Energy E_0 of a system is fixed, the set of all possible states is called the "microcanonical ensemble." In this ensemble, all states are equally likely.

If the temperature of the system is fixed T, by putting the system in contact with a heat bath (reservoir), this is called a "canonical ensemble." E not fixed.

Probabilities are Boltzmann weighted:

\[p_i = e^{-\beta E_i} \]

\[\mathbb{Z} = \sum_{\text{all microstates}} e^{-\beta E} \]

System S has $\langle E \rangle = U$.
Exam problem w/ marker, but now with temp T specified.

How many microstates?

\[X \text{ Hard way} \]

\[E = 0 \quad \sigma = 1 \quad \sigma = 3 \]

\[E = 2 \text{mgh} \quad W \quad B \quad R \quad B \quad R \quad W \quad B \quad R \]

\[\sigma = 6 \]

\[Z = \sum e^{-\beta E_k} = e + 3e + e + 10e \ldots \]

\[Z \text{ Easy way} \]

\[Z_n = \text{partition function for one mark.} \]

\[\sum_k k = \frac{1}{1-r} \quad \text{Geometric series} \]

\[Z_n = \frac{1}{1 - e^{-\beta \text{mgh}}} \]
\[Z = z^3 = \left(\frac{1}{1 - e^{-\beta mgh}} \right)^3 \]

Probability all 3 markber will be on step #1?

\[P_{\text{all}} = \frac{e^{-\beta mgh}}{Z} = e^{-\beta mgh} \left(1 - e^{-\beta mgh} \right)^3 \]

\[P_{\text{all}} = \frac{e^{-\beta mgh \left[n + p + q \right]}}{Z} \]

What is \(P_{\text{all}} \) at low \(T \)? (High \(\beta \))

\[P_{\text{all}} = \left[e^{-\beta mgh} \left(1 - e^{-\beta mgh} \right) \right]^3 \rightarrow 0 \]

What is \(P_{\text{all}} \) at high \(T \)? (Low \(\beta \))

\[P_{\text{all}} = \left[e^{-\beta mgh} \left(1 - e^{-\beta mgh} \right) \right]^3 \rightarrow 0 \]

\[P_{\text{all}}(T) \sim 1 \]

Find \(T_0 \) that maximizes \(P_{\text{all}} \).
Given T, what is $\langle E \rangle = U$?

$$f_{\text{ave}} = \bar{f} = \langle f \rangle = \sum_i f_i P_i = \int f(w) P(w) dw$$

$$U = \sum_i E_i P_i = \sum_i E_i e^{-\beta E_i} = \frac{\sum_i E_i e^{-\beta E_i}}{Z} = \frac{\sum_i e^{-\beta E_i}}{Z}$$

$$= -\frac{\partial \beta}{\partial \beta} \frac{Z}{Z} = -\frac{\partial \ln(Z)}{\partial \beta}$$

$$= -\frac{\partial}{\partial \beta} \left[\frac{1}{1-e^{-\beta \mu_H}} \right] = \frac{\partial}{\partial \beta} \left[3 \ln \left(1-e^{-\beta \mu_H} \right) \right]$$

$$= 3 \left(\frac{m g H e^{-\beta m g h}}{1-e^{-\beta m g h}} \right) + \left(\frac{e^{-\beta m g h} + \mu_H}{e^{\beta m g h}} \right)$$

$$= \frac{3 m g h}{e^{-\beta m g h} - 1} = U$$

Low T, high β

$U \to 0$

High, low β

$U \to \infty$
One-dimensional chain w/ massless link

Teusim in chain? \(T = Mg \)

At temp T, what is \(L \)?