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Prologue

General relativity is a beautiful scheme for describing the gravitational field and the
equations it obeys. Nowadays this theory is often used as a prototype for other, more
intricate constructions to describe forces between elementary particles or other branches
of fundamental physics. This is why in an introduction to general relativity it is of
importance to separate as clearly as possible the various ingredients that together give
shape to this paradigm. After explaining the physical motivations we first introduce
curved coordinates, then add to this the notion of an affine connection field and only as a
later step add to that the metric field. One then sees clearly how space and time get more
and more structure, until finally all we have to do is deduce Einstein’s field equations.

These notes materialized when I was asked to present some lectures on General Rela-
tivity. Small changes were made over the years. I decided to make them freely available
on the web, via my home page. Some readers expressed their irritation over the fact that
after 12 pages I switch notation: the i in the time components of vectors disappears, and
the metric becomes the − + + + metric. Why this “inconsistency” in the notation?

There were two reasons for this. The transition is made where we proceed from special
relativity to general relativity. In special relativity, the i has a considerable practical
advantage: Lorentz transformations are orthogonal, and all inner products only come
with + signs. No confusion over signs remain. The use of a − + + + metric, or worse
even, a + − −− metric, inevitably leads to sign errors. In general relativity, however,
the i is superfluous. Here, we need to work with the quantity g00 anyway. Choosing it
to be negative rarely leads to sign errors or other problems.

But there is another pedagogical point. I see no reason to shield students against
the phenomenon of changes of convention and notation. Such transitions are necessary
whenever one switches from one field of research to another. They better get used to it.

As for applications of the theory, the usual ones such as the gravitational red shift,
the Schwarzschild metric, the perihelion shift and light deflection are pretty standard.
They can be found in the cited literature if one wants any further details. Finally, I do
pay extra attention to an application that may well become important in the near future:
gravitational radiation. The derivations given are often tedious, but they can be produced
rather elegantly using standard Lagrangian methods from field theory, which is what will
be demonstrated. When teaching this material, I found that this last chapter is still a
bit too technical for an elementary course, but I leave it there anyway, just because it is
omitted from introductory text books a bit too often.

I thank A. van der Ven for a careful reading of the manuscript.
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1. Summary of the theory of Special Relativity. Notations.

Special Relativity is the theory claiming that space and time exhibit a particular symmetry
pattern. This statement contains two ingredients which we further explain:

(i) There is a transformation law, and these transformations form a group.

(ii) Consider a system in which a set of physical variables is described as being a correct
solution to the laws of physics. Then if all these physical variables are transformed
appropriately according to the given transformation law, one obtains a new solution
to the laws of physics.

As a prototype example, one may consider the set of rotations in a three dimensional
coordinate frame as our transformation group. Many theories of nature, such as Newton’s
law ~F = m · ~a , are invariant under this transformation group. We say that Newton’s
laws have rotational symmetry.

A “point-event” is a point in space, given by its three coordinates ~x = (x, y, z) , at a
given instant t in time. For short, we will call this a “point” in space-time, and it is a
four component vector,

x =


x0

x1

x2

x3

 =


ct
x
y
z

 . (1.1)

Here c is the velocity of light. Clearly, space-time is a four dimensional space. These
vectors are often written as xµ , where µ is an index running from 0 to 3 . It will however
be convenient to use a slightly different notation, xµ, µ = 1, . . . , 4 , where x4 = ict and
i =
√
−1 . Note that we do this only in the sections 1 and 3, where special relativity in

flat space-time is discussed (see the Prologue). The intermittent use of superscript indices
( {}µ ) and subscript indices ( {}µ ) is of no significance in these sections, but will become
important later.

In Special Relativity, the transformation group is what one could call the “velocity
transformations”, or Lorentz transformations. It is the set of linear transformations,

(xµ)′ =
4∑

ν=1

Lµν x
ν (1.2)

subject to the extra condition that the quantity σ defined by

σ2 =
4∑

µ=1

(xµ)2 = |~x|2 − c2t2 (σ ≥ 0) (1.3)

remains invariant. This condition implies that the coefficients Lµν form an orthogonal
matrix:

4∑
ν=1

Lµν L
α
ν = δµα ;
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4∑
α=1

Lαµ L
α
ν = δµν . (1.4)

Because of the i in the definition of x4 , the coefficients Li4 and L4
i must be purely

imaginary. The quantities δµα and δµν are Kronecker delta symbols:

δµν = δµν = 1 if µ = ν , and 0 otherwise. (1.5)

One can enlarge the invariance group with the translations:

(xµ)′ =
4∑

ν=1

Lµν x
ν + aµ , (1.6)

in which case it is referred to as the Poincaré group.

We introduce summation convention:
If an index occurs exactly twice in a multiplication (at one side of the = sign) it will
automatically be summed over from 1 to 4 even if we do not indicate explicitly the
summation symbol

∑
. Thus, Eqs. (1.2)–(1.4) can be written as:

(xµ)′ = Lµν x
ν , σ2 = xµxµ = (xµ)2 ,

Lµν L
α
ν = δµα , Lαµ L

α
ν = δµν . (1.7)

If we do not want to sum over an index that occurs twice, or if we want to sum over an
index occurring three times (or more), we put one of the indices between brackets so as
to indicate that it does not participate in the summation convention. Remarkably, we
nearly never need to use such brackets.

Greek indices µ, ν, . . . run from 1 to 4 ; Latin indices i, j, . . . indicate spacelike
components only and hence run from 1 to 3 .

A special element of the Lorentz group is

Lµν =


→ ν

1 0 0 0
0 1 0 0

↓ 0 0 coshχ i sinhχ
µ 0 0 −i sinhχ coshχ

 , (1.8)

where χ is a parameter. Or

x′ = x ; y′ = y ;

z′ = z coshχ− ct sinhχ ;

t′ = −z
c

sinhχ+ t coshχ . (1.9)

This is a transformation from one coordinate frame to another with velocity

v = c tanhχ ( in the z direction) (1.10)
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with respect to each other.

For convenience, units of length and time will henceforth be chosen such that

c = 1 . (1.11)

Note that the velocity v given in (1.10) will always be less than that of light. The light
velocity itself is Lorentz-invariant. This indeed has been the requirement that lead to the
introduction of the Lorentz group.

Many physical quantities are not invariant but covariant under Lorentz transforma-
tions. For instance, energy E and momentum p transform as a four-vector:

pµ =


px
py
pz
iE

 ; (pµ)′ = Lµν p
ν . (1.12)

Electro-magnetic fields transform as a tensor:

F µν =


→ ν

0 B3 −B2 −iE1

−B3 0 B1 −iE2

↓ B2 −B1 0 −iE3

µ iE1 iE2 iE3 0

 ; (F µν)′ = Lµα L
ν
β F

αβ . (1.13)

It is of importance to realize what this implies: although we have the well-known
postulate that an experimenter on a moving platform, when doing some experiment,
will find the same outcomes as a colleague at rest, we must rearrange the results before
comparing them. What could look like an electric field for one observer could be a
superposition of an electric and a magnetic field for the other. And so on. This is what
we mean with covariance as opposed to invariance. Much more symmetry groups could be
found in Nature than the ones known, if only we knew how to rearrange the phenomena.
The transformation rule could be very complicated.

We now have formulated the theory of Special Relativity in such a way that it has be-
come very easy to check if some suspect Law of Nature actually obeys Lorentz invariance.
Left- and right hand side of an equation must transform the same way, and this is guar-
anteed if they are written as vectors or tensors with Lorentz indices always transforming
as follows:

(X ′µν...αβ...)
′ = Lµκ L

ν
λ . . . L

α
γ L

β
δ . . . X

κλ...
γδ... . (1.14)

Note that this transformation rule is just as if we were dealing with products of vectors
Xµ Y ν , etc. Quantities transforming as in Eq. (1.14) are called tensors. Due to the
orthogonality (1.4) of Lµν one can multiply and contract tensors covariantly, e.g.:

Xµ = YµαZ
αββ (1.15)
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is a “tensor” (a tensor with just one index is called a “vector”), if Y and Z are tensors.

The relativistically covariant form of Maxwell’s equations is:

∂µFµν = −Jν ; (1.16)

∂αFβγ + ∂βFγα + ∂γFαβ = 0 ; (1.17)

Fµν = ∂µAν − ∂νAµ , (1.18)

∂µJµ = 0 . (1.19)

Here ∂µ stands for ∂/∂xµ , and the current four-vector Jµ is defined as Jµ(x) =

(~j(x), ic%(x) ) , in units where µ0 and ε0 have been normalized to one. A special tensor
is εµναβ , which is defined by

ε1234 = 1 ;

εµναβ = εµαβν = −ενµαβ ;

εµναβ = 0 if any two of its indices are equal. (1.20)

This tensor is invariant under the set of homogeneous Lorentz transformations, in fact for
all Lorentz transformations Lµν with det (L) = 1 . One can rewrite Eq. (1.17) as

εµναβ ∂νFαβ = 0 . (1.21)

A particle with mass m and electric charge q moves along a curve xµ(s) , where s runs
from −∞ to +∞ , with

(∂sx
µ)2 = −1 ; (1.22)

m∂2
sx

µ = q Fµν ∂sx
ν . (1.23)

The tensor T em
µν defined by1

T em
µν = T em

νµ = FµλFλν + 1
4
δµνFλσFλσ , (1.24)

describes the energy density, momentum density and mechanical tension of the fields Fαβ .
In particular the energy density is

T em
44 = −1

2
F 2

4i + 1
4
FijFij = 1

2
( ~E2 + ~B2) , (1.25)

where we remind the reader that Latin indices i, j, . . . only take the values 1, 2 and 3.
Energy and momentum conservation implies that, if at any given space-time point x ,
we add the contributions of all fields and particles to Tµν(x) , then for this total energy-
momentum tensor, we have

∂µ Tµν = 0 . (1.26)

The equation ∂0T44 = −∂iTi0 may be regarded as a continuity equation, and so one
must regard the vector Ti0 as the energy current. It is also the momentum density, and,

1N.B. Sometimes Tµν is defined in different units, so that extra factors 4π appear in the denominator.
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in the case of electro-magnetism, it is usually called the Poynting vector. In turn, it
obeys the equation ∂0Ti0 = ∂jTij , so that −Tij can be regarded as the momentum flow.
However, the time derivative of the momentum is always equal to the force acting on a
system, and therefore, Tij can be seen as the force density, or more precisely: the tension,
or the force Fi through a unit surface in the direction j . In a neutral gas with pressure
p , we have

Tij = −p δij . (1.27)

2. The Eötvös experiments and the Equivalence Principle.

Suppose that objects made of different kinds of material would react slightly differently
to the presence of a gravitational field ~g , by having not exactly the same constant of
proportionality between gravitational mass and inertial mass:

~F (1) = M
(1)
inert~a

(1) = M (1)
grav ~g ,

~F (2) = M
(2)
inert~a

(2) = M (2)
grav ~g ;

~a(2) =
M

(2)
grav

M
(2)
inert

~g 6= M
(1)
grav

M
(1)
inert

~g = ~a(1) . (2.1)

These objects would show different accelerations ~a and this would lead to effects that
can be detected very accurately. In a space ship, the acceleration would be determined
by the material the space ship is made of; any other kind of material would be accel-
erated differently, and the relative acceleration would be experienced as a weak residual
gravitational force. On earth we can also do such experiments. Consider for example a
rotating platform with a parabolic surface. A spherical object would be pulled to the
center by the earth’s gravitational force but pushed to the rim by the centrifugal counter
forces of the circular motion. If these two forces just balance out, the object could find
stable positions anywhere on the surface, but an object made of different material could
still feel a residual force.

Actually the Earth itself is such a rotating platform, and this enabled the Hungarian
baron Loránd Eötvös to check extremely accurately the equivalence between inertial mass
and gravitational mass (the “Equivalence Principle”). The gravitational force on an object
on the Earth’s surface is

~Fg = −GNM⊕Mgrav
~r

r3
, (2.2)

where GN is Newton’s constant of gravity, and M⊕ is the Earth’s mass. The centrifugal
force is

~Fω = Minertω
2~raxis , (2.3)

where ω is the Earth’s angular velocity and

~raxis = ~r − (~ω · ~r)~ω
ω2

(2.4)
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is the distance from the Earth’s rotational axis. The combined force an object ( i ) feels

on the surface is ~F (i) = ~F
(i)
g + ~F

(i)
ω . If for two objects, (1) and (2) , these forces, ~F (1)

and ~F (2) , are not exactly parallel, one could measure

α =
|~F (1) ∧ ~F (2)|
|F (1)||F (2)|

≈
∣∣∣M (1)

inert

M
(1)
grav

− M
(2)
inert

M
(2)
grav

∣∣∣ |~ω ∧ ~r|(~ω · ~r)r
GNM⊕

(2.5)

where we assumed that the gravitational force is much stronger than the centrifugal one.
Actually, for the Earth we have:

GNM⊕
ω2r3

⊕
≈ 300 . (2.6)

From (2.5) we see that the misalignment α is given by

α ≈ (1/300) cos θ sin θ
∣∣∣M (1)

inert

M
(1)
grav

− M
(2)
inert

M
(2)
grav

∣∣∣ , (2.7)

where θ is the latitude of the laboratory in Hungary, fortunately sufficiently far from
both the North Pole and the Equator.

Eötvös found no such effect, reaching an accuracy of about one part in 109 for the
equivalence principle. By observing that the Earth also revolves around the Sun one can
repeat the experiment using the Sun’s gravitational field. The advantage one then has
is that the effect one searches for fluctuates daily. This was R.H. Dicke’s experiment,
in which he established an accuracy of one part in 1011 . There are plans to launch a
dedicated satellite named STEP (Satellite Test of the Equivalence Principle), to check
the equivalence principle with an accuracy of one part in 1017 . One expects that there
will be no observable deviation. In any case it will be important to formulate a theory
of the gravitational force in which the equivalence principle is postulated to hold exactly.
Since Special Relativity is also a theory from which never deviations have been detected
it is natural to ask for our theory of the gravitational force also to obey the postulates of
special relativity. The theory resulting from combining these two demands is the topic of
these lectures.

3. The constantly accelerated elevator. Rindler Space.

The equivalence principle implies a new symmetry and associated invariance. The real-
ization of this symmetry and its subsequent exploitation will enable us to give a unique
formulation of this gravity theory. This solution was first discovered by Einstein in 1915.
We will now describe the modern ways to construct it.

Consider an idealized “elevator”, that can make any kinds of vertical movements,
including a free fall. When it makes a free fall, all objects inside it will be accelerated
equally, according to the Equivalence Principle. This means that during the time the
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elevator makes a free fall, its inhabitants will not experience any gravitational field at all;
they are weightless.2

Conversely, we can consider a similar elevator in outer space, far away from any star or
planet. Now give it a constant acceleration upward. All inhabitants will feel the pressure
from the floor, just as if they were living in the gravitational field of the Earth or any other
planet. Thus, we can construct an “artificial” gravitational field. Let us consider such
an artificial gravitational field more closely. Suppose we want this artificial gravitational
field to be constant in space3 and time. The inhabitants will feel a constant acceleration.

An essential ingredient in relativity theory is the notion of a coordinate grid. So let us
introduce a coordinate grid ξ µ, µ = 1, . . . , 4 , inside the elevator, such that points on its
walls in the x -direction are given by ξ1 = constant, the two other walls are given by ξ2 =
constant, and the floor and the ceiling by ξ3 = constant. The fourth coordinate, ξ4 , is
i times the time as measured from the inside of the elevator. An observer in outer space
uses a Cartesian grid (inertial frame) xµ there. The motion of the elevator is described
by the functions xµ(ξ) . Let the origin of the ξ coordinates be a point in the middle of
the floor of the elevator, and let it coincide with the origin of the x coordinates. Suppose
that we know the acceleration ~g as experienced by the inhabitants of the elevator. How
do we determine the functions xµ(ξ) ?

We must assume that ~g = (0, 0, g) , and that g(τ) = g is constant. We assumed that
at τ = 0 the ξ and x coordinates coincide, so(

~x(~ξ, 0)
0

)
=

(
~ξ
0

)
. (3.1)

Now consider an infinitesimal time lapse, dτ . After that, the elevator has a velocity
~v = ~g dτ . The middle of the floor of the elevator is now at(

~x
it

)
(~0, idτ) =

(
~0
idτ

)
(3.2)

(ignoring terms of order dτ 2 ), but the inhabitants of the elevator will see all other points
Lorentz transformed, since they have velocity ~v . The Lorentz transformation matrix is
only infinitesimally different from the identity matrix:

I + δL =


1 0 0 0
0 1 0 0
0 0 1 −ig dτ
0 0 ig dτ 1

 . (3.3)

2Actually, objects in different locations inside the elevator might be inclined to fall in slightly different
directions, with different speeds, because the Earth’s gravitational field varies slightly from place to place.
This must be ignored. As soon as situations might arise that this effect is important, our idealized elevator
must be chosen to be smaller. One might want to choose it to be as small as a subatomic particle, but
then quantum effects will compound our arguments, so this is not allowed. Clearly therefore, the theory
we are dealing with will have limited accuracy. Theorists hope to be able to overcome this difficulty by
formulating “quantum gravity”, but this is way beyond the scope of these lectures.

