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The Spin-Statistics Theorem and 
Identical Particle Distribution Functions

by Dwight E. Neuenschwander

In the restaurants of some countries, the maître d’ will seat your party at a table already 
occupied by strangers if the table has sufficient empty chairs. In other cultures, new diners 
expect to be seated at empty tables even when occupied tables are surrounded by sur-
plus seats. Elementary particles, and composites made of them, fall analogously into two 
categories: bosons and fermions. Bosons readily share the same state, analogous to the 
first group of diners. Fermions prefer solitude, like the second group of diners. This article 
offers a simple argument for their respective distribution functions that describe how a 
system of identical particles populates the states available to them.

Elegant Connections in Physics

	 Since	the	most	stable	configuration	of	
a	 system	 typically	 finds	 it	 in	 the	 state	 of	
lowest	energy,	why	don’t	all	the	electrons	
in	an	atom	reside	in	the	1s orbital?	If	they	
did,	there	would	be	no	chemistry,	and	thus	
no	biology	and	no	life—nor	would	metals	
conduct	 electricity,	 and	white	dwarf	 stars	
would	collapse	into	black	holes.	The	uni-
verse	would	be	very	different	indeed,	and	
we	would	not	be	around	 to	appreciate	 it!	
The	Pauli	exclusion	principle	formally	ar-
ticulates	 the	 hypothesis	 that	 electrons,	 as	
fermions,	do	not	all	collapse	into	an	atom’s	
1s	orbital;	only	two	of	them	can	live	there,	
and	 then	only	with	opposite	 spins,	 to	not	
be	in	the	same	space-spin	state.		
	 The	exclusion	principle	grew	out	of	the	
realization	that	the	discrete	quantum	states	
for	 electrons	 could	 not,	 by	 themselves,	
explain	the	periodic	table	of	the	elements.	
The	crucial	clue	towards	a	resolution	came	
in	 1924,	when	Edmund	Stoner	 published	
a	 paper	 noting	 a	 correlation	 between	 the	
number	of	electron	states	of	alkali	metals	
placed	in	a	magnetic	field	and	the	number	
of	 closed-shell	 electrons	 in	 noble	 gases.
[1,2]	From	this	observation	Pauli	realized	

the	sequence	of	closed-shell	electron	num-
bers	2,	8,	18,…is	equivalent	to	the	rule	that	
no	state	can	hold	more	than	one	electron.	
To	implement	this	rule	he	had	to	invent	an	
extra	quantum	number.	 It	was	soon	 iden-
tified	 with	 electron	 spin,	 when	 Samuel	
Goudsmit	 and	 George	 Uhlenbeck	 pro-
posed	it	in	the	autumn	of	1925.[3]	Pauli’s	
spin-statistics	 theorem	 of	 1940	 general-
ized	the	argument	about	spin	and	statistics.
[4]	Its	flip	side,	that	bosons	can	coalesce,	
finds	dramatic	 illustration	 in	superfluidity	
and	superconductivity,	variations	of	Bose-
Einstein	condensation.
	 The	word	“state”	carries	three	contexts	
in	 this	 discussion:	 macroscopic	 thermo-
dynamic	states,	and	microscopic	states	 in	
two	 varieties—single-particle	 and	 mul-
tiparticle	 microstates.	 The	 macroscopic	
state	of	a	bottle	of	hydrogen	gas	in	thermal	
equilibrium	 is	 characterized	 by	 observ-
ables	 such	 as	 pressure,	 temperature,	 and	
volume.	Microscopically,	each	atom	has	a	
set	of	available	internal	states,	such	as	the	
atomic	orbitals	with	spin,	ψnlml ms	that	de-
scribe	the	electron	relative	to	the	nucleus.	
For	other	purposes,	as	in	the	kinetic	theory	

