Due: 7 September 2006

- 1. Show that $\dot{\hat{e}}_{\theta} = -\hat{e}_r \dot{\theta}$.
- 2. Find the radial and tangential components of the jerk (time derivative of the acceleration) in two dimensions.
- 3. If \vec{X} is an unknown vector satisfying the following relations involving the known vectors \vec{A} and \vec{B} and the known scalar ϕ

$$\vec{A} \times \vec{X} = \vec{B}$$
 $\vec{A} \cdot \vec{X} = \phi$

express \vec{X} in terms of \vec{A} , \vec{B} , and ϕ .

- 4. Derive the scale factors h_r , h_{θ} , and h_{ϕ} for spherical polar coordinates from the equations relating $\{r, \theta, \phi\}$ to $\{x, y, z\}$.
- 5. Evaluate the following. (You may find it convenient to work in spherical polar coordinates, although Cartesian will give the same answers.) Simplify as much as possible.
 - (a) $\vec{\nabla} r$ where $r = |\vec{r}|$ (gradient of the magnitude of the displacement vector)
 - (b) $\vec{\nabla} \cdot \vec{r}$ (divergence of the displacement vector)
 - (c) $\vec{\nabla} \times \vec{r}$ (curl of the displacement vector)
 - (d) $\vec{\nabla}[\ln(r)]$ (gradient of the natural logarithm of the magnitude of the displacement vector)
 - (e) $\nabla^2[\ln(r)]$ (laplacian of the natural logarithm of the magnitude of the displacement vector)