3We shall discover shortly, however, that the field we arrive at is constant in the x , y and t direction,
but not constant in the direction of the field itself, the z direction.
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Therefore, the other points (~ξ, idτ) will be seen at the coordinates (~x, it) given by(
~x
it

)
−
(

~0
idτ

)
= (I + δL)

(
~ξ
0

)
. (3.4)

Now, we perform a little trick. Eq. (3.4) is a Poincaré transformation, that is, a
combination of a Lorentz transformation and a translation in time. In many instances (but
not always), a Poincaré transformation can be rewritten as a pure Lorentz transformation
with respect to a carefully chosen reference point as the origin. Here, we can find such a
reference point:

Aµ = (0, 0,−1/g, 0) , (3.5)

by observing that (
~0
idτ

)
= δL

(
~g/g2

0

)
, (3.6)

so that, at t = dτ , (
~x− ~A
it

)
= (I + δL)

(
~ξ − ~A

0

)
. (3.7)

It is important to see what this equation means: after an infinitesimal lapse of time dτ
inside the elevator, the coordinates (~x, it) are obtained from the previous set by means
of an infinitesimal Lorentz transformation with the point xµ = Aµ as its origin. The
inhabitants of the elevator can identify this point. Now consider another lapse of time
dτ . Since the elevator is assumed to feel a constant acceleration, the new position can
then again be obtained from the old one by means of the same Lorentz transformation.
So, at time τ = Ndτ , the coordinates (~x, it) are given by(

~x+ ~g/g2

it

)
= (I + δL)N

(
~ξ + ~g/g2

0

)
. (3.8)

All that remains to be done is compute (I + δL)N . This is not hard:

τ = Ndτ , L(τ) = (I + δL)N ; L(τ + dτ) = (I + δL)L(τ) ; (3.9)

δL =


0 0

0
0 0 −ig

ig 0

 dτ ; L(τ) =


1 0

1
0 A(τ) −iB(τ)

iB(τ) A(τ)

 . (3.10)

L(0) = I ; dA/dτ = gB , dB/dτ = gA ;

A = cosh(gτ) , B = sinh(gτ) . (3.11)
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Combining all this, we derive

xµ(~ξ, iτ) =


ξ1

ξ2

cosh(g τ)
(
ξ3 + 1

g

)
− 1

g

i sinh(g τ)
(
ξ3 + 1

g

)
 . (3.12)

τ

a 0
ξ3,  x

τ = const.
ξ 3

=
co

n
st.

x0

past  horizon

fu
tu

re
 h

or
iz

on

Figure 1: Rindler Space. The curved solid line represents the floor of the
elevator, ξ3 = 0 . A signal emitted from point a can never be received by an
inhabitant of Rindler Space, who lives in the quadrant at the right.

The 3, 4 components of the ξ coordinates, imbedded in the x coordinates, are pic-
tured in Fig. 1. The description of a quadrant of space-time in terms of the ξ coordinates
is called “Rindler space”. From Eq. (3.12) it should be clear that an observer inside the
elevator feels no effects that depend explicitly on his time coordinate τ , since a transition
from τ to τ ′ is nothing but a Lorentz transformation. We also notice some important
effects:

(i) We see that the equal τ lines converge at the left. It follows that the local clock
speed, which is given by % =

√
−(∂xµ/∂τ)2 , varies with height ξ3 :

% = 1 + g ξ3 , (3.13)

(ii) The gravitational field strength felt locally is %−2~g(ξ) , which is inversely propor-
tional to the distance to the point xµ = Aµ . So even though our field is constant
in the transverse direction and with time, it decreases with height.

(iii) The region of space-time described by the observer in the elevator is only part of
all of space-time (the quadrant at the right in Fig. 1, where x3 + 1/g > |x0| ). The
boundary lines are called (past and future) horizons.

12



All these are typically relativistic effects. In the non-relativistic limit ( g → 0 ) Eq. (3.12)
simply becomes:

x3 = ξ3 + 1
2
gτ 2 ; x4 = iτ = ξ4 . (3.14)

According to the equivalence principle the relativistic effects we discovered here should
also be features of gravitational fields generated by matter. Let us inspect them one by
one.

Observation (i) suggests that clocks will run slower if they are deep down a gravita-
tional field. Indeed one may suspect that Eq. (3.13) generalizes into

% = 1 + V (x) , (3.15)

where V (x) is the gravitational potential. Indeed this will turn out to be true, provided
that the gravitational field is stationary. This effect is called the gravitational red shift.

(ii) is also a relativistic effect. It could have been predicted by the following argument.
The energy density of a gravitational field is negative. Since the energy of two masses M1

and M2 at a distance r apart is E = −GNM1M2/r we can calculate the energy density
of a field ~g as T44 = −(1/8πGN)~g 2 . Since we had normalized c = 1 this is also its mass
density. But then this mass density in turn should generate a gravitational field! This
would imply4

~∂ · ~g ?
= 4πGNT44 = −1

2
~g 2 , (3.16)

so that indeed the field strength should decrease with height. However this reasoning is
apparently too simplistic, since our field obeys a differential equation as Eq. (3.16) but
without the coefficient 1

2
.

The possible emergence of horizons, our observation (iii), will turn out to be a very
important new feature of gravitational fields. Under normal circumstances of course the
fields are so weak that no horizon will be seen, but gravitational collapse may produce
horizons. If this happens there will be regions in space-time from which no signals can
be observed. In Fig. 1 we see that signals from a radio station at the point a will never
reach an observer in Rindler space.

The most important conclusion to be drawn from this chapter is that in order to
describe a gravitational field one may have to perform a transformation from the co-
ordinates ξ µ that were used inside the elevator where one feels the gravitational field,
towards coordinates xµ that describe empty space-time, in which freely falling objects
move along straight lines. Now we know that in an empty space without gravitational
fields the clock speeds, and the lengths of rulers, are described by a distance function σ
as given in Eq. (1.3). We can rewrite it as

dσ2 = gµνdx
µdx ν ; gµν = diag(1, 1, 1, 1) , (3.17)

4Temporarily we do not show the minus sign usually inserted to indicate that the field is pointed
downward.
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We wrote here dσ and dxµ to indicate that we look at the infinitesimal distance between
two points close together in space-time. In terms of the coordinates ξ µ appropriate for
the elevator we have for infinitesimal displacements dξ µ ,

dx3 = cosh(g τ)dξ3 + (1 + g ξ3) sinh(g τ)dτ ,

dx4 = i sinh(g τ)dξ3 + i(1 + g ξ3) cosh(g τ)dτ . (3.18)

implying

dσ2 = −(1 + g ξ3)2dτ 2 + (d~ξ )2 . (3.19)

If we write this as

dσ2 = gµν(ξ) dξ µdξ ν = (d~ξ )2 + (1 + g ξ3)2(dξ4)2, (3.20)

then we see that all effects that gravitational fields have on rulers and clocks can be
described in terms of a space (and time) dependent field gµν(ξ) . Only in the gravitational
field of a Rindler space can one find coordinates xµ such that in terms of these the
function gµν takes the simple form of Eq. (3.17). We will see that gµν(ξ) is all we need
to describe the gravitational field completely.

Spaces in which the infinitesimal distance dσ is described by a space(time) dependent
function gµν(ξ) are called curved or Riemann spaces. Space-time is a Riemann space. We
will now investigate such spaces more systematically.

4. Curved coordinates.

Eq. (3.12) is a special case of a coordinate transformation relevant for inspecting the
Equivalence Principle for gravitational fields. It is not a Lorentz transformation since
it is not linear in τ . We see in Fig. 1 that the ξ µ coordinates are curved. The empty
space coordinates could be called “straight” because in terms of them all particles move in
straight lines. However, such a straight coordinate frame will only exist if the gravitational
field has the same Rindler form everywhere, whereas in the vicinity of stars and planets
it takes much more complicated forms.

But in the latter case we can also use the Equivalence Principle: the laws of gravity
should be formulated in such a way that any coordinate frame that uniquely describes the
points in our four-dimensional space-time can be used in principle. None of these frames
will be superior to any of the others since in any of these frames one will feel some sort of
gravitational field5. Let us start with just one choice of coordinates xµ = (t, x, y, z) .
From this chapter onwards it will no longer be useful to keep the factor i in the time
component because it doesn’t simplify things. It has become convention to define x0 = t
and drop the x4 which was it . So now µ runs from 0 to 3. It will be of importance now
that the indices for the coordinates be indicated as super scripts µ, ν .

5There will be some limitations in the sense of continuity and differentiability as we will see.
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Let there now be some one-to-one mapping onto another set of coordinates uµ ,

uµ ⇔ xµ ; x = x(u) . (4.1)

Quantities depending on these coordinates will simply be called “fields”. A scalar field φ
is a quantity that depends on x but does not undergo further transformations, so that
in the new coordinate frame (we distinguish the functions of the new coordinates u from
the functions of x by using the tilde, ˜)

φ = φ̃(u) = φ(x(u)) . (4.2)

Now define the gradient (and note that we use a sub script index)

φµ(x) =
∂

∂xµ
φ(x)

∣∣∣
x ν constant, for ν 6= µ

. (4.3)

Remember that the partial derivative is defined by using an infinitesimal displacement
dxµ ,

φ(x+ dx) = φ(x) + φµdxµ +O(dx2) . (4.4)

We derive

φ̃(u+ du) = φ̃(u) +
∂xµ

∂u ν
φµdu ν +O(du2) = φ̃(u) + φ̃ν(u)du ν . (4.5)

Therefore in the new coordinate frame the gradient is

φ̃ν(u) = xµ,ν φµ(x(u)) , (4.6)

where we use the notation

xµ, ν
def
=

∂

∂u ν
xµ(u)

∣∣∣
uα 6=ν constant

, (4.7)

so the comma denotes partial derivation.

Notice that in all these equations superscript indices and subscript indices always
keep their position and they are used in such a way that in the summation convention
one subscript and one superscript occur:∑

µ

(. . .)µ(. . .)µ

Of course one can transform back from the x to the u coordinates:

φµ(x) = u ν, µ φ̃ν(u(x)) . (4.8)

Indeed,

u ν, µ x
µ
, α = δ να , (4.9)
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(the matrix u ν, µ is the inverse of xµ, α ) A special case would be if the matrix xµ, α would
be an element of the Lorentz group. The Lorentz group is just a subgroup of the much
larger set of coordinate transformations considered here. We see that φµ(x) transforms
as a vector. All fields Aµ(x) that transform just like the gradients φµ(x) , that is,

Ãν(u) = xµ, ν Aµ(x(u)) , (4.10)

will be called covariant vector fields, co-vector for short, even if they cannot be written
as the gradient of a scalar field.

Note that the product of a scalar field φ and a co-vector Aµ transforms again as a
co-vector:

Bµ = φAµ ;

B̃ν(u) = φ̃(u)Ãν(u) = φ(x(u))xµ, νAµ(x(u))

= xµ, ν Bµ(x(u)) . (4.11)

Now consider the direct product Bµν = A
(1)
µ A

(2)
ν . It transforms as follows:

B̃µν(u) = xα, µx
β
, ν Bαβ(x(u)) . (4.12)

A collection of field components that can be characterized with a certain number of indices
µ, ν, . . . and that transforms according to (4.12) is called a covariant tensor.

Warning: In a tensor such as Bµν one may not sum over repeated indices to obtain a
scalar field. This is because the matrices xα, µ in general do not obey the orthogonality
conditions (1.4) of the Lorentz transformations Lαµ . One is not advised to sum over
two repeated subscript indices. Nevertheless we would like to formulate things such as
Maxwell’s equations in General Relativity, and there of course inner products of vectors do
occur. To enable us to do this we introduce another type of vectors: the so-called contra-
variant vectors and tensors. Since a contravariant vector transforms differently from a
covariant vector we have to indicate this somehow. This we do by putting its indices
upstairs: F µ(x) . The transformation rule for such a superscript index is postulated to
be

F̃ µ(u) = uµ, α F
α(x(u)) , (4.13)

as opposed to the rules (4.10), (4.12) for subscript indices; and contravariant tensors
F µνα... transform as products

F (1)µF (2)ν F (3)α . . . . (4.14)

We will also see mixed tensors having both upper (superscript) and lower (subscript)
indices. They transform as the corresponding products.

Exercise: check that the transformation rules (4.10) and (4.13) form groups, i.e. the
transformation x → u yields the same tensor as the sequence x → v → u . Make
use of the fact that partial differentiation obeys
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∂xµ

∂u ν
=

∂xµ

∂vα
∂vα

∂u ν
. (4.15)

Summation over repeated indices is admitted if one of the indices is a superscript and one
is a subscript:

F̃ µ(u)Ãµ(u) = uµ, α F
α(x(u))xβ, µAβ(x(u)) , (4.16)

and since the matrix u ν, α is the inverse of xβ, µ (according to 4.9), we have

uµ, α x
β
, µ = δβα , (4.17)

so that the product F µAµ indeed transforms as a scalar:

F̃ µ(u)Ãµ(u) = Fα(x(u))Aα(x(u)) . (4.18)

Note that since the summation convention makes us sum over repeated indices with the
same name, we must ensure in formulae such as (4.16) that indices not summed over are
each given a different name.

We recognize that in Eqs. (4.4) and (4.5) the infinitesimal displacement dxµ of a

coordinate transforms as a contravariant vector. This is why coordinates are given super-

script indices. Eq. (4.17) also tells us that the Kronecker delta symbol (provided it has

one subscript and one superscript index) is an invariant tensor: it has the same form in

all coordinate grids.

Gradients of tensors

The gradient of a scalar field φ transforms as a covariant vector. Are gradients of
covariant vectors and tensors again covariant tensors? Unfortunately no. Let us from
now on indicate partial dent ∂/∂xµ simply as ∂µ . Sometimes we will use an even shorter
notation:

∂

∂xµ
φ = ∂µφ = φ, µ . (4.19)

From (4.10) we find

∂αÃν(u) =
∂

∂uα
Ãν(u) =

∂

∂uα

(∂xµ
∂u ν

Aµ(x(u))
)

=
∂xµ

∂u ν
∂xβ

∂uα
∂

∂xβ
Aµ(x(u)) +

∂2xµ

∂uα∂u ν
Aµ(x(u))

= xµ, νx
β
, α ∂βAµ(x(u)) + xµ, α, ν Aµ(x(u)) . (4.20)

The last term here deviates from the postulated tensor transformation rule (4.12).
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Now notice that

xµ, α, ν = xµ, ν, α , (4.21)

which always holds for ordinary partial differentiations. From this it follows that the
antisymmetric part of ∂αAµ is a covariant tensor:

Fαµ = ∂αAµ − ∂µAα ;

F̃αµ(u) = xβ,αx
ν
, µ Fβν(x(u)) . (4.22)

This is an essential ingredient in the mathematical theory of differential forms. We can
continue this way: if Aαβ = −Aβα then

Fαβγ = ∂αAβγ + ∂βAγα + ∂γAαβ (4.23)

is a fully antisymmetric covariant tensor.

Next, consider a fully antisymmetric tensor gµναβ having as many indices as the
dimensionality of space-time (let’s keep space-time four-dimensional). Then one can write

gµναβ = ω εµναβ , (4.24)

(see the definition of ε in Eq. (1.20)) since the antisymmetry condition fixes the values of
all coefficients of gµναβ apart from one common factor ω . Although ω carries no indices
it will turn out not to transform as a scalar field. Instead, we find:

ω̃(u) = det(xµ, ν)ω(x(u)) . (4.25)

A quantity transforming this way will be called a density.

The determinant in (4.25) can act as the Jacobian of a transformation in an integral.
If φ(x) is some scalar field (or the inner product of tensors with matching superscript
and subscript indices) then the integral

∫
ω(x)φ(x)d4x (4.26)

is independent of the choice of coordinates, because∫
d4x . . . =

∫
d4u · det(∂xµ/∂u ν) . . . . (4.27)

This can also be seen from the definition (4.24):∫
g̃µναβ duµ ∧ du ν ∧ duα ∧ duβ =∫
gκλγδ dxκ ∧ dxλ ∧ dxγ ∧ dxδ . (4.28)

Two important properties of tensors are:
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1) The decomposition theorem.
Every tensor Xµναβ...