of	 gases,	 it	may	 be	 sufficient	 to	model	 a	
hydrogen	atom	as	a	solid	point	mass	mov-
ing	with	momentum	p	and	located	at	posi-
tion r.	Here	the	atom’s	microstate	consists	
of	six	numbers,	 the	momentum	and	posi-
tion	coordinates	in	phase	space.	
	 Between	 macrostates	 and	 single-par-
ticle	microstates	are	states	of	a	system	of	
N	 particles.	 For	N	 =	 2,	with	 one	 particle	
in	the	single-particle	state	ψa	and	the	other	
in	microstate	ψb,	how	simple	 it	would	be	
mathematically	 if	 the	 two-particle	 state	
was	 merely	 the	 product	 of	 the	 two	 one-
particle	 wave	 functions,	 ψ	 =	 ψaψb.	 This	
works	fine	 for	 systems	of	distinguishable	
particles,	 such	 as	 the	 deuteron—a	proton	
and	 a	 neutron	bound	 together.[5]	But	 the	
plot	thickens	when	the	particles	are	indis-
tinguishable.	 If	 ψ	 =	 ψaψb was the whole 
story	 for	 identical	 particles,	 the	 universe	
would	be	rather	sterile.	Simplicity	is	beau-
tiful,	but	complexity	can	be	essential.
	 Statistical	 mechanics	 aims	 to	 under-
stand	macroscopic	 states	 in	 terms	 of	mi-
crostates.	 The	 next	 section	 reviews	 how	
this	game	is	played.		
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Statistical Mechanics Review 
 
 Consider a system of N molecules, each in one of the many 
possible microstates available to it (“molecule” here is a generic 
term which could also denote a nucleus or a neutrino, depending 
on the problem). Label the various single-particle microstates as 
state a, state b, and so on.  Let ni denote the number of 
molecules in state i.  If I were to reach into a box of these 
molecules and pick one at random, the probability Pi of selecting 
one in state i is ni /N.  Since every molecule must be in one 
microstate or another,  
 
!!! =    !!

!!
= 1.                             (1) 

 
If Ei denotes a molecule’s energy when in state i, and U the total 
energy carried by all the molecules (the internal energy of 
thermodynamics), then 
 
! =    !!!!! = !   !!!!  ! = ! ! ;            (2) 
 
!  denotes the average molecular energy.    

 A primary responsibility of statistical mechanics expresses Pi  
in terms of Ei and the ambient thermal energy kT in which the 
molecules find themselves, when in thermal equilibrium with 
their surroundings at temperature T.  Boltzmann’s constant k = 
1.381×10─23 J/K forms a conversion factor between temperature 
and energy. A derivation of Pi as a function of T can be 
approached at least two ways: through the “method of most 
probable distribution,”[6] or with phase space arguments based 
on Liouville’s theorem.[7] One finds   
 
!!   =   

!
!
  !!!!/!" ,                            (3) 

 
where the normalization factor Z, determined by Eq. (1), is the 
“partition function,” 
 
  ! =    !!!!/!"! .                                 (4) 
 
In terms of Z, the computation of U can be expressed succinctly. 
From Eqs. (2) and (3), 
 
! =   !

!
!!!   !!!!!,                     (5)  

 
where β = 1/kT.  Thanks to a nice property of the exponential,  
 
!  !!" =  !

!"
 !!" ,  Eq. (5) becomes 

 
! =   −! !

!"
ln!.                              (6) 

 
 The partition function offers a window from the macroscopic 
world of thermometers and pressure gauges into the microscopic 
world of atomic structures and interactions.  For example, 
consider a system of N identical switches, each one either off 
(with energy E1 = 0) or on (with energy E2 = ε), so that Z = 1 + 
e−εβ . To see if a real macroscopic system can be well modeled 
by such a set of switches, we could compare the measured heat 
capacity C = dU/dT  to the prediction of it calculated from Z. 
  
 
 

Indistinguishable Particles 
in Quantum Mechanics  
 
 Now let’s enlarge our perspective and speak of the states of 
an N-particle system. As before, each individual particle will be 
in a single-particle microstate of energy Ei. A possible N-particle 
state is specified by a list 
 
!  = (n1, n2, n3, …),         (7) 
 
where !!! =   !. Each ! labels one possible state of the N-
particle system. The energy !! of state ! is the sum 
 
!! = !!! !!.          (8) 
 
In this context the partition function of Eq. (4) becomes the sum 
over the allowed !: 
 
!! =    !!!!!!   = !!! !!!!!! .     (9) 
 
For example, suppose N = 2 and each particle can be in one of 
three one-particle microstates. The possible states of the two-
particle system are: 
 
1 =  (1,1,0) 2 =  (1, 0, 1)   3 = (0, 1, 1) 
 
4 = (2, 0, 0) 5 = (0, 2, 0)       6 = (0, 0, 2) 
 
with respective energies 
 
!! = E1 + E2 !! = E1 + E3  !! = E2 + E3 
 
!! = 2E1  !! = 2E2  !! = 2E3. 
 
From Eq. (9) the partition function reads 
 
!! =   !!!!! +   !!!!! +⋯+     !!!!!   
 
