles !see the Appendix" of radius 1 / p centered at !0,1 / p",
each having normalized jump height p. The standard ring !S"
intersects the h /h0=1.0 contour at !1,1". Increasing its mass
moves the ring toward A, where using Eq. !11", it
intersects the 1/2 contour at !=75° for a normalized mass
m /m0= !2+/3". Reducing the ring mass !along line SB"
brings it to m /m0= !2−/3" and on the 1/2 contour at
!=15°. Returning to S, we move parallel to the # /#0 axis by

changing the resistivity along line SC, where the height func-
tion increases monotonically toward 2.0 but does not reach it
unless #=0 at !=90°. For #!0, however, moving down the
mass axis reduces the phase toward the optimal !=45°. In
doing so, we pass through several higher jump contours. For
example, if we cut the resistivity by a factor of 4 !point D",
we can cut the mass by a factor of 4, which intersects the 45°
line at the 4.0 contour E, indicating that the ring will jump
four times as high as the standard m=m0 ring. The half-
heights of the resonance still occur at 15° and 75° but extend
over a narrower mass range than before because the product
of the maximum normalized jump height and the normalized
width is a constant, that is, p&m /m0=2/3. There is no such
resonance with changing resistivity alone. Ultimately, there
is only one optimal phase-lag angle for the jumping ring,
!=45°.

B. Comparison to other work

A recent paper5 provides an excellent independent set of
jump height data at room temperature and 77 K. Figure 4 in
Ref. 5 shows the jump height of a set of aluminum !unspeci-
fied alloy" rings of fixed diameter and wall thickness. The
data in Ref. 5 are shown in Fig. 5. It is commented that “the
response is much flatter at room temperature and the maxi-
mum !as well as can be detected" occurs in rings of higher
mass. The reasons for this are not well understood.”5 We
now provide an explanation. A fit of the normalized jump
height in Eq. !7" to these data at room temperature yields
h0=42 cm at m0=27 g. Cooling the rings of Ref. 5 in liquid
nitrogen reduces their resistivity by ', and therefore the rings
need to be shortened accordingly, shifting the peak jump to
mass mcold=9 g. Hence,

' =
mwarm

mcold
=

27 g
9 g

= 3, !18"

so that the peak jump becomes 3,42 cm=126 cm by Eq.
!14". The three-parameter fit !h0 ,m0 ,'" using Eqs. !7" and
!14" matches their results at both temperatures, confirming
the general applicability of the model.

Fig. 4. Contours of normalized jump height as a function of normalized
mass and resistivity form semicircles !see the Appendix". Angles measured
from the resistivity axis are the phase lag !. The standard ring lies at S,
where the !=45° line crosses the 1.0 contour. Moving up or down the m /m0
axis cuts the jump height in half at points A or B. Moving toward lower
resistivity at most doubles the jump height at C. A factor of 4 drop in
resistivity results in a slightly higher jump at higher phase lag !D" and
reducing the mass by a factor of 4 restores the optimal phase angle to
!=45°, resulting in four times the jump height at E.
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Fig. 5. Jump height data for cold and room-temperature aluminum rings,
taken from Ref. 5 and fitted to Eq. !7" at room temperature and with Eq. !14"
and '=3.0 at 77 K.
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C. Optimizing your own apparatus

It is necessary to find the peak jump height at room tem-
perature to determine the mass m0 of the standard ring.
Rather than a series of rings, we could slice two rings of
different lengths and measure their jump heights alone and
then stacked together. Two rings behave as one because their
parallel currents !and similar phase shifts" keep them to-
gether even if they have dissimilar density. Two different
temperatures and six jump heights will provide more than
enough data to determine the parameters h0, m0, and '. If the
resistivity ratio ' is known from a separate measurement, a
single ring with jump heights h1 and h2 at room temperature
and at 77 K can be used via Eqs. !7" and !14" to find m0 and
map out the entire mass/resistivity parameter space.
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APPENDIX: DERIVATION OF CONTOUR HEIGHT

The shape and height of the contours of normalized jump
height #Eq. !7"$ shown in Fig. 4 can be found by setting
x)# /#0 and y)m /m0, yielding

h

h0
=

2/y
!x/y"2 + 1

. !A1"

If we combine Eq. !A1" with the figure of merit from Eq.
!17" for a given ring material, !m /m0"!# /#0"=yx=1 / p2, and
eliminate x, we obtain

h

h0
=

2/y
!1/p2y2"2 + 1

. !A2"

At the optimal phase angle of 45°, py=1 and thus h /h0= p.
Then, the normalized jump height for any !x ,y" coordinate
can be written as

p =
2/y

!x/y"2 + 1
!A3"

and hence

x2 + y2 =
2y

p
. !A4"

Letting y→y!+1 / p gives

x2 + y!2 =
1
p2 , !A5"

showing that the plot of m /m0 versus # /#0 yields !semi"cir-
cular contours of height p, radius 1 / p, and offset up the mass
axis by 1 / p.
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