κλστ... can be written as a finite sum of products of covariant and
contravariant vectors:

Xµν...
κλ... =

N∑
t=1

Aµ(t)B
ν
(t) . . . P

(t)
κ Q

(t)
λ . . . . (4.29)

The number of terms, N , does not have to be larger than the number of components
of the tensor6. By choosing in one coordinate frame the vectors A , B, . . . each
such that they are non vanishing for only one value of the index the proof can easily
be given.

2) The quotient theorem.
Let there be given an arbitrary set of components Xµν...αβ...

κλ...στ ... . Let it be known that
for all tensors Aστ...αβ... (with a given, fixed number of superscript and/or subscript
indices) the quantity

Bµν...
κλ... = Xµν...αβ...

κλ...στ ...A
στ...
αβ...

transforms as a tensor. Then it follows that X itself also transforms as a tensor.

The proof can be given by induction. First one chooses A to have just one index. Then
in one coordinate frame we choose it to have just one non-vanishing component. One then
uses (4.9) or (4.17). If A has several indices one decomposes it using the decomposition
theorem.

What has been achieved in this chapter is that we learned to work with tensors in
curved coordinate frames. They can be differentiated and integrated. But before we can
construct physically interesting theories in curved spaces two more obstacles will have to
be overcome:

(i) Thus far we have only been able to differentiate antisymmetrically, otherwise the
resulting gradients do not transform as tensors.

(ii) There still are two types of indices. Summation is only permitted if one index
is a superscript and one is a subscript index. This is too much of a limitation
for constructing covariant formulations of the existing laws of nature, such as the
Maxwell laws. We shall deal with these obstacles one by one.

5. The affine connection. Riemann curvature.

The space described in the previous chapter does not yet have enough structure to for-
mulate all known physical laws in it. For a good understanding of the structure now to
be added we first must define the notion of “affine connection”. Only in the next chapter
we will define distances in time and space.

6If n is the dimensionality of spacetime, and r the number of indices (the rank of the tensor), then
one needs at most N ≤ nr−1 terms.
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ξµ(x )

ξµ(x′ )x′

S

x

Figure 2: Two contravariant vectors close to each other on a curve S .

Let ξ µ(x) be a contravariant vector field, and let xµ(τ) be the space-time trajectory
S of an observer. We now assume that the observer has a way to establish whether
ξ µ(x) is constant or varies as his eigentime τ goes by. Let us indicate the observed time
derivative by a dot:

ξ̇ µ =
d

dτ
ξ µ(x(τ)) . (5.1)

The observer will have used a coordinate frame x where he stays at the origin O of
three-space. What will equation (5.1) be like in some other coordinate frame u ?

ξ µ(x) = xµ, ν ξ̃
ν(u(x)) ;

xµ, ν
˜̇ξ ν

def
=

d

dτ
ξ µ(x(τ)) = xµ, ν

d

dτ
ξ̃ ν
(
u(x(τ))

)
+ xµ, ν, λ

duλ

dτ
· ξ̃ ν(u) . (5.2)

Using F µ = xµ,νu
ν
,σF

σ , and replacing the repeated index ν in the second term by σ ,
we write this as

xµ,ν
˜̇ξν = xµν

( d

dτ
ξ̃ν(u(τ)) + uνσ x

σ
,κ,λ

duλ

dτ
ξ̃κ(u(τ))

)
.

Thus, if we wish to define a quantity ξ̇ ν that transforms as a contravector then in a
general coordinate frame this is to be written as

ξ̇ ν(u(τ))
def
=

d

dτ
ξ ν(u(τ)) + Γ ν

κλ

duλ

dτ
ξκ(u(τ)) . (5.3)

Here, Γ ν
λκ is a new field, and near the point u the local observer can use a “preferred

coordinate frame” x such that

u ν, µx
µ
, κ, λ = Γ ν

κλ . (5.4)

In this preferred coordinate frame, Γ will vanish, but only on the curve S ! In
general it will not be possible to find a coordinate frame such that Γ vanishes everywhere.
Eq. (5.3) defines the parallel displacement of a contravariant vector along a curve S . To
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do this a new field was introduced, Γµ
λκ(u) , called “affine connection field” by Levi-Civita.

It is a field, but not a tensor field, since it transforms as

Γ̃ ν
κλ(u(x)) = u ν, µ

[
xα, κx

β
, λΓ

µ
αβ(x) + xµ, κ, λ

]
. (5.5)

Exercise: Prove (5.5) and show that two successive transformations of this type
again produces a transformation of the form (5.5).

We now observe that Eq. (5.4) implies

Γ ν
λκ = Γ ν

κλ , (5.6)

and since

xµ, κ, λ = xµ, λ, κ , (5.7)

this symmetry will also hold in any other coordinate frame. Now, in principle, one can
consider spaces with a parallel displacement according to (5.3) where Γ does not obey
(5.6). In this case there are no local inertial frames where in some given point x one
has Γµ

λκ = 0 . This is called torsion. We will not pursue this, apart from noting that
the antisymmetric part of Γµ

κλ would be an ordinary tensor field, which could always be
added to our models at a later stage. So we limit ourselves now to the case that Eq. (5.6)
always holds.

A geodesic is a curve xµ(σ) that obeys

d2

dσ2
xµ(σ) + Γµ

κλ

dxκ

dσ

dxλ

dσ
= 0 . (5.8)

Since dxµ/dσ is a contravariant vector this is a special case of Eq. (5.3) and the equation
for the curve will look the same in all coordinate frames.

N.B. If one chooses an arbitrary, different parametrization of the curve (5.8), using
a parameter σ̃ that is an arbitrary differentiable function of σ , one obtains a different
equation,

d2

dσ̃2
xµ(σ̃) + α(σ̃)

d

dσ̃
xµ(σ̃) + Γµ

κλ

dxκ

dσ̃

dxλ

dσ̃
= 0 . (5.8a)

where α(σ̃) can be any function of σ̃ . Apparently the shape of the curve in coordinate
space does not depend on the function α(σ̃) .

Exercise: check Eq. (5.8a).

Curves described by Eq. (5.8) could be defined to be the space-time trajectories of particles
moving in a gravitational field. Indeed, in every point x there exists a coordinate frame
such that Γ vanishes there, so that the trajectory goes straight (the coordinate frame of
the freely falling elevator). In an accelerated elevator, the trajectories look curved, and
an observer inside the elevator can attribute this curvature to a gravitational field. The
gravitational field is hereby identified as an affine connection field.
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Since now we have a field that transforms according to Eq. (5.5) we can use it to
eliminate the offending last term in Eq. (4.20). We define a covariant derivative of a
co-vector field:

DαAµ = ∂αAµ − Γ ν
αµAν . (5.9)

This quantity DαAµ neatly transforms as a tensor:

DαÃν(u) = xµ,νx
β
,αDβAµ(x) . (5.10)

Notice that

DαAµ −DµAα = ∂αAµ − ∂µAα , (5.11)

so that Eq. (4.22) is kept unchanged.

Similarly one can now define the covariant derivative of a contravariant vector:

DαA
µ = ∂αA

µ + Γµ
αβA

β . (5.12)

(notice the differences with (5.9)!) It is not difficult now to define covariant derivatives of
all other tensors:

DαX
µν...
κλ... = ∂αX

µν...
κλ... + Γµ

αβX
βν...
κλ... + Γ ν

αβX
µβ...
κλ... . . .

−ΓβκαX
µν...
βλ... − ΓβλαX

µν...
κβ... . . . . (5.13)

Expressions (5.12) and (5.13) also transform as tensors.

We also easily verify a “product rule”. Let the tensor Z be the product of two tensors
X and Y :

Zκλ...π%...
µν...αβ... = Xκλ...

µν... Y
π%...
αβ... . (5.14)

Then one has (in a notation where we temporarily suppress the indices)

DαZ = (DαX)Y +X(DαY ) . (5.15)

Furthermore, if one sums over repeated indices (one subscript and one superscript, we
will call this a contraction of indices):

(DαX)µκ...µβ... = Dα(Xµκ...
µβ...) , (5.16)

so that we can just as well omit the brackets in (5.16). Eqs. (5.15) and (5.16) can easily
be proven to hold in any point x , by choosing the reference frame where Γ vanishes at
that point x .

The covariant derivative of a scalar field φ is the ordinary derivative:

Dαφ = ∂αφ , (5.17)
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but this does not hold for a density function ω (see Eq. (4.24),

Dαω = ∂αω − Γµ
µαω . (5.18)

Dαω is a density times a covector. This one derives from (4.24) and

εαµνλεβµνλ = 6 δαβ . (5.19)

Thus we have found that if one introduces in a space or space-time a field Γµ
νλ that

transforms according to Eq. (5.5), called ‘affine connection’, then one can define: 1)
geodesic curves such as the trajectories of freely falling particles, and 2) the covariant
derivative of any vector and tensor field. But what we do not yet have is (i) a unique def-
inition of distance between points and (ii) a way to identify co vectors with contra vectors.
Summation over repeated indices only makes sense if one of them is a superscript and the
other is a subscript index.

Curvature

Now again consider a curve S as in Fig. 2, but close it (Fig. 3). Let us have a
contravector field ξ ν(x) with

ξ̇ ν(x(τ)) = 0 ; (5.20)

We take the curve to be very small7 so that we can write

ξ ν(x) = ξ ν + ξ ν, µx
µ +O(x2) . (5.21)

Figure 3: Parallel displacement along a closed curve in a curved space.

Will this contravector return to its original value if we follow it while going around the
curve one full loop? According to (5.3) it certainly will if the connection field vanishes:
Γ = 0 . But if there is a strong gravity field there might be a deviation δξ ν . We find:∮

dτ ξ̇ = 0 ;

δξ ν =

∮
dτ

d

dτ
ξ ν(x(τ)) = −

∮
Γ ν
κλ

dxλ

dτ
ξκ(x(τ))dτ

= −
∮

dτ
(

Γ ν
κλ + Γ ν

κλ, αx
α
)dxλ

dτ

(
ξκ + ξκ, µx

µ
)
. (5.22)

7In an affine space without metric the words ‘small’ and ‘large’ appear to be meaningless. However,
since differentiability is required, the small size limit is well defined. Thus, it is more precise to state
that the curve is infinitesimally small.
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where we chose the function x(τ) to be very small, so that terms O(x2) could be ne-
glected. We have a closed curve, so∮

dτ dxλ

dτ
= 0 and

Dµξ
κ ≈ 0 → ξκ, µ ≈ −Γκµβξ

β , (5.23)

so that Eq. (5.22) becomes

δξ ν = 1
2

(∮
xα

dxλ

dτ
dτ
)
R ν

κλαξ
κ + higher orders in x . (5.24)

Since ∮
xα

dxλ

dτ
dτ +

∮
xλ

dxα

dτ
dτ = 0 , (5.25)

only the antisymmetric part of R matters. We choose

R ν
κλα = −R ν

καλ (5.26)

(the factor 1
2

in (5.24) is conventionally chosen this way). Thus we find:

R ν
κλα = ∂λΓ

ν
κα − ∂αΓ ν

κλ + Γ ν
λσΓσκα − Γ ν

ασΓσκλ . (5.27)

We now claim that this quantity must transform as a true tensor. This should be
surprising since Γ itself is not a tensor, and since there are ordinary derivatives ∂λ
instead of covariant derivatives. The argument goes as follows. In Eq. (5.24) the l.h.s.,
δξ ν is a true contravector, and also the quantity

Sαλ =

∮
xα

dxλ

dτ
dτ , (5.28)

transforms as a tensor. Now we can choose ξκ any way we want and also the surface ele-
ments Sαλ may be chosen freely. Therefore we may use the quotient theorem (expanded
to cover the case of antisymmetric tensors) to conclude that in that case the set of coeffi-
cients R ν

κλα must also transform as a genuine tensor. Of course we can check explicitly
by using (5.5) that the combination (5.27) indeed transforms as a tensor, showing that
the inhomogeneous terms cancel out.

R ν
κλα tells us something about the extent to which this space is curved. It is called

the Riemann curvature tensor. From (5.27) we derive

R ν
κλα +R ν

λακ +R ν
ακλ = 0 , (5.29)

and

DαR
ν
κβγ +DβR

ν
κγα +DγR

ν
καβ = 0 . (5.30)

The latter equation, called Bianchi identity, can be derived most easily by noting that
for every point x a coordinate frame exists such that at that point x one has Γ ν

κα = 0
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(though its derivative ∂Γ cannot be tuned to zero). One then only needs to take into
account those terms of Eq. (5.30) that are linear in ∂Γ .

Partial derivatives ∂µ have the property that the order may be interchanged, ∂µ∂ν =
∂ν∂µ . This is no longer true for covariant derivatives. For any covector field Aµ(x) we
find

DµDνAα −DνDµAα = −Rλ
αµνAλ , (5.31)

and for any contravector field Aα :

DµDνA
α −DνDµA

α = Rα
λµνA

λ , (5.32)

which we can verify directly from the definition of Rλ
αµν . These equations also show

clearly why the Riemann curvature transforms as a true tensor; (5.31) and (5.32) hold for
all Aλ and Aλ and the l.h.s. transform as tensors.

An important theorem is that the Riemann tensor completely specifies the extent to
which space or space-time is curved, if this space-time is simply connected. We shall not
give a mathematically rigorous proof of this, but an acceptable argument can be found as
follows. Assume that R ν

κλα = 0 everywhere. Consider then a point x and a coordinate
frame such that Γ ν

κλ(x) = 0 . We assume our manifold to be C∞ at the point x . Then
consider a Taylor expansion of Γ around x :

Γ ν
κλ(x

′) = Γ
[1]ν
κλ, α(x′ − x)α + 1

2
Γ

[2]ν
κλ, αβ(x′ − x)α(x′ − x)β . . . , (5.33)

From the fact that (5.27) vanishes we deduce that Γ
[1]ν
κλ, α is symmetric:

Γ
[1]ν
κλ, α = Γ

[1]ν
κα,λ , (5.34)

and furthermore, from the symmetry (5.6) we have

Γ
[1]ν
κλ, α = Γ

[1]ν
λκ, α , (5.35)

so that there is complete symmetry in the lower indices. From this we derive that

Γνκλ = ∂λ∂kY
ν +O(x′ − x)2 , (5.36)

with

Y ν = 1
6
Γ

[1]ν
κλ,α(x′ − x)α(x′ − x)λ(x′ − x)κ . (5.37)

If now we turn to the coordinates uµ = xµ + Y µ then, according to the transformation
rule (5.5), Γ vanishes in these coordinates up to terms of order (x′ − x)2 . So, here, the
coefficients Γ[1] vanish.

The argument can now be repeated to prove that, in (5.33), all coefficients Γ[i] can be
made to vanish by choosing suitable coordinates. Unless our space-time were extremely
singular at the point x , one finds a domain this way around x where, given suitable
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coordinates, Γ vanish completely. All domains treated this way can be glued together,
and only if there is an obstruction because our space-time isn’t simply-connected, this
leads to coordinates where the Γ vanish everywhere.

Thus we see that if the Riemann curvature vanishes a coordinate frame can be con-
structed in terms of which all geodesics are straight lines and all covariant derivatives are
ordinary derivatives. This is a flat space.

Warning: there is no universal agreement in the literature about sign conventions in
the definitions of dσ2 , Γ ν

κλ , R ν
κλα, Tµν and the field gµν of the next chapter. This

should be no impediment against studying other literature. One frequently has to adjust
signs and pre-factors.

6. The metric tensor.

In a space with affine connection we have geodesics, but no clocks and rulers. These we
will introduce now. In Chapter 3 we saw that in flat space one has a matrix

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6.1)

so that for the Lorentz invariant distance σ we can write

σ2 = −t2 + ~x 2 = gµνx
µx ν . (6.2)

(time will be the zeroth coordinate, which is agreed upon to be the convention if all
coordinates are chosen to stay real numbers). For a particle running along a timelike
curve C = {x(σ)} the increase in eigentime T is

T =

∫
C

dT , with dT 2 = −gµν
dxµ

dσ

dx ν

dσ
· dσ2

def
= − gµνdxµdx ν . (6.3)

This expression is coordinate independent, provided that gµν is treated as a co-tensor
with two subscript indices. It is symmetric under interchange of these. In curved coordi-
nates we get

gµν = gνµ = gµν(x) . (6.4)

This is the metric tensor field. Only far away from stars and planets we can find coordi-
nates such that it will coincide with (6.1) everywhere. In general it will deviate from this
slightly, but usually not very much. In particular we will demand that upon diagonaliza-
tion one will always find three positive and one negative eigenvalue. This property can
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be shown to be unchanged under coordinate transformations. The inverse of gµν which
we will simply refer to as gµν is uniquely defined by

gµνg
να = δαµ . (6.5)

This inverse is also symmetric under interchange of its indices.