     = !!!!!!!!!!   + !!!!!!!!!!   +⋯+   !!!!!!  
  
     = !!!! +   !!!! +   !!!! +   !!! +   !!! +   !!!,  (10) 
                        
where 
 
!!   =   !!!!! .                (11) 
 
With N held fixed some !  do not occur, as in our illustration 
where N = 2 excludes (0,0,0) and (1,1,1). To work with fixed N 
means the set of all allowed ! must be known before ZN can be 
evaluated.  That is feasible when N = 2, but statistical mechanics 
deals with systems that contain on the order of 1023 particles. 
However, if N were not fixed, then each ni in every ! could 
range over 0, 1, 2,…, Nmax.  To determine Nmax for identical 
particles, the spin-statistics theorem steps in. Such generality 
makes Z summable.  
 “Identical” here means that no method exists in principle to 
distinguish one particle from another. This raises concern about 
possibly double-counting microscopic states.  If particles 1 and 2 
in a two-particle system exchange places in their one-particle 
microstates, should that swapped configuration be counted as 
the same, or as distinct, from the original? According to the 

Statistical Mechanics Review Indistinguishable Particles
in Quantum Mechanics 
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rules of quantum mechanics,[8] one sums over both possibilities, 
which interfere with one another through the cross terms in |ψ|2 
= |ψoriginal + ψexchanged|2.  The N = 2 wave function therefore has 
two options for including one particle in state a and an identical 
one in state b: 
 
ψab(1,2) = corig ψa(1)ψb(2) + cexch ψa(2)ψb(1).    (12) 
 
If these exhaust the possibilities for arranging the two particles, 
then  |corig|2 + |cexch|2 = 1. But  |corig| = |cexch| because the particles 
are identical. Thus cexch = corig eiδ, where i2 = −1 with δ a real 
number. Equation (12) then becomes 
  
ψab(1,2) = !

!
[ψa(1)ψb(2) + eiδ ψa(2)ψb(1)].       (13) 

 
Now introduce the exchange operator Є that interchanges 
particles 1 and 2: 
 
Єψab(1,2)  =  ψab(2,1).              (14) 
 
If the interparticle potential is invariant under the exchange, then 
the exchange operator commutes with the Hamiltonian, and 
ψab(1,2) is an eigenstate of both Є and the Hamiltonian. Besides 
the energy eigenvalue of the latter, there also exists an 
eigenvalue λ of Є, which means that under the operation of Є 
the eigenstate is merely rescaled but otherwise unchanged: 
 
Є ψab(1,2) = λ ψab(1,2).                 (15) 
 
Therefore  
 
Є2 ψab(1,2)  = λ2 ψab(1,2).             (16) 
 
But in addition, 
 
Є2 ψab(1,2) = Є ψab(2,1) = ψab(1,2)          (17) 
 
and thus λ2 = 1, so that λ = ±1.  Operating with Є on the ψab(1,2) 
of Eq. (13) gives 
 
Є ψab(1,2) = !

!
 [ψa(2)ψb(1) + eiδ ψa(1)ψb(2)].    (18) 

 
By virtue of Eq. (15), this equals 
  
Є ψab(1,2) = ± !

!
  [ψa(1)ψb(2) + eiδ ψa(2)ψb(1)].    (19) 

 
Comparing Eqs. (18) and (19) shows that eiδ = ±1. Therefore, 
Eq. (13) becomes 
 
ψab(1,2) = !

!
 [ψa(1)ψb(2)  ±  ψa(2)ψb(1)].         (20) 

 
 What property of the particles determines which sign 
applies? One may define an elementary particle as a state of 
definite mass and spin. The spin S, the intrinsic angular 
momentum carried by the particle, becomes quantized in units of 
the reduced Planck’s constant ħ.  In particular, to say a particle 
carries spin s means that its spin vector squared has magnitude 
ħ2s(s+1).  One component of S can also be simultaneously 
measured, such as Sz = msħ, where ms takes on the 2s+1 possible 

values s, s − 1,…, −s. The quantum number s can be one of the 
possible values 0, !

!
, 1, !

!
, 2, !

