Physics 3344 Fall 2006

Due: 9 November 2006

- 1. Verify that the orthonormal basis $\{\hat{n}_1, \hat{n}_2, \hat{n}_3\}$ given in lecture is complete by showing that $\sum_{n=1}^{3} \hat{n}_{ni} \hat{n}_{nj} = \delta_{ij}$
- 2. Find the first four non-zero Fourier coefficients for the continuous triangle wave. How does the n'th term depend on n? Plot your Fourier approximation to the function. Mathematica is useful here.
- 3. Find the first four non-zero Fourier coefficients for the discontinuous square wave. How does the n'th term depend on n? Plot your Fourier approximation to the function. Mathematica is useful here.
- 4. Consider the first full period of the sine function:sin(x), $0 < x < 2\pi$.
 - (a) Expand this in a Fourier **cosine** series and list the first four non-zero Fourier coefficients. This is not a trick question - the answer is not zero or "it's impossible".
 - (b) Plot the original function and your four-term approximation using a computer for the range $0 < x < 2\pi$.
 - (c) Plot the original function and your four-term approximation using a computer for the range $-2\pi < x < 0$. Comment.
 - (d) Expand $\sin(x)$, $0 < x < 2\pi$, in a Fourier sine series.