It now turns out that the introduction of such a two-index co-tensor field gives space-
time more structure than the three-index affine connection of the previous chapter. First
of all, the tensor gµν induces one special choice for the affine connection field. Let
us elucidate this first by using a physical argument. Consider a freely falling elevator
(or spaceship). Assume that the elevator is so small that the gravitational pull from
stars and planets surrounding it appears to be the same everywhere inside the elevator.
Then an observer inside the elevator will not experience any gravitational field anywhere
inside the elevator. He or she should be able to introduce a Cartesian coordinate grid
inside the elevator, as if gravitational forces did not exist. He or she could use as metric
tensor gµν = diag(−1, 1, 1, 1) . Since there is no gravitational field, clocks run equally fast
everywhere, and rulers show the same lengths everywhere (as long as we stay inside the
elevator). Therefore, the inhabitant must conclude that ∂αgµν = 0 . Since there is no
need of curved coordinates, one would also have Γλµν = 0 at the location of the elevator.
Note: the gradient of Γ , and the second derivative of gµν would be difficult to detect, so
we put no constraints on those.

Clearly, we conclude that, at the location of the elevator, the covariant derivative of
gµν should vanish:

Dαgµν = 0 . (6.6)

In fact, we shall now argue that Eq. (6.6) can be used as a definition of the affine connec-
tion Γ for a space or space-time where a metric tensor gµν(x) is given. This argument
goes as follows.

From (6.6) we see:

∂αgµν = Γλαµgλν + Γλανgµλ . (6.7)

Write

Γλαµ = gλνΓ
ν
αµ , (6.8)

Γλαµ = Γλµα . (6.9)

Then one finds from (6.7)

1
2
( ∂µgλν + ∂νgλµ − ∂λgµν ) = Γλµν , (6.10)

Γλµν = gλαΓαµν . (6.11)

These equations now define an affine connection field. Indeed Eq. (6.6) follows from (6.10),
(6.11). In the literature one also finds the “Christoffel symbol” { µ

κλ
} which means the

same thing. The convention used here is that of Hawking and Ellis. Since

Dαδ
λ
µ = ∂αδ

λ
µ = 0 , (6.12)
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we also have for the inverse of gµν

Dαg
µν = 0 , (6.13)

which follows from (6.5) in combination with the product rule (5.15).

But the metric tensor gµν not only gives us an affine connection field, it now also
enables us to replace subscript indices by superscript indices and back. For every covector
Aµ(x) we define a contravector A ν(x) by

Aµ(x) = gµν(x)A ν(x) ; A ν = gνµAµ . (6.14)

Very important is what is implied by the product rule (5.15), together with (6.6) and
(6.13):

DαA
µ = gµνDαAν ,

DαAµ = gµνDαA
ν . (6.15)

It follows that raising or lowering indices by multiplication with gµν or gµν can be done
before or after covariant differentiation.

The metric tensor also generates a density function ω :

ω =
√
− det(gµν) . (6.16)

It transforms according to Eq. (4.25). This can be understood by observing that in a
coordinate frame with in some point x

gµν(x) = diag(−a, b, c, d) , (6.17)

the volume element is given by
√
abcd .

The space of the previous chapter is called an “affine space”. In the present chapter

we have a subclass of the affine spaces called a metric space or Riemann space; indeed we

can call it a Riemann space-time. The presence of a time coordinate is betrayed by the

one negative eigenvalue of gµν .

The geodesics

Consider two arbitrary points X and Y in our metric space. For every curve C =
{xµ(σ)} that has X and Y as its end points,

xµ(0) = X µ ; xµ(1) = Y µ , (6.18)

we consider the integral

` =

∫ σ=1

C σ=0

ds , (6.19)
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with either

ds2 = gµνdx
µdx ν , (6.20)

when the curve is spacelike, or

ds2 = −gµνdxµdx ν , (6.21)

wherever the curve is timelike. For simplicity we choose the curve to be spacelike,
Eq. (6.20). The timelike case goes exactly analogously.

Consider now an infinitesimal displacement of the curve, keeping however X and Y
in their places:

x′
µ
(σ) = xµ(σ) + η µ(σ) , η infinitesimal,

η µ(0) = η µ(1) = 0 , (6.22)

then what is the infinitesimal change in ` ?

δ` =

∫
δds ;

2dsδds = (δgµν)dx
µdx ν + 2gµνdx

µdη ν +O(dη2)

= (∂αgµν)η
αdxµdx ν + 2gµνdx

µdη ν

dσ
dσ . (6.23)

Now we make a restriction for the original curve:

ds

dσ
= 1 , (6.24)

which one can always realize by choosing an appropriate parametrization of the curve.
(6.23) then reads

δ` =

∫
dσ
(

1
2
ηαgµν, α

dxµ

dσ

dx ν

dσ
+ gµα

dxµ

dσ

dηα

dσ

)
. (6.25)

We can take care of the dη/dσ term by partial integration; using

d

dσ
gµα = gµα,λ

dxλ

dσ
, (6.26)

we get

δ` =

∫
dσ
(
ηα
(

1
2
gµν, α

dxµ

dσ

dx ν

dσ
− gµα,λ

dxλ

dσ

dxµ

dσ
− gµα

d2xµ

dσ2

)
+

d

dσ

(
gµα

dxµ

dσ
ηα
))

.

= −
∫

dσ ηα(σ)gµα

(d2xµ

dσ2
+ Γµ

κλ

dxκ

dσ

dxλ

dσ

)
. (6.27)

The pure derivative term vanishes since we require η to vanish at the end points,
Eq. (6.22). We used symmetry under interchange of the indices λ and µ in the first
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line and the definitions (6.10) and (6.11) for Γ . Now, strictly following standard pro-
cedure in mathematical physics, we can demand that δ` vanishes for all choices of the
infinitesimal function ηα(σ) obeying the boundary condition. We obtain exactly the
equation for geodesics, (5.8). If we hadn’t imposed Eq. (6.24) we would have obtained
Eq. (5.8a).

We have spacelike geodesics (with Eq. (6.20) and timelike geodesics (with Eq. (6.21).

One can show that for timelike geodesics ` is a relative maximum. For spacelike geodesics

it is on a saddle point. Only in spaces with a positive definite gµν the length ` of the

path is a minimum for the geodesic.

Curvature

As for the Riemann curvature tensor defined in the previous chapter, we can now raise
and lower all its indices:

Rµναβ = gµλR
λ
ναβ , (6.28)

and we can check if there are any further symmetries, apart from (5.26), (5.29) and (5.30).
By writing down the full expressions for the curvature in terms of gµν one finds

Rµναβ = −Rνµαβ = Rαβµν . (6.29)

By contracting two indices one obtains the Ricci tensor:

Rµν = Rλ
µλν , (6.30)

It now obeys

Rµν = Rνµ , (6.31)

We can contract further to obtain the Ricci scalar,

R = gµνRµν = Rµ
µ . (6.32)

Now that we have the metric tensor gµν , we may use a generalized version of the
summation convention: If there is a repeated subscript index, it means that one of them
must be raised using the metric tensor gµν , after which we sum over the values. Similarly,
repeated superscript indices can now be summed over:

AµBµ ≡ AµB
µ ≡ AµBµ ≡ AµBν g

µν . (6.33)

The Bianchi identity (5.30) implies for the Ricci tensor:

DµRµν − 1
2
DνR = 0 . (6.34)
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We define the Einstein tensor Gµν(x) as

Gµν = Rµν − 1
2
Rgµν , DµGµν = 0 . (6.35)

The formalism developed in this chapter can be used to describe any kind of curved
space or space-time. Every choice for the metric gµν (under certain constraints concerning
its eigenvalues) can be considered. We obtain the trajectories – geodesics – of particles
moving in gravitational fields. However so-far we have not discussed the equations that
determine the gravity field configurations given some configuration of stars and planets
in space and time. This will be done in the next chapters.

7. The perturbative expansion and Einstein’s law of gravity.

We have a law of gravity if we have some prescription to pin down the values of the
curvature tensor Rµ

αβγ near a given matter distribution in space and time. To obtain
such a prescription we want to make use of the given fact that Newton’s law of gravity
holds whenever the non-relativistic approximation is justified. This will be the case in any
region of space and time that is sufficiently small so that a coordinate frame can be devised
there that is approximately flat. The gravitational fields are then sufficiently weak and
then at that spot we not only know fairly well how to describe the laws of matter, but we
also know how these weak gravitational fields are determined by the matter distribution
there. In our small region of space-time we write

gµν(x) = ηµν + hµν , (7.1)

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (7.2)

and hµν is a small perturbation. We find (see (6.10):

Γλµν = 1
2
(∂µhλν + ∂νhλµ − ∂λhµν) ; (7.3)

gµν = ηµν − hµν + hµαh
αν − . . . . (7.4)

In this latter expression the indices were raised and lowered using ηµν and ηµν instead
of the gµν and gµν . This is a revised index- and summation convention that we only
apply on expressions containing hµν . Note that the indices in ηµν need not be raised or
lowered.

Γαµν = ηαλΓλµν +O(h2) . (7.5)

The curvature tensor is

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ +O(h2) , (7.6)
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and the Ricci tensor

Rµν = ∂αΓαµν − ∂µΓανα +O(h2)

= 1
2
(− ∂2hµν + ∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh

α
α) +O(h2) . (7.7)

The Ricci scalar is

R = −∂2hµµ + ∂µ∂νhµν +O(h2) . (7.8)

A slowly moving particle has

dxµ

dτ
≈ (1, 0, 0, 0) , (7.9)

so that the geodesic equation (5.8) becomes

d2

dτ 2
xi(τ) = −Γi00 . (7.10)

Apparently, Γi = −Γi00 is to identified with the gravitational field. Now in a stationary
system one may ignore time derivatives ∂0 . Therefore Eq. (7.3) for the gravitational field
reduces to

Γi = −Γi00 = 1
2
∂ih00 , (7.11)

so that one may identify −1
2
h00 as the gravitational potential. This confirms the suspicion

expressed in Chapter 3 that the local clock speed, which is % =
√
−g00 ≈ 1− 1

2
h00 , can

be identified with the gravitational potential, Eq. (3.19) (apart from an additive constant,
of course).

Now let Tµν be the energy-momentum-stress-tensor; T44 = −T00 is the mass-energy
density and since in our coordinate frame the distinction between covariant derivative and
ordinary derivatives is negligible, Eq. (1.26) for energy-momentum conservation reads

DµTµν = 0 (7.12)

In other coordinate frames this deviates from ordinary energy-momentum conservation
just because the gravitational fields can carry away energy and momentum; the Tµν
we work with presently will be only the contribution from stars and planets, not their
gravitational fields. Now Newton’s equations for slowly moving matter imply

Γi = −Γi00 = −∂iV (x) = 1
2
∂ih00 ;

∂iΓi = −4πGNT44 = 4πGNT00 ;

~∂ 2h00 = 8πGNT00 . (7.13)

This we now wish to rewrite in a way that is invariant under general coordinate
transformations. This is a very important step in the theory. Instead of having one
component of the Tµν depend on certain partial derivatives of the connection fields Γ
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we want a relation between covariant tensors. The energy momentum density for matter,
Tµν , satisfying Eq. (7.12), is clearly a covariant tensor. The only covariant tensors one
can build from the expressions in Eq. (7.13) are the Ricci tensor Rµν and the scalar R .
The two independent components that are scalars under spacelike rotations are

R00 = −1
2
~∂ 2 h00 ; (7.14)

and R = ∂i∂jhij + ~∂ 2(h00 − hii) . (7.15)

Now these equations strongly suggest a relationship between the tensors Tµν and Rµν ,
but we now have to be careful. Eq. (7.15) cannot be used since it is not a priori clear
whether we can neglect the spacelike components of hij (we cannot). The most general
tensor relation one can expect of this type would be

Rµν = ATµν +BgµνT
α
α , (7.16)

where A and B are constants yet to be determined. Here the trace of the energy
momentum tensor is, in the non-relativistic approximation

Tαα = −T00 + Tii . (7.17)

so the 00 component can be written as

R00 = −1
2
~∂ 2h00 = (A+B)T00 −BTii , (7.18)

to be compared with (7.13). It is of importance to realize that in the Newtonian limit
the Tii term (the pressure p ) vanishes, not only because the pressure of ordinary (non-
relativistic) matter is very small, but also because it averages out to zero as a source: in
the stationary case we have

0 = ∂µTµi = ∂jTji , (7.19)

d

dx1

∫
T11dx2dx3 = −

∫
dx2dx3(∂2T21 + ∂3T31) = 0 , (7.20)

and therefore, if our source is surrounded by a vacuum, we must have∫
T11 dx2dx3 = 0 →

∫
d3~x T11 = 0 ,

and similarly,

∫
d3~x T22 =

∫
d3~x T33 = 0 . (7.21)

We must conclude that all one can deduce from (7.18) and (7.13) is

A+B = −4πGN . (7.22)

Fortunately we have another piece of information. The trace of (7.16) is
R = (A+ 4B)Tαα . The quantity Gµν in Eq. (6.35) is then

Gµν = ATµν − (1
2
A+B)Tαα gµν , (7.23)
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and since we have both the Bianchi identity (6.35) and the energy conservation law (7.12)
we get (using the modified summation convention, Eq. (6.33))

DµGµν = 0 ; DµTµν = 0 ; therefore (1
2
A+B)∂ν(T

α
α ) = 0 . (7.24)

Now Tαα , the trace of the energy-momentum tensor, is dominated by −T00 . This will in
general not be space-time independent. So our theory would be inconsistent unless

B = −1
2
A ; A = −8πGN , (7.25)

using (7.22). We conclude that the only tensor equation consistent with Newton’s equation
in a locally flat coordinate frame is

Rµν − 1
2
Rgµν = −8πGNTµν , (7.26)

where the sign of the energy-momentum tensor is defined by ( % is the energy density)

T44 = −T00 = T 0
0 = % . (7.27)

This is Einstein’s celebrated law of gravitation. From the equivalence principle it follows
that if this law holds in a locally flat coordinate frame it should hold in any other frame
as well.

Since both left and right of Eq. (7.26) are symmetric under interchange of the indices
we have here 10 equations. We know however that both sides obey the conservation law

DµGµν = 0 . (7.28)

These are 4 equations that are automatically satisfied. This leaves 6 non-trivial equations.
They should determine the 10 components of the metric tensor gµν , so one expects a
remaining freedom of 4 equations. Indeed the coordinate transformations are as yet
undetermined, and there are 4 coordinates. Counting degrees of freedom this way suggests
that Einstein’s gravity equations should indeed determine the space-time metric uniquely
(apart from coordinate transformations) and could replace Newton’s gravity law. However
one has to be extremely careful with arguments of this sort. In the next chapter we show
that the equations are associated with an action principle, and this is a much better
way to get some feeling for the internal self-consistency of the equations. Fundamental
difficulties are not completely resolved, in particular regarding the possible emergence of
singularities in the solutions.

Note that (7.26) implies

8πGNT
µ
µ = R ;

Rµν = −8πGN(Tµν − 1
2
Tαα gµν) . (7.29)

therefore in parts of space-time where no matter is present one has

Rµν = 0 , (7.30)
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but the complete Riemann tensor Rα
βγδ will not vanish.

The Weyl tensor is defined by subtracting from Rαβγδ a part in such a way that all
contractions of any pair of indices gives zero:

Cαβγδ = Rαβγδ + 1
2

[
gαδRγβ + gβγRαδ + 1

3
Rgαγ gβδ − (γ ⇔ δ)

]
. (7.31)

This construction is such that Cαβγδ has the same symmetry properties (5.26), (5.29)
and (6.29) and furthermore

C µ
βµγ = 0 . (7.32)

If one carefully counts the number of independent components one finds in a given point
x that Rαβγδ has 20 degrees of freedom, and Rµν and Cαβγδ each 10.