!
, 3,…  Particles with integer s are 

bosons, and particles that carry half-odd-integer s are fermions. 
 Pauli’s 1940 proof of the spin-statistics theorem[4] makes 
consistent with relativistic quantum field theory the assertion 
that identical fermions use the minus sign in Eq. (20), and 
identical bosons use the plus sign. The Pauli exclusion principle 
emerges as a consequence: If two fermions are identical, they 
cannot be in the same state because, by Eq. (20), ψaa(1,2) = 0. 
But for identical bosons, the total wave function is enhanced: 
|ψaa(1,2)|2 = 2|ψa|2.  Consequently, calculations of the root-mean-
square distance separating identical bosons or fermions leads to 
the (misnomered) “exchange forces,” whereby identical bosons 
congregate closer together than do distinguishable particles, and 
identical fermions are farther apart.[9]   
   Although the result of the spin-statistics theorem is simple to 
state, connecting it to deeper principles is not simple. In the 
Feynman Lectures, Richard Feynman remarked, 
 
 Why is it that particles with half-integral spin are Fermi 
particles whose amplitudes add with the minus sign, whereas 
particles with integer spin are Bose particles whose amplitudes 
add with the plus sign?  We apologize for the fact that we cannot 
give you an elementary explanation.  An explanation has been 
worked out by Pauli from complicated arguments of quantum 
field theory and relativity.  He has shown that the two must 
necessarily go together, but we have not been able to find a way 
of reproducing his arguments on an elementary level…This 
probably means that we do not have a complete understanding 
of the fundamental principle involved…”[10] 
 
Feynman’s interpretation of what it means to “understand” a 
point of physics is extremely suggestive. In a 1994 contribution 
to a “Question and Answer” column in the American Journal of 
Physics, this Feynman quote was recalled, then followed with 
the question “Has anyone made any progress towards an 
‘elementary’ argument for the spin-statistics theorem?”[11] This 
question generated a lively discussion over the next three 
years,[12] culminating in the book Pauli and the Spin-Statistics 
Theorem by George Sudarshan and Ian Duck.  They wrote, 
 
 “Everyone knows the spin-statistics theorem but no one 
understands it.  The key word of course is ‘understand.’…The 
question is whether physics contains this fact, and if so how does 
this come about; or whether physics is merely consistent with 
the spin-statistics theorem and that some deeper explanation 
exists…[13] 
  
 Whether or not we “understand” the spin-statistics theorem, 
we can nevertheless apply it to systems of N identical bosons or 
fermions. 
 
 
 
Distributions of Identical Bosons or Fermions 
 
 Returning to ZN, we now allow every ni to range from 0 to 
Nmax in every !. According to the spin-statistics theorem, Nmax = 
1 for identical fermions, and Nmax = ∞ for  identical bosons.  In 
our previous example of particles each having three available 
microstates, as identical bosons the states of the multiparticle 
system exhibit these options, grouped by the value of N: 
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Distributions of Identical Bosons or Fermions
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{!} =  {[ (0,0,0) ]N = 0,  
 
 [ (1,0,0), (0,1,0), (0,0,1) ]N = 1, 
 
 [ (2,0,0), (0,2,0), (0,0,2), 
   (1,1,0), (1,0,1), (0,1,1)]N = 2,  
 
 [(3,0,0), (0,3,0), (0,0,3), 
  (2,1,0), (2,0,1), (1,2,0), 
 (1,0,2), (0,1,2), (0,2,1), (1,1,1)]N = 3, …} 
 
continuing thus as N → ∞; for instance, the N = 4 group includes 
(4,0,0), (1,0,3), (2,1,1), (2,2,0) and so on. The partition function 
for this system of identical bosons with variable N becomes 
 
Zbosons = [1]N =0  + [x1 + x2 + x3]N = 1  
 
 + [!!! +   !!! +   !!! +   !!!! +   !!!! +   !!!!]N = 2  
 
 + [!!! +   !!! +   !!! +   !!!!! +   !!!!! + 
 
    !!!!! +   !!!!! + !!!!! +   !!!!! +   !!!!!! ]N = 3 + …  
 
 = (1 + !! +   !!! +   … ) 1 +   !! +   !!! +⋯  
   1 +   !! +   !!! +   … .              (21)   
 
Each factor is a geometric series, 
 
1 + ! +   !! +   !! +   … =      !

!!!
  ,              (22)  

 
which converges for |x| < 1, and thus 
 
Zbosons = (1 − !!)!!!

!!! .             (23) 
            
For identical fermions, in this instance where each one has three 
possible microstates, the list of N-particle states is much shorter: 
 
{!} =  {[ (0,0,0) ]N = 0,  
 
 [ (1,0,0), (0,1,0), (0,0,1) ]N = 1, 
 
 [ (1,1,0), (1,0,1), (0,1,1)]N = 2,  
 
 [(1,1,1)]N = 3 }, 
 
which yields 
 
Zfermions = 1 +   !! +   !! + !! 
 