The cosmological constant

We have seen that Eq. (7.26) can be derived uniquely; there is no room for correc-
tion terms if we insist that both the equivalence principle and the Newtonian limit are
valid. But if we allow for a small deviation from Newton’s law then another term can be
imagined. Apart from (7.28) we also have

Dµ gµν = 0 , (7.33)

and therefore one might replace (7.26) by

Rµν − 1
2
Rgµν + Λ gµν = −8πGN Tµν , (7.34)

where Λ is a constant of Nature, with a very small numerical value, called the cosmological
constant. The extra term may also be regarded as a ‘renormalization’:

δTµν ∝ gµν , (7.35)

implying some residual energy and pressure in the vacuum. Einstein first introduced
such a term in order to obtain interesting solutions, but later “regretted this”. In any
case, a residual gravitational field emanating from the vacuum, if it exists at all, must be
extraordinarily weak. For a long time, it was presumed that the cosmological constant
Λ = 0 . Only very recently, strong indications were reported for a tiny, positive value of Λ .
Whether or not the term exists, it is very mysterious why Λ should be so close to zero. In
modern field theories it is difficult to understand why the energy and momentum density
of the vacuum state (which just happens to be the state with lowest energy content) are
tuned to zero. So we do not know why Λ = 0 , exactly or approximately, with or without
Einstein’s regrets.

8. The action principle.

We saw that a particle’s trajectory in a space-time with a gravitational field is determined
by the geodesic equation (5.8), but also by postulating that the quantity

` =

∫
ds , with (ds)2 = −gµνdxµdx ν , (8.1)
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is stationary under infinitesimal displacements xµ(τ)→ xµ(τ) + δxµ(τ) :

δ` = 0 . (8.2)

This is an example of an action principle, ` being the action for the particle’s motion in
its orbit. The advantage of this action principle is its simplicity as well as the fact that
the expressions are manifestly covariant so that we see immediately that they will give
the same results in any coordinate frame. Furthermore the existence of solutions of (8.2)
is very plausible in particular if the expression for this action is bounded. For example,
for most timelike geodesics ` is an absolute maximum.

Now let

g
def
= det(gµν) . (8.3)

Then consider in some volume V of 4 dimensional space-time the so-called Einstein-
Hilbert action:

I =

∫
V

√
−g Rd4x , (8.4)

where R is the Ricci scalar (6.32). We saw in chapters 4 and 6 that with this factor
√
−g

the integral (8.4) is invariant under coordinate transformations, but if we keep V finite
then of course the boundary should be kept unaffected. Consider now an infinitesimal
variation of the metric tensor gµν :

g̃µν = gµν + δgµν , (8.5)

so that its inverse, gµν changes as

g̃µν = gµν − δgµν . (8.6)

We impose that δgµν and its first derivatives vanish on the boundary of V . What effect
does this have on the Ricci tensor Rµν and the Ricci scalar R ?

First, compute to lowest order in δgµν the variation δΓλµν of the connection field

Γ̃λµν = Γλµν + δΓλµν .

Using this, and Eqs. (6.8), (6.10) and (6.11), we find :

δΓλµν = 1
2
gλα(∂µδgαν + ∂νδgαµ − ∂αδgµν)− δgαλΓαµν .

Now, we make an important observation. Since δΓλµν is the difference between two
connection fields, it transforms as a true tensor. Therefore, this last expression can be
written in such a way that we see only covariant derivatives:

δΓλµν = 1
2
gλα(Dµδgαν +Dνδgαµ −Dαδgµν) .
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This, of course, we can check explicitly. Similarly, again using the fact that these expres-
sions must transform as true tensors, we derive (see Eq. (5.27):

R̃ ν
κλα = R ν

κλα +DλδΓ
ν
κα −DαδΓ

ν
κλ ,

so that the variation in the Ricci tensor Rµν to lowest order in δgµν is given by

R̃µν = Rµν + 1
2

(
−D2δgµν +DαDµδg

α
ν +DαDνδg

α
µ −DµDνδg

α
α

)
, (8.7)

Exercise: check the derivation of Eq. (8.7).

With R̃ = g̃µνR̃µν we have

R̃ = R−Rµνδg
µν + (DµDνδg

µν −D2δgαα) . (8.8)

Finally, the determinant of g̃µν is obtained by

det(g̃µν) = det (gµλ(δ
λ
ν + gλαδgαν)) = det(gµν) det(δ µν + gµαδgαν) = g(1 + δg µµ ) ;(8.9)√

−g̃ =
√
−g (1 + 1

2
δg µµ ) . (8.10)

and so we find for the variation of the integral I as a consequence of the variation (8.5):

Ĩ = I +

∫
V

√
−g (−Rµν + 1

2
Rgµν)δgµν +

∫
V

√
−g (DµDν − gµνD2)δgµν . (8.11)

However,

√
−g DµX

µ = ∂µ(
√
−g X µ) , (8.12)

and therefore the second half in (8.11) is an integral over a pure derivative and since
we demanded that δgµν (and its derivatives) vanish at the boundary the second half of
Eq. (8.11) vanishes. So we find

δI = −
∫
V

√
−g Gµνδgµν , (8.13)

with Gµν as defined in (6.35). Note that in these derivations we mixed superscript and
subscript indices. Only in (8.12) it is essential that X µ is a contra-vector since we insist
in having an ordinary rather than a covariant derivative in order to be able to do partial
integration. Here we see that partial integration using covariant derivatives works out
fine provided we have the factor

√
−g inside the integral as indicated.

We read off from Eq. (8.13) that Einstein’s equations for the vacuum, Gµν = 0 , are
equivalent with demanding that

δI = 0 , (8.14)

for all smooth variations δgµν(x) . In the previous chapter a connection was suggested
between the gauge freedom in choosing the coordinates on the one hand and the con-
servation law (Bianchi identity) for Gµν on the other. We can now expatiate on this.
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For any system, even if it does not obey Einstein’s equations, I will be invariant under
infinitesimal coordinate transformations:

x̃µ = xµ + uµ(x) ,

g̃µν(x) =
∂x̃α

∂xµ
∂x̃β

∂x ν
gαβ(x̃) ;

gαβ(x̃) = gαβ(x) + uλ∂λgαβ(x) +O(u2) ;

∂x̃α

∂xµ
= δαµ + uα,µ +O(u2) , (8.15)

so that

g̃µν(x) = gµν + uα∂αgµν + gανu
α
,µ + gµαu

α
, ν +O(u2) . (8.16)

This combination precisely produces the covariant derivatives of uα . Again the reason
is that all other tensors in the equation are true tensors so that non-covariant derivatives
are outlawed. And so we find that the variation in gµν is

g̃µν = gµν +Dµuν +Dνuµ . (8.17)

This leaves I always invariant:

δI = −2

∫ √
−g GµνDµuν = 0 ; (8.18)

for any uν(x) . By partial integration one finds that the equation

√
−g uνDµG

µν = 0 (8.19)

is automatically obeyed for all uν(x) . This is why the Bianchi identity DµGµν = 0 ,
Eq. (6.35) is always automatically obeyed.

The action principle can be expanded for the case that matter is present. Take for
instance scalar fields φ(x) . In ordinary flat space-time these obey the Klein-Gordon
equation:

(∂2 −m2)φ = 0 . (8.20)

In a gravitational field this will have to be replaced by the covariant expression

(D2 −m2)φ = (gµνDµDν −m2)φ = 0 . (8.21)

It is not difficult to verify that this equation also follows by demanding that

δJ = 0 ;

J = 1
2

∫ √
−g d4xφ(D2 −m2)φ =

∫ √
−g d4x

(
− 1

2
(Dµφ)2 − 1

2
m2φ2

)
, (8.22)

for all infinitesimal variations δφ in φ (Note that (8.21) follows from (8.22) via partial
integrations which are allowed for covariant derivatives in the presence of the

√
−g term).

38



Now consider the sum

S =
1

16πGN

I + J =

∫
V

√
−g d4x

( R

16πGN

− 1
2
(Dµφ)2 − 1

2
m2φ2

)
, (8.23)

and remember that

(Dµφ)2 = gµν∂µφ ∂νφ . (8.24)

Then variation in φ will yield the Klein-Gordon equation (8.21) for φ as usual. Variation
in gµν now gives

δS =

∫
V

√
−g d4x

(
− Gµν

16πGN

+ 1
2
D µφD νφ− 1

4
((Dαφ)2 +m2φ2)gµν

)
δgµν . (8.25)

So we have

Gµν = −8πGNT
µν , (8.26)

if we write

Tµν = −DµφDνφ+ 1
2

(
(Dαφ)2 +m2φ2

)
gµν . (8.27)

Now since J is invariant under coordinate transformations, Eqs. (8.15), it must obey a
continuity equation just as (8.18), (8.19):

DµTµν = 0 . (8.28)

This equation holds only if the matter field(s) φ(x) obey the matter field equations. That
is because we should add to Eqs. (8.15) the transformation rule for these fields:

φ̃(x) = φ(x) + uλ∂λφ(x) +O(u2) .

Precisely if the fields obey the field equations, the action is stationary under such variations
of these fields, so that we could omit this contribution and use an equation similar to (8.18)
to derive (8.28). It is important to observe that, by varying the action with respect to
the metric tensor gµν , as is done in Eq. (8.25), we can always find a symmetric tensor
Tµν(x) that obeys a conservation law (8.28) as soon as the field equations are obeyed.

Since we also have

T44 = 1
2
( ~Dφ)2 + 1

2
m2φ2 + 1

2
(D0φ)2 = H(x) , (8.29)

which can be identified as the energy density for the field φ , the {i0} components of
(8.28) must represent the energy flow, which is the momentum density, and this implies
that this Tµν has to coincide exactly with the ordinary energy-momentum density for the
scalar field. In conclusion, demanding (8.25) to vanish also for all infinitesimal variations
in gµν indeed gives us the correct Einstein equation (8.26).
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Finally, there is room for a cosmological term in the action:

S =

∫
V

√
−g
(R− 2Λ

16πGN

− 1
2
(Dµφ)2 − 1

2
m2φ2

)
. (8.30)

This example with the scalar field φ can immediately be extended to other kinds of
matter such as other fields, fields with further interaction terms (such as λφ4 ), and
electromagnetism, and even liquids and free point particles. Every time, all we need is
the classical action S which we rewrite in a covariant way: Smatter =

∫ √
−gLmatter , to

which we then add the Einstein-Hilbert action:

S =

∫
V

√
−g
(R− 2Λ

16πGN

+ Lmatter

)
. (8.31)

Of course we will often omit the Λ term. Unless stated otherwise the integral symbol
will stand short for

∫
d4x .

9. Special coordinates.

In the preceding chapters no restrictions were made concerning the choice of coordinate
frame. Every choice is equivalent to any other choice (provided the mapping is one-to-one
and differentiable). Complete invariance was ensured. However, when one wishes to cal-
culate in detail the properties of some particular solution such as space-time surrounding
a point particle or the history of the universe, one is forced to make a choice. Since
we have a four-fold freedom for the use of coordinates we can in general formulate four
equations and then try to choose our coordinates such a way that these equations are
obeyed. Such equations are called “gauge conditions”. Of course one should choose the
gauge conditions such a way that one can easily see how to obey them, and demonstrate
that coordinates obeying these equations exist. We discuss some examples.

1) The temporal gauge.

Choose

g00 = −1 ; (9.1)

g0i = 0 , (i = 1, 2, 3) . (9.2)

At first sight it seems easy to show that one can always obey these. If in an arbitrary

coordinate frame the equations (9.1) and (9.2) are not obeyed, one writes

g̃00 = g00 + 2D0u0 = −1 , (9.3)

g̃0i = g0i +Diu0 +D0ui = 0 . (9.4)

u0(~x, t) can be solved from eq. (9.3) by integrating (9.3) in the time direction, after
which we can find ui by integrating (9.4) with respect to time. We then apply Eq. (8.17)
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to observe that g̃µν(x − u) obeys the equations (9.1) and (9.2) up to terms of order
(u)2 (note that Eqs. (9.3) and (9.4) only correspond to coordinate transformations when
u is infinitesimal). Iterating the procedure, it seems easy to obey (9.1) and (9.2) with
increasing accuracy. Will such an iteration procedure converge? These are coordinates in
which there is no gravitational field (only space, not space-time, is curved), hence all lines
of the form ~x(t) = constant are actually geodesics, as one can easily check (in Eq. (5.8),
Γi00 = 0 ). Therefore they are “freely falling” coordinates, but of course freely falling
objects in general will go into orbits and hence either wander away from or collide against
each other, at which instances these coordinates generate singularities.

2) The gauge:

∂µgµν = 0 . (9.5)

This gauge has the advantage of being Lorentz invariant. The equations for infinitesimal
uµ become

∂µg̃µν = ∂µgµν + ∂µDµuν + ∂µDνuµ = 0 . (9.6)

(Note that ordinary and covariant derivatives must now be distinguished carefully) In an
iterative procedure we first solve for ∂νuν . Let ∂ν act on (9.6):

2∂2∂νuν = −∂ν∂µgµν + higher orders, (9.7)

after which

∂2uν = −∂µgµν − ∂ν(∂µuµ) + higher orders. (9.8)

These are d’Alembert equations of which the solutions are less singular than those of Eqs.
(9.3) and (9.4).

A smarter choice is

3) the harmonic or De Donder gauge:

gµνΓλµν = 0 . (9.9)

Coordinates obeying this condition are called harmonic coordinates, for the following
reason. Consider a scalar field V obeying

D2V = 0 , (9.10)

or gµν
(
∂µ∂νV − Γλµν∂λV

)
= 0 . (9.11)

Now let us choose four coordinates x1,...,4 that obey this equation. Note that these then
are not covariant equations because the index α of xα is not participating:

gµν

(
∂µ∂νx

α − Γλµν∂λx
α
)

= 0 . (9.12)
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Now of course, in the gauge (9.9),

∂µ∂νx
α = 0 ; ∂λx

α = δαλ . (9.13)

Hence, in these coordinates, the equations (9.12) imply (9.9). Eq. (9.10) can be solved
quite generally (it helps a lot that the equation is linear!) For

gµν = ηµν + hµν (9.14)

with infinitesimal hµν this gauge differs slightly from gauge # 2:

fν = ∂µhµν − 1
2
∂νhµµ = 0 , (9.15)

and for infinitesimal uν we have

f̃ν = fν + ∂2uν + ∂µ∂νuµ − ∂ν∂µuµ
= fν + ∂2uν = 0 (apart from higher orders) (9.16)

so (of course) we get directly a d’Alembert equation for uν . Observe also that the equation
(9.10) is the massless Klein-Gordon equation that extremises the action J of Eq. (8.22)
when m = 0 . In this gauge the infinitesimal expression (7.7) for Rµν simplifies into

Rµν = −1
2
∂2hµν , (9.17)

which simplifies practical calculations.

The action principle for Einstein’s equations can be extended such that the gauge
condition also follows from varying the same action as the one that generates the field
equations. This can be done various ways. Suppose the gauge condition is phrased as

fµ({gαβ}, x) = 0 , (9.18)

and that it has been shown that a coordinate choice that obeys (9.18) always exists. Then
one adds to the invariant action (8.23), which we now call Sinv. :

Sgauge =

∫ √
−g λµ(x)fµ(g, x)d4x , (9.19)

Stotal = Sinv + Sgauge , (9.20)

where λµ(x) is a new dynamical variable, called a Lagrange multiplier. Variation λ →
λ + δλ immediately yields (9.18) as Euler-Lagrange equation. However, we can also
consider as a variation the gauge transformation

g̃µν(x) = x̃α,µx̃
β
, ν gαβ(x̃(x)) . (9.21)

Then

δSinv = 0 , (9.22)

δSgauge =

∫
λµδfµ

?
= 0 . (9.23)
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Now we must assume that there exists a gauge transformation that produces

δfµ(x) = δαµ δ(x− x(1)) , (9.24)

for any choice of the point x(1) and the index α . This is precisely the assumption that
under any circumstance a gauge transformation exists that can tune fµ to zero. Then
the Euler-Lagrange equation tells us that

δSgauge = λα(x(1)) → λα(x(1)) = 0 . (9.25)

All other variations of gµν that are not coordinate transformations then produce the usual
equations as described in the previous chapter.

A technical detail: often Eq. (9.24) cannot be realized by gauge transformations that
vanish everywhere on the boundary. Therefore we must allow δfµ also to be non-vanishing
on the boundary. if now we impose λ = 0 on the boundary then this insures (9.25): λ = 0
everywhere. This means that the equations generated by the action (9.20) may generate
solutions with λ 6= 0 that have to be discarded. There will always be solutions with
λ = 0 everywhere, and these are the solutions we want.

Another way to implement the gauge condition in the Lagrangian is by choosing

Sgauge =

∫
−1

2

√
−g gµνfµfν . (9.26)

Let us write this as
∫
−1

2
(f̃α)2 , where f̃α is defined as (

√√
−g g··)αµfµ . If now we

perform an infinitesimal gauge transformation (8.17), and again assume that it can be
done such that Eq. (9.24) is realized for δf̃a , we find

δStotal = δSgauge = −f̃α(x(1)) . (9.27)

Requiring Stotal to be stationary then implies fµ(x(1)) = 0 , and all other equations can
be seen to be compatible with the ones from Sinv alone.

Here, one must impose fµ(x) = 0 on the boundary, which then will guarantee that
fµ = 0 everywhere in space-time. By choosing to fix the gauge this way, one can often
realize that Stotal has a simpler form than Sinv , so that calculations at a later stage
simplify, for instance when gravitational radiation is considered (Chapter 15).

10. Electromagnetism.

We write the Lagrangian for the Maxwell equations as8

L = −1
4
FµνFµν + JµAµ , (10.1)

8Note that conventions used here differ from others such as Jackson, Classical Electrodynamics by
factors such as 4π . The reader may have to adapt the expressions here to his or her own notation. Again
the modified summation convention of Eq. (6.33) is implied.
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with

Fµν = ∂µAν − ∂νAµ ; (10.2)

This means that for any variation

Aµ → Aµ + δAµ , (10.3)

the action

S =

∫
Ld4x , (10.4)

should be stationary when the Maxwell equations are obeyed. We see indeed that, if δAν
vanishes on the boundary,

δS =

∫ (
− Fµν ∂µδAν + JµδAµ

)
d4x

=

∫
d4x δAν(∂µFµν + Jν) , (10.5)

using partial integration. Therefore (in our simplified units)

δS = 0 → ∂µFµν = −Jν . (10.6)

Describing now the interactions of the Maxwell field with the gravitational field is
easy. We first have to make S covariant:

SMax =
∫

d4x
√
−g
(
− 1

4
gµαgνβ FµνFαβ + gµνJµAν

)
, (a)

Fµν = ∂µAν − ∂νAµ (unchanged) , (b)
(10.7)

and

S =

∫ √
−g
(R− 2Λ

16πGN

)
+ SMax . (10.8)

Indices may be raised or lowered with the usual conventions.

The energy-momentum tensor can be read off from (10.8) by varying with respect to
gµν (and multiplying by 2):

Tµν = −F µαF
α
ν + (1

4
FαβF

αβ − JαAα)gµν ; (10.9)

here Jα (with the superscript index) was kept as an external fixed source. We have, in
flat space-time, the energy density

% = −T00 = 1
2
( ~E2 + ~B2)− JαAα , (10.10)

as usual.

We also see that:
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1) The interaction of the Maxwell field with gravitation is unique, there is no freedom
to add an as yet unknown term.

2) The Maxwell field is a source of gravitational fields via its energy-momentum tensor,
as was to be expected.

3) The homogeneous equation in Maxwell’s laws, which follows from Eq. (10.7b),

∂γFαβ + ∂αFβγ + ∂βFγα = 0 , (10.11)

remains unchanged.

4) Varying Aµ , we find that the inhomogeneous equation becomes

DµFµν = gαβDαFβν = −Jν , (10.12)

and hence receives a contribution from the gravitational field Γλµν and the potential
gαβ .

Exercise: show, both with formal arguments and explicitly, that Eq. (10.11) does not
change if we replace the derivatives by covariant derivatives.

Exercise: show that Eq. (10.12) can also be written as

∂µ(
√
−g F µν) = −

√
−g J ν , (10.13)

and that

∂µ(
√
−g J µ) = 0 . (10.14)

Thus
√
−g J µ is the real conserved current, and Eq. (10.13) implies that

√
−g acts as

the dielectric constant of the vacuum.

11. The Schwarzschild solution.

Einstein’s equation, (7.26), should be exactly valid. Therefore it is interesting to search
for exact solutions. The simplest and most important one is empty space surrounding a
static star or planet. There, one has

Tµν = 0 . (11.1)

If the planet does not rotate very fast, the effects of this rotation (which do exist!) may
be ignored. Then there is spherical symmetry. Take spherical coordinates,

(x0, x1, x2, x3) = (t, r, θ, ϕ) . (11.2)

Spherical symmetry then implies

g02 = g03 = g12 = g13 = g23 = 0 , (11.3)
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as well as

g33 = sin2 θ g22 , (11.4)

and time-reversal symmetry

g01 = 0 . (11.5)

The metric tensor is then specified by writing down the length ds of the infinitesimal line
element:

ds2 = −Adt2 +Bdr2 + Cr2
(
dθ2 + sin2 θ dϕ2

)
, (11.6)

where A, B, and C are positive functions depending only on r . At large distance from
the source we expect:

r → ∞ ; A, B, C → 1 . (11.7)

Our freedom to choose the coordinates can be used to choose a new r coordinate:

r̃ =
√
C(r) r , so that Cr2 = r̃2 . (11.8)

We then have

Bdr2 = B
(√

C +
r

2
√
C

dC

dr

)−2

dr̃2 def
= B̃dr̃2 . (11.9)

In the new coordinate one has (henceforth omitting the tilde ˜):

ds2 = −Adt2 +Bdr2 + r2(dθ2 + sin2 θ dϕ2) , (11.10)

where A, B → 1 as r →∞ . The signature of this metric must be (−,+,+,+) , so that

A > 0 and B > 0 . (11.11)

Now for general A and B we must find the affine connection Γ they generate. There
is a method that saves us space in writing (but does not save us from having to do the
calculations), because many of its coefficients will be zero. If we know all geodesics

ẍµ + Γµ
κλẋ

κẋλ = 0 , (11.12)

then they uniquely determine all Γ coefficients. The variational principle for a geodesic
is

0 = δ

∫
ds = δ

∫ √
gµν

dxµ

dσ

dx ν

dσ
dσ , (11.13)

where σ is an arbitrary parametrization of the curve. In chapter 6 we saw that the
original curve is chosen to have

σ = s . (11.14)
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The square root is then one, and Eq. (6.23) then corresponds to

1
2
δ

∫
gµν

dxµ

ds

dx ν

ds
ds = 0 . (11.15)

We write

−Aṫ2 +Bṙ2 + r2θ̇2 + r2 sin2 θϕ̇2 def
= F (s) ; δ

∫
Fds = 0 . (11.16)

The dot stands for differentiation with respect to s .

(11.16) generates the Lagrange equation

d

ds

∂F

∂ẋµ
=

∂F

∂xµ
. (11.17)

For µ = 0 this is

d

ds
(−2Aṫ) = 0 , (11.18)

or

ẗ+
1

A

(∂A
∂r
· ṙ
)
ṫ = 0 . (11.19)

Comparing (11.12) we see that all Γ0
µν vanish except

Γ0
10 = Γ0

01 = A′/2A (11.20)

(the accent, ′ , stands for differentiation with respect to r ; the 2 comes from symmetriza-
tion of the subscript indices 0 and 1 . For µ = 1 Eq. (11.17) implies

r̈ +
B′

2B
ṙ2 +

A′

2B
ṫ2 − r

B
θ̇2 − r

B
sin2 θ ϕ̇2 = 0 , (11.21)

so that all Γ1
µν are zero except

Γ1
00 = A′/2B ; Γ1

11 = B′/2B ;

Γ1
22 = −r/B ; Γ1

33 = −(r/B) sin2 θ . (11.22)

For µ = 2 and 3 we find similarly:

Γ2
21 = Γ2

12 = 1/r ; Γ2
33 = − sin θ cos θ ;

Γ3
23 = Γ3

32 = cot θ ; Γ3
13 = Γ3

31 = 1/r . (11.23)

Furthermore we have

√
−g = r2 sin θ

√
AB . (11.24)
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and from Eq. (5.18)

Γµ
µβ = (∂β

√
−g)/

√
−g = ∂β log

√
−g . (11.25)

Therefore

Γµ
µ1 = A′/2A+B′/2B + 2/r ,

Γµ
µ2 = cot θ . (11.26)

The equation

Rµν = 0 , (11.27)

now becomes (see (5.27))

Rµν = −(log
√
−g),µ, ν + Γαµν, α − ΓβαµΓαβν + Γαµν(log

√
−g), α = 0 . (11.28)

Explicitly:

R00 = Γ1
00,1 − 2Γ1

00Γ0
01 + Γ1

00(log
√
−g),1

= (A′/2B)′ − A′2/2AB + (A′/2B)
( A′

2A
+
B′

2B
+

2

r

)
=

1

2B

(
A′′ − A′B′

2B
− A′2

2A
+

2A′

r

)
= 0 , (11.29)

and

R11 = −(log
√
−g),1,1 + Γ1

11,1 − Γ0
10Γ0

10 − Γ1
11Γ1

11

−Γ2
21Γ2

21 − Γ3
31Γ3

31 + Γ1
11(log

√
−g),1 = 0 . (11.30)

This produces

1

2A

(
− A′′ + A′B′

2B
+
A′2

2A
+

2AB′

rB

)
= 0 . (11.31)

Combining (11.29) and (11.31) we obtain

2

rB
(AB)′ = 0 . (11.32)

Therefore AB = constant. Since at r →∞ we have A and B → 1 we conclude

B = 1/A . (11.33)

In the θθ direction one has

R22 = (− log
√
−g),2,2 + Γ1

22,1 − 2Γ1
22Γ2

21

−Γ3
23Γ3

23 + Γ1
22(log

√
−g),1 = 0 . (11.34)
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This becomes

R22 = − ∂

∂θ
cot θ − (

r

B
)′ +

2

B
− cot2 θ − r

B

(2

r
+

(AB)′

2AB

)
= 0 . (11.35)

Using (11.32) one obtains

(r/B)′ = 1 . (11.36)

Upon integration,

r/B = r − 2M , (11.37)

A = 1− 2M

r
; B =

(
1− 2M

r

)−1

. (11.38)

Here 2M is an integration constant. We found the solution even though we did not yet
use all equations Rµν = 0 available to us (and only a linear combination of R00 and
R11 was used). It is not hard to convince oneself that indeed all equations Rµν = 0 are
satisfied, first by substituting (11.38) in (11.29) or (11.31), and then spherical symmetry
with (11.35) will also ensure that R33 = 0 . The reason why the equations are over-
determined is the Bianchi identity:

DµGµν = 0 . (11.39)

It will always be obeyed automatically, and implies that if most components of Gµν have
been set equal to zero the remainder will be forced to be zero too.

The solution we found is the Schwarzschild solution (Schwarzschild, 1916):

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M

r

+ r2(dθ2 + sin2 θ dϕ2) . (11.40)

In (11.37) we inserted 2M as an arbitrary integration constant. We see that far from the
origin,

−g00 = 1− 2M

r
→ 1 + 2V (~x) . (11.41)

So the gravitational potential V (~x) goes to −M/r , as near an object with mass m , if

M = GN m (c = 1) . (11.42)

Often we will normalize mass units such that GN = 1 .

The Schwarzschild solution9 is singular at r = 2M , but this can be seen to be an
artifact of our coordinate choice. By studying the geodesics in this region one can discover

9In his original paper, using a slightly different notation, Karl Schwarzschild replaced 3
√
r3 − (2M)3

by a new coordinate r that vanishes at the horizon, since he insisted that what he saw as a singularity
should be at the origin, claiming that only this way the solution becomes ”eindeutig” (unique), so that
you can calculate phenomena such as the perihelion movement (see Chapter 12) unambiguously. The
substitution had to be of this form as he was using the equation that only holds if g = 1 . He did not
know that one may choose the coordinates freely, nor that the singularity is not a true singularity at all.
This was 1916. The fact that he was the first to get the analytic form, justifies the name Schwarzschild
solution.
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different coordinate frames in terms of which no singularity is seen. We here give the result
of such a procedure. Introduce new coordinates (“Kruskal coordinates”)

(t, r, θ, ϕ) → (x, y, θ, ϕ) , (11.43)

defined by (
r

2M
− 1
)
er/2M = xy , (a)

et/2M = x/y , (b)

(11.44)

so that

dx

x
+

dy

y
=

dr

2M(1− 2M/r)
;

dx

x
− dy

y
=

dt

2M
. (11.45)

The Schwarzschild line element is now given by

ds2 = 16M2
(

1− 2M

r

)dxdy

xy
+ r2dΩ2

=
32M3

r
e−r/2Mdxdy + r2dΩ2 (11.46)

with

dΩ2 def
= dθ2 + sin2 θ dϕ2 . (11.47)

The singularity at r = 2M disappeared. Remark that Eqs. (11.44) possess two solutions
(x, y) for every r, t . This implies that the completely extended vacuum solution (=
solution with no matter present as a source of gravitational fields) consists of two universes
connected to each other at the center. Apart from a rotation over 45◦ the relation between
Kruskal coordinates x, y and Schwarzschild coordinates r, t close to the point r = 2M
can be seen to be exactly as the one between the flat space coordinates x3, x0 and the
Rindler coordinates ξ3, τ as discussed in chapter 3.

The points r = 0 however remain singular in the Schwarzschild solution. The regular
region of the “universe” has the line

xy = −1 (11.48)

as its boundary. The region x > 0 , y > 0 will be identified with the “ordinary world”
extending far from our source. The second universe, the region of space-time with x < 0
and y < 0 has the same metric as the first one. It is connected to the first one by
something one could call a “wormhole”. The physical significance of this extended region
however is very limited, because:

1) “ordinary” stars and planets contain matter (Tµν 6= 0 ) within a certain radius
r > 2M , so that for them the validity of the Schwarzschild solution stops there.

50



2) Even if further gravitational contraction produces a “black hole” one finds that
there will still be imploding matter around (Tµν 6= 0 ) that will cut off the second
“universe” completely from the first.

3) even if there were no imploding matter present the second universe could only be
reached by moving faster than the local speed of light.

Exercise: Check these statements by drawing an xy diagram and indicating where the
two universes are and how matter and space travellers can move about. Show that also
signals cannot be exchanged between the two universes.
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˜x̃ − ỹ = 1

ỹ − x̃ = 1
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r
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t = ∞

t =
 −

 ∞
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Figure 4: Penrose diagrams. (a) The Perose diagram for the Schwarzschild
metric. The shaded region does not exist in black holes with a collapse in
their past; (b) A black hole after collapse. The shaded region is where the
collapsing matter is. lightrays moving radially ( θ̇ = φ̇ = 0 ) here always move
at 45◦ .

If one draws an “imploding star” in the x y diagram one notices that the future
horizon may be physically relevant. One then has the so-called black hole solution.

We define the Penrose coordinates , x̃ and ỹ , by

x = tan(1
2
πx̃) ; y = tan(1

2
πỹ) . (11.49)

In these coordinates, we see that

i. the lightcone is again at 45◦ ;

ii. the allowed values for x̃ and ỹ are:

|x̃| < 1 , |ỹ| < 1 , |x− y| < 1 . (11.50)
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This region is sketched in Fig. 4a. We call this a Penrose diagram. The shaded part
is not accessible if the black hole has a collapsing object in its distant past. Then the
appropriate Penrose diagram is the one of Fig. 4b.

12. Mercury and light rays in the Schwarzschild metric.

Historically the orbital motion of the planet Mercury in the Sun’s gravitational field has
played an important role as a test for the validity of General Relativity (although Einstein
would have launched his theory also if such tests had not been available)

To describe this motion we have the variation equation (11.16) for the functions t(τ) ,
r(τ) , θ(τ) and ϕ(τ) , where τ parametrizes the space-time trajectory. Writing ṙ =
dr/dτ , etc. we have

δ

∫ {
−
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2
(
θ̇2 + sin2 θ ϕ̇2

)}
dτ = 0 , (12.1)

in which we put ds2/dτ 2 = −1 because the trajectory is timelike. The equations of
motion follow as Lagrange equations:

d

dτ
(r2θ̇) = r2 sin θ cos θϕ̇2 ; (12.2)

d

dτ
(r2 sin2 θ ϕ̇) = 0 ; (12.3)

d

dτ

[(
1− 2M

r

)
ṫ
]

= 0 . (12.4)

We did not yet write the equation for r̈ . Instead of that it is more convenient to divide
Eq. (11.40) by −ds2 :

1 =
(

1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2(θ̇2 + sin2 θ ϕ̇2) . (12.5)

Now even in the completely relativistic metric of the Schwarzschild solution all orbits
will be in flat planes through the origin, since spherical symmetry allows us to choose as
our initial condition

θ = π/2 ; θ̇ = 0 . (12.6)

and then this will remain valid throughout because of Eq. (12.2). Eqs. (12.3) and (12.4)
tell us:

r2ϕ̇ = J = constant. (12.7)

and (
1− 2M

r

)
ṫ = E = constant. (12.8)
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Eq. (12.5) then becomes

1 =
(

1− 2M

r

)−1

E2 −
(

1− 2M

r

)−1

ṙ2 − J2/r2 . (12.9)

Just as in the Kepler problem it is convenient to treat r as a function of ϕ . t has already
been eliminated. We now also eliminate τ . Let us, for the remainder of this chapter,
write differentiation with respect to ϕ with an accent:

r′ = ṙ/ϕ̇ . (12.10)

From (12.7) and (12.9) one derives:

1− 2M/r = E2 − J2r′
2
/r4 − J2

(
1− 2M

r

)
/r2 . (12.11)

Notice that we can interpret E as energy and J as angular momentum. Write, just as
in the Kepler problem:

r = 1/u , r′ = −u′/u2 ; (12.12)

1− 2Mu = E2 − J2u′2 − J2u2(1− 2Mu) . (12.13)

From this we find

du

dϕ
=

√
(2Mu− 1)

(
u2 +

1

J2

)
+ E2/J2 . (12.14)

The formal solution is

ϕ− ϕ0 =

∫ u

u0

du
(E2 − 1

J2
+

2Mu

J2
− u2 + 2Mu3

)−1
2
. (12.15)

Exercise: show that in the Newtonian limit the u3 term can be neglected and then
compute the integral.

The relativistic perihelion shift will be the extent to which the complete integral
from umin to umax (two roots of the third degree polynomial), multiplied by two, differs
from 2π .

A neat way to obtain the perihelion shift is by differentiating Eq. (12.13) once more
with respect to ϕ :

2M

J2
u′ − 2u′u′′ − 2uu′ + 6Mu2u′ = 0 . (12.16)

Now of course

u′ = 0 (12.17)
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Figure 5: Perihelion shift of a planet in its orbit around a central star.

can be a solution (the circular orbit). If u′ 6= 0 we divide by u′ :

u′′ + u =
M

J2
+ 3Mu2 . (12.18)

The last term is the relativistic correction. Suppose it is small. Then we have a well-known
problem in mathematical physics:

u′′ + u = A+ εu2 . (12.19)

One could expand u as a perturbative expansion in powers of ε , but we wish an expansion
that converges for all values of the independent variable ϕ . Note that Eq. (12.13) allows
for every value of u only two possible values for u′ so that the solution has to be periodic
in ϕ . The unperturbed period is 2π . But with the u2 term present we do not know the
period exactly. Assume that it can be written as

2π(1 + αε+O(ε2)) . (12.20)

Write

u = A+B cos [(1− αε)ϕ] + εu1(ϕ) +O(ε2) , (12.21)

u′′ = −B(1− 2αε) cos [(1− αε)ϕ] + εu′′1(ϕ) +O(ε2) ; (12.22)

εu2 = ε
(
A2 + 2AB cos [(1− αε)ϕ] +B2 cos2 [(1− αε)ϕ]

)
+O(ε2) . (12.23)

We find for u1 :

u′′1 + u1 = (−2αB + 2AB) cosϕ+B2 cos2 ϕ+ A2 , (12.24)

where now the O(ε) terms were omitted since they do not play any further role. This is
just the equation for a forced pendulum. If we do not want that the pendulum oscillates
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with an ever increasing amplitude (u1 must stay small for all values of ϕ ) then the
external force is not allowed to have a Fourier component with the same periodicity as
the pendulum itself. Now the term with cosϕ in (12.24) is exactly in resonance10 unless
we choose α = A . Then one has

u′′1 + u1 = 1
2
B2(cos2ϕ+ 1) + A2 , (12.25)

u1 = 1
2
B2
(

1− 1

22 − 1
cos 2ϕ

)
+ A2 , (12.26)

which is exactly periodic. Apparently one has to choose the period to be 2π(1 + Aε) if
the orbit is to be periodic in ϕ . We find that after every passage through the perihelion
its position is shifted by

δϕ = 2πAε = 2π
3M2

J2
, (12.27)

(plus higher order corrections) in the direction of the planet itself (see Fig. 5).

Now we wish to compute the trajectory of a light ray. It is also a geodesic. Now
however ds = 0 . In this limit we still have (12.1) – (12.4), but now we set

ds/dτ = 0 ,

so that Eq. (12.5) becomes

0 =
(

1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2(θ̇2 + sin2 θ ϕ̇2) . (12.28)

Since now the parameter τ is determined up to an arbitrary multiplicative constant, only
the ratio J/E will be relevant. Call this j . Then Eq. (12.15) becomes

ϕ = ϕ0 +

∫ u

u0

du(j−2 − u2 + 2Mu3)−
1
2 . (12.29)

As the left hand side of Eq. (12.13) must now be replaced by zero, Eq. (12.18) becomes

u′′ + u = 3Mu2 . (12.30)

An expansion in powers of M is now permitted (because the angle ϕ is now confined
within an interval a little larger than π ):

u = A cosϕ+ v , (12.31)

v′′ + v = 3MA2 cos2 ϕ =
3

2
MA2(1 + cos 2ϕ) , (12.32)

v =
3

2
MA2(1− 1

3
cos 2ϕ) = MA2(2− cos2 ϕ) . (12.33)

10Note here and in the following that the solution of an equation of the form u′′+ u =
∑
iAi cosωiϕ

is u =
∑
iAi cosωiϕ/(1− ω2

i ) + C1 cosϕ+ C2 sinϕ. This is singular when ω → 1 .

55



So we have for small M

1

r
= u = A cosϕ+MA2(2− cos2 ϕ) . (12.34)

The angles ϕ at which the ray enters and exits are determined by

1/r = 0 , cosϕ =
1±
√

1 + 8M2A2

2MA
. (12.35)

Since M is a small expansion parameter and | cosϕ| ≤ 1 we must choose the minus sign:

cosϕ ≈ −2MA = −2M/r0 , (12.36)

ϕ ≈ ±
(
π
2

+ 2M/r0

)
, (12.37)

where r0 is the smallest distance of the light ray to the central source. In total the angle
of deflection between in- and outgoing ray is in lowest order:

∆ = 4M/r0 . (12.38)

In conventional units this equation reads

∆ =
4GNm�
r0 c2

. (12.39)

m� is the mass of the central star.

Exercise: show that this is twice what one would expect if a light ray could be
regarded as a non-relativistic particle in a hyperbolic orbit around the star.

Exercise: show that expression (12.27) in ordinary units reads as

δϕ =
6πGNm�
a(1− ε2) c2

, (12.40)

where a is the major axis of the orbit, ε its excentricity and c the velocity of light.

13. Generalizations of the Schwarzschild solution.

a). The Reissner-Nordström solution.

Spherical symmetry can still be used as a starting point for the construction of a
solution of the combined Einstein-Maxwell equations for the fields surrounding a “planet”
with electric charge Q and mass m . Just as Eq. (11.10) we choose

ds2 = −Adt2 +Bdr2 + r2(dθ2 + sin2 θ dϕ2) , (13.1)
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but now also a static electric field:

Er = E(r) ; Eθ = Eϕ = 0 ; ~B = 0 . (13.2)

This implies that F01 = −F10 = E(r) and all other components of Fµν are zero. Let us
assume that the source J µ of this field is inside the planet and we are only interested in
the solution outside the planet. So there we have

J µ = 0 . (13.3)

If we move the indices upstairs we get

F 10 = E(r)/AB , (13.4)

and using

√
−g =

√
AB r2 sin θ , (13.5)

we find that according to (10.13)

∂r

(E(r)r2

√
AB

)
= 0 . (13.6)

Thus the inhomogeneous Maxwell law tells us that

E(r) =
Q
√
AB

4πr2
, (13.7)

where Q is an integration constant, to be identified with electric charge since at r →∞
both A and B tend to 1 .

The homogeneous Maxwell law (10.11) is automatically obeyed because there is a field
A0 (potential field) with

Er = −∂rA0 . (13.8)

The field (13.7) contributes to Tµν :

T00 = −E2/2B = −AQ2/32π2r4 ; (13.9)

T11 = E2/2A = BQ2/32π2r4 ; (13.10)

T22 = −E2r2/2AB = −Q2/32π2r2 , (13.11)

T33 = T22 sin2 θ = −Q2 sin2 θ /32π2r2 . (13.12)

We find

T µ
µ = gµν Tµν = 0 ; R = 0 , (13.13)

a general property of the free Maxwell field. In this case we have (GN = 1 )

Rµν = −8π Tµν . (13.14)
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Herewith the equations (11.29) – (11.31) become

A′′ − A′B′

2B
− A′2

2A
+

2A′

r
= ABQ2/2πr4 ,

−A′′ + A′B′

2B
+
A′2

2A
+

2AB′

rB
= −ABQ2/2πr4 . (13.15)

We find that Eq. (11.32) still holds so that here also

B = 1/A . (13.16)

Eq. (11.36) is now replaced by

(r/B)′ − 1 = −Q2/4πr2 . (13.17)

This gives upon integration

r/B = r − 2M +Q2/4πr . (13.18)

So now we have instead of Eq. (11.38),

A = 1− 2M

r
+

Q2

4πr2
; B = 1/A . (13.19)

This is the Reissner-Nordströ m solution (1916, 1918).

If we choose Q2/4π < M2 there are two “horizons”, the roots of the equation A = 0 :

r = r± = M ±
√
M2 −Q2/4π . (13.20)

Again these singularities are artifacts of our coordinate choice and can be removed by
generalizations of the Kruskal coordinates. Now one finds that there would be an infinite
sequence of ghost universes connected to ours, if the horizons hadn’t been blocked by
imploding matter. See Hawking and Ellis for a much more detailed description.

b) The Kerr solution

A fast rotating planet has a gravitational field that is no longer spherically symmetric
but only cylindrically. We here only give the solution:

ds2 = −dt2 + (r2 + a2) sin2 θdϕ2 +
2Mr(dt− a sin2 θdϕ)2

r2 + a2 cos2 θ
(13.21)

+(r2 + a2 cos2 θ)
(

dθ2 +
dr2

r2 − 2Mr + a2

)
. (13.22)

This solution was found by Kerr in 1963. To prove that this is indeed a solution of
Einstein’s equations requires patience but is not difficult. For a derivation using more ele-
mentary principles more powerful techniques and machinery of mathematical physics are
needed. The free parameter a in this solution can be identified with angular momentum.
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c) The Newman et al solution

For sake of completeness we also mention that rotating planets can also be electrically
charged. The solution for that case was found by Newman et al in 1965. The metric is:

ds2 = −∆

Y
(dt− a sin2 θdϕ)2 +

sin2 θ

Y
(adt− (r2 + a2)dϕ)2 +

Y

∆
dr2 + Y dθ2 , (13.23)

where

Y = r2 + a2 cos θ , (13.24)

∆ = r2 − 2Mr +Q2/4π + a2 . (13.25)

The vector potential is

A0 = − Qr

4πY
; A3 =

Qra sin2 θ

4πY
. (13.26)

Exercise: show that when Q = 0 Eqs. (13.22) and (13.23) coincide.

Exercise: find the non-rotating magnetic monopole solution by postulating a radial
magnetic field.

Exercise for the advanced student: describe geodesics in the Kerr solution.

14. The Robertson-Walker metric.

General relativity plays an important role in cosmology. The simplest theory is that at a
certain moment “ t = 0 ”, the universe started off from a singularity, after which it began
to expand. We assume maximal symmetry by taking as our metric

ds2 = −dt2 + a2(t)dω2 . (14.1)

Here dω2 stands short for some fully isotropic 3-dimensional space, and a(t) describes
the (increasing) distance between two neighboring galaxies in space. Although we do
embrace here the Copernican principle that all points in space look the same, we abandon
the idea that there should be invariance with respect to time translations and also Lorentz
invariance for this metric – the galaxies contain clocks that were set to zero at t = 0 and
each provides for a local inertial frame.

First, we concentrate on the three-dimensional space described by dω2 . Here, we take
polar coordinates %, θ, ϕ :

dω2 = B(%)d%2 + %2(dθ2 + sin2 θdϕ2) , (14.2)
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then in this three dimensional space the Ricci tensor is (by using the same techniques as
in chapter 11)

R11 = B′(%)/%B(%) , (14.3)

R22 = 1− 1

B
+
%B′

2B2
. (14.4)

In an isotropic (3-dimensional) space, one must have

Rij = λgij ; R11 = λB , R22 = λ%2 , (14.5)

for some constant λ , and therefore

B′/B = λB% , (14.6)

1− 1

B
+
%B′

2B2
= λ%2 . (14.7)

Together they give

1− 1

B
= 1

2
λ%2 ;

B =
1

1− 1
2
λ%2

, (14.8)

which indeed also obeys (14.6) and (14.7) separately.

Exercise: show that with % =
√

2
λ

sinψ , this gives the metric of the 3-sphere, in

terms of its three angular coordinates ψ, θ, ϕ . Indeed, the metric for an N -sphere
can be written as

dω2
N = dψ2

N + sin2 ψN dω2
N−1 , R

(N)
ij = λNgij ; λN = N − 1 . (14.9)

Back to the 3-sphere, often one chooses a new coordinate u :

%
def
=

√
2k/λ u

1 + (k/4)u2
, or, u =

√
2λ/k %

1 +
√

1− 1
2
λ%2

=
2/
√
k sinψ

1 + cosψ
. (14.10)

One observes that

d% =

√
2k

λ

1− 1
4
ku2

(1 + 1
4
ku2)2 du and B =

(1 + 1
4
ku2

1− 1
4
ku2

)2

, (14.11)

so that

dω2 =
2k

λ
· du2 + u2(dθ2 + sin2 θdϕ2)

(1 + (k/4)u2)2 . (14.12)
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The parameter k is arbitrary except for its sign, which must be the same as the sign of
λ . The factor in front of Eq. (14.12) may be absorbed in a(t) . Therefore we write for
(14.1):

ds2 = −dt2 + a2(t)
d~x2

(1 + 1
4
k ~x2)2 . (14.13)

If k = 1 the spacelike piece is a sphere, if k = 0 it is flat, if k = −1 the curvature is
negative and space is unbounded (in spite of the fact that then |~x| is bounded, which is
an artifact of our coordinate choice).

After some elementary calculations,

R0
0 =

3ä

a
. (14.14)

R1
1 = R2

2 = R3
3 =

ä

a
+

2

a2
(ȧ2 + k) , (14.15)

R = Rµ
µ =

6

a2
(a ä+ ȧ2 + k) . (14.16)

The tensor Gµν becomes (taking for simplicity ~x = 0 ):

G00 =
3

a2
(ȧ2 + k) = 8πGN %+ Λ , (14.17)

G11 = G22 = G33 = −2a ä− ȧ2 − k = a2(8πGN p− Λ) . (14.18)

Here, % = T44 = T00/g00 is the energy density and p is the pressure: Tij = −p gij. We
define the Hubble parameter H(t) as

H =
ȧ

a
, (14.19)

so that Eq. (14.17), also called Friedmann’s equation, can be written as:(
ȧ

a

)2

= H2 =
8πGN

3
%+

Λ

3
− k

a2
. (14.20)

Eliminating ȧ out of Eqs. (14.15) and (14.16) we get

ä

a
= −4πG

3
(%+ 3p) +

Λ

3
. (14.21)

This is a simple equation of motion for our parameter a(t) . From Eq. (14.20) we derive
a function V (a) , acting as a potential, in which a “particle” a(t) is moving with zero
energy:

−1
2
ȧ2 = V (a) = 1

2
k − a2

(
Λ

6
+

4πG

3
%

)
. (14.22)
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a)

a
V

amax

Figure 6: The potential (14.22) for the cases a) k = 0, Λ < 0 ,
b) k = −1, Λ = 0 and c) k = 0, Λ > 0 . In the case (a), there is a turning
point at a = amax .

Assuming internal consistenct of these equations, by multiplying Eq. (14.20) with a2 ,
differentiating that in time, and comparing this with Eq. (14.21), we find the continuity
equation (Bianchi equation) for p and % :

%̇ = −3H(%+ p) . (14.23)

Let us now make some assumption about matter in the universe, and its equations of
state, i.e. the relation between the energy density % and the pressure p . The simplest
case is to assume that there is no pressure (a “dust-filled universe”, p = 0 ). In this case,
the energy density % is just the matter density, which is inversely proportional to the
volume. We see that then, in agreement with Eq. (14.23):

% =
%0

a3
, (dust) (14.24)

where %0 is constant.

We see that, as a increases, in Eq. (14.22), first the matter term dominates, then the
space-curvature term (with k ), and finally the cosmological constant dominates.

Using supernova data and observations on the fluctuations of the cosmological back-
ground radiation, one was able to measure the function a(t) . From this, it was derived
that k ≈ 0 , and the total mass density of the universe, %total ≡ %+ Λ

8πG
, consists of

74% “dark energy” (cosm. const.), Λ ,
22% “dark matter” ,
3, 6% interstellar and intergalactic gas ,
0, 4% stars. planets, etc.

(14.25)

It is instructive to consider the solutions to the equations (14.21) and (14.22), when
there are other relations between the pressure and the density. For instance in a radiation-
filled universe, we have p = %/3 , and since we may assume that the radiation is thermal,
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Figure 7: The Robertson-Walker universe with Λ = 0 , for k = 1, k = 0, and k = −1 .

and the number of photons is conserved, we may conclude that % = %0/a
4 instead of

Eq. (14.24). Indeed, this agrees with Eqs. (14.21) — (14.23).

The case Λ = 0 , k 6= 0 , has now become obsolete, presumably. But the solutions to
the Friedmann Equation (14.20) are well-known mathematical curves, and as such still
interesting. Regard this now as an exercise: we have

aȧ2 + ka =
8πGN %0

3
≡ D; (14.26)

ȧ2 = D/a− k , (14.27)

and from (14.18):

ä = −D/2a2 . (14.28)

Write Eq. (14.27) as

dt

da
=

√
a

D − ka
, (14.29)

then we try

a =
D

k
sin2 ϕ , (14.30)

dt

dϕ
=

da

dϕ

dt

da
=

2D

k
√
k

sinϕ cosϕ · sinϕ

cosϕ
, (14.31)

t(ϕ) =
D

k
√
k

(ϕ− 1
2

sin 2ϕ) , (14.32)

a(ϕ) =
D

2k
(1− cos2ϕ) . (14.33)
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These are the equations for a cycloid. Since D > 0 , t > 0 and a > 0 we demand

k > 0 → ϕ real ;

k < 0 → ϕ imaginary ;

k = 0 → ϕ infinitesimal . (14.34)

See Fig. 7.

All solutions start with a “big bang” at t = 0 . Only the cycloid in the k = 1 case also
shows a “big crunch” in the end. If k ≤ 0 not only space but also time are unbounded.

Other cases, such as p = −%/3 and p = −% are good exercises. But, since recent
findings very strongly indicated that Λ > 0 , it is also of interest to see how a unverse
evolves when it is dominated by a cosmological constant. We then have

ä = 1/3Λa , ȧ2 = 1/3Λa
2 , (14.35)

so that

a = Aeκt or a = Ae−κt, κ =
√

Λ/3 , (14.36)

where A ia a constant. We see that, if Λ > 0 , the universe expands exponentially (the
shrinking solution is physically unrealistic). It seems that our universe is heading for such
an exponential expansion. It also may have been in such a phase during a short period
right after the Big Bang. It is suspected that a scalar field ϕ at that time may have been
stabilized towards a large, fixed value ϕ1 where its self interaction V (ϕ1) may have taken
a non-vanishing value. The universe could have expanded by some 60 or so “efolds” (a
factor e60 ), and this is taken as a possible explanation of the question why our present
universe is so large, while it looks very uniform — as if all regions visible today may have
had a common past.

15. Gravitational radiation.

Fast moving objects form a time dependent source of the gravitational field, and causality
arguments (information in the gravitational fields should not travel faster than light) then
suggest that gravitational effects spread like waves in all directions from the source. Far
from the source the metric gµν will stay close to that of flat space-time. To calculate this
effect one can adopt a linearized approximation. In contrast to what we did in previous
chapters it is now convenient to choose units such that

16πGN = 1 . (15.1)

The linearized Einstein equations were already treated in chapter 7, and in chapter 9
we see that, after gauge fixing, wave equations can be derived (in the absence of matter,
Eq. (9.17) can be set to zero). It is instructive to recast these equations in Euler-Lagrange
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form. The Lagrangian for a linear equation however is itself quadratic. So we have to
expand the Einstein-Hilbert action to second order in the perturbations hµν in the metric:

gµν = ηµν + hµν , (15.2)

and after some calculations we find that the terms quadratic in hµν can be written as:

√
−g(R + Lmatter) =

1
8
(∂σhαα)2 − 1

4
(∂σhαβ)(∂σhαβ)− 1

2
Tµνhµν

+1
2
Aσ

2 + total derivative + higher orders in h , (15.3)

where

Aσ = ∂µhµσ − 1
2
∂σhµµ , (15.4)

and Tµν is the energy momentum tensor of matter when present. Indices are summed
over with the flat metric ηµν , Eq. (7.2).

The Lagrangian is invariant under the linearized gauge transformation (compare (8.16)
and (8.17))

hµν → hµν + ∂µuν + ∂νuµ , (15.5)

which transforms the quantity Aσ into

Aσ → Aσ + ∂2uσ . (15.6)

One possibility to fix the gauge is to choose

Aσ = 0 (15.7)

(the linearized De Donder gauge). For calculations this is a convenient gauge. But for a
better understanding of the real physical degrees of freedom in a radiating gravitational
field it is instructive first to look at the “radiation gauge” (which is analogous to the
electromagnetic case ∂iAi = 0 ):

∂ihij = 0 ; ∂ihi4 = 0 , (15.8)

where we stick to the earlier agreement that indices from the middle of the alphabet,
i, j, . . . , in a summation run from 1 to 3. So we do not impose (15.7).

First go to “momentum representation”:

h(~x, t) = (2π)−3/2

∫
d3~k ĥ(~k, t) ei

~k·~x ; (15.9)

∂i → iki . (15.10)

We will henceforth omit the hat(ˆ) since confusion is hardly possible. The advantage

of the momentum representation is that the different values of ~k will decouple, so we
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can concentrate on just one ~k vector, and choose coordinates such that it is in the z
direction: k1 = k2 = 0, k3 = k . We now decide to let indices from the beginning of the
alphabet run from 1 to 2. Then one has in the radiation gauge (15.8):

h3a = h33 = h30 = 0 . (15.11)

Furthermore

Aa = −ḣ0a ,

A3 = −1
2
ik(haa − h00) ,

A0 = 1
2
(−ḣ00 − ḣaa) . (15.12)

Let us split off the trace of hab :

hab = h̃ab + 1
2
δabh , (15.13)

with

h = haa ; h̃aa = 0 . (15.14)

Then we find that

L = L1 + L2 + L3 ,

L1 = 1
4
( ˙̃hab)

2 − 1
4
k2h̃2

ab − 1
2
T̃abh̃ab , (15.15)

L2 = 1
2
k2h2

0a + h0aT0a , (15.16)

L3 = −1
8
ḣ2 + 1

8
k2h2 − 1

2
k2hh00 − 1

2
h00T00 − 1

4
hTaa . (15.17)

Here we used the abbreviated notation:

h2 =

∫
d3~k h(~k, t)h(−~k, t) ,

k2h2 =

∫
d3~k k2h(~k, t)h(−~k, t) , . (15.18)

The Lagrangian L1 has the usual form of a harmonic oscillator. Since h̃ab = h̃ba and
h̃aa = 0 , there are only two degrees of freedom (forming a spin 2 representation of the

rotation group around the ~k axis: “gravitons” are particles with spin 2). L2 has no
kinetic term. It generates the following Euler-Lagrange equation:

h0a = − 1

k2
Toa . (15.19)

We can substitute this back into L2 :

L2 = − 1

2k2
T 2

0a . (15.20)
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Since there are no further kinetic terms this Lagrangian produces directly a term in the
Hamiltonian:

H2 = −
∫
L2d3~k =

∫
1

2k2
T 2

0ad
3~k =

∫ (δij − kikj/k2

2k2

)
T0i(~k)T0j(−~k)d3~k =

= 1
2

∫
T0i(~x) [∆(~x− ~y)δij − Eij(~x− ~y)]Toj(~y)d3~xd3~y ; (15.21)

with ∂2∆(~x− ~y) = −δ3(~x− ~y) and ∆ =
1

4π|~x− ~y|
,

whereas Eij is obtained by solving the equations

∂2Eij(~x− ~y) = ∂i∂j∆(~x− ~y) and (xi − yi)Eij(~x− ~y) = 0 , (15.22)

so that

Eij =
δij

8π|~x− ~y|
− (~x− ~y)i(~x− ~y)j

8π|~x− ~y|3
. (15.23)

Thus, L2 produces effects which are usually only very tiny relativistic corrections
to the instantaneous interactions between the Poynting components of the stress-energy-
momentum tensor.

In L3 we find that h00 acts as a Lagrange multiplier. So the Euler-Lagrange equation
it generates is simply:

h = − 1

k2
T00 , (15.24)

leading to

L3 = −Ṫ 2
00/8k

4 + T 2
00/8k

2 + T00Taa/4k
2 . (15.25)

Now for the source we have in a good approximation

∂µTµν = 0 , (15.26)

so ikT3ν = Ṫ0ν and ikT30 = Ṫ00 , (15.27)

and therefore one can write

L3 = −T 2
30/8k

2 + T 2
00/8k

2 + T00Taa/4k
2 ; (15.28)

H3 = −
∫
L3d3~k . (15.29)

Here the second term is the dominant one:

−
∫

d3~kT 2
00/8k

2 = −
∫
T00(~x)T00(~y)d3~xd3~y

8 · 4π|~x− ~y|
= −GN

2

∫
d3~xd3~y

|~x− ~y|
T00(~x)T00(~y) ,
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(15.30)

where we re-inserted Newton’s constant. This is the linearized gravitational potential for
stationary mass distributions. The other terms have to be processed as in Eqs. (15.21)–
(15.23).

We observe that in the radiation gauge, L2 and L3 generate contributions to the forces
between the sources. It looks as if these forces are instantaneous, without time delay, but
this is an artifact peculiar to this gauge choice. There is gravitational radiation, but it is
all described by L1 . We see that T̃ab , the traceless, spacelike, transverse part (called the
TT part) of the energy momentum tensor acts as a source. Let us now consider a small,
localized source; only in a small region V with dimensions much smaller than 1/k . Then
we can use: ∫

T ijd3~x =

∫
T kj(∂kx

i)d3~x = −
∫
xi∂kT

kjd3~x

= ∂0

∫
xiT 0jd3~x = ∂0

∫
xi(∂kx

j)T 0kd3~x

= 1
2
∂0

∫
∂k(x

ixj)T 0kd3~x = −1
2
∂0

∫
xixj∂kT

0kd3~x

= 1
2
∂2

0

∫
xixjT 00d3~x . (15.31)

This means that, when integrated, the space-space components of the energy momentum
tensor can be identified with the second time derivative of the quadrupole moment of the
mass distribution T00 .

We would like to know how much energy is emitted by this radiation. To do this let
us momentarily return to electrodynamics, or even simpler, a scalar field theory. Take a
Lagrangian of the form

L = 1
2
ϕ̇2 − 1

2
k2ϕ2 − ϕJ . (15.32)

Let J be periodic in time:

J(~x, t) = J(~x)e−iωt , (15.33)

then the solution of the field equation (see the lectures about classical electrodynamics)
is at large r :

ϕ(~x, t) = − e
ikr

4πr

∫
J(x′)d3x′ ; k = ω , (15.34)

where x′ is the retarded position where one measures J . Since we took the support V of
our source to be very small compared to 1/k the integral here is just a spacelike integral.
The energy P emitted per unit of time is

dE

dt
= P = 4πr2

(
1
2
ϕ̇2 +

k2

2
ϕ2
)

=
k2

4π

∣∣∣ ∫ J(x′)d3x′
∣∣∣2 =

1

4π

∣∣∣ ∫ ∂0J(~x)d3~x
∣∣∣2 .

(15.35)
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Now this derivation was simple because we have been dealing with a scalar field. How
does one handle the more complicated Lagrangian L1 of Eq. (15.15)?

The traceless tensor

T̂ij = Tij − 1
3
δijTkk , (15.36)

has 5 mutually independent components. Let us now define inner products for these 5
components by

T̂ (1) · T̂ (2) = 1
2
T̂

(1)
ij T̂

(2)
ij , (15.37)

then (15.15) has the same form as (15.32), except that in every direction only 2 of the
5 components of T̂ij act. If we integrate over all directions we find that all components

of T̂ij contribute equally (because of rotational invariance, but the total intensity is just

2/5 of what it would have been if we had T̂ in L1 instead of T̃ab . Therefore, the energy
emitted in total will be

P =
2k2

5 · 4π
· 1

2

(∫
T̂ij(~x)d3~x

)2

=
2

20π
· 1

2

(
1
2
∂0

3t̂ij

)2

=
GN

5
(∂0

3t̂ij)
2 , (15.38)

with, according to (15.31),

t̂ij =

∫
(xixj − 1

3
~x2δij)T00d3~x . (15.39)

For a bar with length L , in the x -direction, one has

t̂11 =
1

18
ML2 ,

t̂22 = t̂33 = − 1

36
ML2 . (15.40)

If now we let it rotate in the xy plane with angular velocity Ω then t̂11, t̂12 and t̂22

each rotate with angular velocity 2Ω . This is easy to understand: Since, in Eq. (15.39),
every term xi rotates as a + b cos Ωt , the products of two of these must depend on
cos2 Ωt = 1

2
(cos 2Ωt + 1) and on cos Ωt . Because the rod turns into itself after half a

rotation, the dependence on the linear term cos Ωt must vanish, and we are left with
cos 2Ωt :

t̂11 = a+ b cos 2Ωt ; t̂22 = a− b cos 2Ωt , t̂33 = const. (15.41)

where a and b now follow from: a+ b = ML2/18 and a− b = −ML2/36 . Therefore:

t̂11 = ML2
( 1

72
+

1

24
cos 2Ωt

)
, (15.42)
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t̂22 = ML2
( 1

72
− 1

24
cos 2Ωt

)
, (15.43)

t̂12 = ML2
( 1

24
sin 2Ωt

)
, (15.44)

t̂33 = − 1

36
ML2 . (15.45)

Here, the expression for t̂12 follows from the fact that a rotation of the bar by 45◦ turns
t̂11 − t̂22 into 2t̂12 and cos 2Ωt into sin 2Ωt .

Only the rotating part contributes to the emitted energy per unit of time:

P =
GN

5
(2Ω)6

(ML2

24

)2(
2 cos2 2Ωt) + 2 sin2 2Ωt

)
=

2GN

45c5
M2L4Ω6 , (15.46)

where we re-inserted the light velocity c to balance the dimensionalities.

Eq. (15.38) for the emission of gravitational radiation remains valid as long as the
movements are much slower than the speed of light and the linearized approximation is
allowed. It also holds if the moving objects move just because they are in each other’s
gravitational fields (a binary pulsar for example), but this does not follow from the above
derivation without any further discussion, because in our derivation it was assumed that
∂µTµν = 0 .

16. Concluding remarks

Over the years, General Relativity has become a mature doctrine. Various precision
measurements have now been performed to verify various of its predictions. Until today,
the theory has only received strong support from these experiments. As is well-known,
a theory can never be proven to be correct by making experimental checks; it just came
out stronger than it has been before.

Every now and then, the theory is attacked by investigators who did not quite under-
stand its internal logic, which has actually been shown to be impeccable, or who believe
that various dubious experimental observations can be used to “overthrow” the theory.
One can find these on the Internet. They receive little or no support from the community,
although one is always allowed to ask critical questions.

A much more delicate situation exists when it come to the question how General Rela-
tivity should be reconciled with Quantum Mechanics. One simple observation can readily
be made. A theory that includes Quantum Mechanics will feature three fundamental
physical constants: Plank’s constant ~ , the velocity of light, c , and Newton’s constant,
GN . These can be combined to find natural units of length, time and mass:

LPlanck =
~1/2G

1/2
N

c3/2
= 1.616× 10−33 cm ; (16.1)

TPlanck =
~1/2G

1/2
N

c5/2
= 5.391× 10−44 sec ; (16.2)
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MPlanck =
~1/2c1/2

G
1/2
N

= 21.76 µg ; (16.3)

EPlanck =
~1/2c5/2

G
1/2
N

= 1.221× 1028 eV . (16.4)

This is a domain of physics that is very difficult to reach experimentally, and all
we can do is try to obtain as much as possible indirect evidence to construct a theory
that combines the two doctrines. There exist various competing approaches: Superstring
Theory, Loop Quantum Gravity, and Causal Dynamical Triangulation, to name a few. As
of today, it seems that superstring theory is the most advanced of these theories, but it
is based on rather bold assumptions and direct evidence in its favor is still lacking. The
reason why it receives strong support is the quite delicate and elegant internal mathemat-
ical coherence. Yet there are difficulties: the theory is not unambiguous, and its logical
foundations are still considered to be weak.

An interesting, fairly robust result is Hawking’s observation that black holes should
actually radiate away their mass and energy by emitting particles of all types, at a tem-
perature inversely proportional to the black hole mass. This appears to follow directly
from the assumption of invariance under general coordinate transformations, and it is
highly likely to be correct. This phenomenon provides us with a glimpse of what physics
at the Planck scale should be like. For instance, one can conclude that the density of
distinct quantum states at these very tiny length scales must be limited by strict bounds,
as if the whole world is discretized there. Even professional physicists are puzzled and
confused by this finding.
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