                                +  !!!! +   !!!! + !!!! +   !!!!!! 
 
             = (1 + !!!

!!! ).         (24) 
 
More generally, with M one-particle microstates available to 
each member of an ensemble of identical particles, the partition 
function reads 
 
Z = (1   ±   !!)±!,!

!!!          (25) 
 
where the plus sign in Z holds for fermions and the minus sign 
for bosons. 

 In allowing the possibility of an open system of variable N, 
the Ei are shifted.  The first law of thermodynamics says that the 
internal energy of a closed system increases with the addition of 
heat and/or the performance of work; in the sign conventions 
typically used by physicists, we write dU = đQ  – đW. But 
allowing particles to enter or leave the system can also change 
the internal energy. For instance, the new particles might 
undergo exothermic chemical reactions with the original ones. 
In such circumstances dU picks up an addtional term µdN, 
 
  = !"# − !"# +   !"#,                     (26) 
 
where dN is the particle number increment (modeled as 
continuous since N is typically huge) and µ denotes the chemical 
potential,[14] the increase in internal energy per particle when 
particles are added to the system. The effect of µ can be starkly 
seen in processes of constant entropy and volume. In a closed 
system (ΔU)S,V = 0, so that by Eq. (2),  
 
0 =   Δ ! !   =   !Δ !!!!! .      (27) 
 
In contrast, in an open system, (Δ!)!,! =   !Δ!, 
which with the help of Eqs. (1), (2), and (26) says 
 
0 =   Δ !   ! −   !"    
 
= !  Δ    (!! −   !! !!   ] .                            (28) 
 
Thus the xi in Eq. (11) and thereafter get replaced with 
 
!!   =   !!!(!!!  !).           (29) 
 
 To calculate the average number of molecules !!  found in 
state i, sum over the multiparticle states {!}, each with 
probability !! =

!
!
!!!!!   : 

 
!! =    !!

!

!!   

 
         =    !

!
  !!! !!! !!(!!  –  !)!  

 
         =   − !

!
   !
!!!

ln!,         (30) 
 
where !!! !!!= 1 for i = j  and 0 for i ≠ j. For indistinguishable 
fermions, Eq. (29) becomes 
 
!! ! =   

!!
!! !!!!   !  !

 ,          (31) 
 
and for indistinguishable bosons, 
 
!! ! =   

!!
!! !!!!   !  !

 .          (32) 
 
Since the partition function is a sum over states and not merely a 
sum over energies, these distribution functions on the right-hand 
sides of Eqs. (31) and (32) also pick up a factor gi for any 
polarization or spin multiplicities.   
 Although N was allowed to vary in order to  derive these 
distributions, in applications they hold whether or not N is 
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varied. Let us illustrate their use in Bose-Einstein condensation 
(BEC). 
 Its story begins in 1924 when Satyendra Bose sent to Albert 
Einstein a paper about counting the quantum states of photons. 
Bose had trouble getting his paper accepted, but Einstein was 
impressed, translated the paper from English into German, and 
submitted it on Bose’s behalf to the Zeitschrift f!r Physik, where 
it was published under Bose’s name.[15]  Then Einstein 
extended Bose’s arguments to massive particles such as atoms. 
He showed that if atoms with integer spin were cooled to very 
low temperatures, a critical temperature exists below which the 
atoms coalesce into their state of lowest energy, forming a 
macroscopic object.   
 Picking up this idea, in 1938 Fritz London suggested that 
such condensates explained the superfluidity of helium-4.[16] 
Helium was first liquefied by Kamerlingh Onnes in 1908, when 
he allowed it to reach its boiling point at 4.2 K.  Below 2.17 K, a 
discontinuity in the heat capacity occurs, the density drops, and 
some of the liquid becomes a “superfluid” with zero viscocity. It 
will creep through microscopic holes in vessels thought to be 
leak proof, and climb up a vertical tube or wall (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The number density of atoms needs to be high, and the 
temperature low, so the de Broglie wavelengths are long and 
overlap. To make Bose-Einstein statistics relevant, the atoms 
must be identical, a purity difficult to achieve when starting 
from macroscopic samples. Under these stringent conditions, the 
overlapping wave functions of the individual helium-4 atoms 
coalesce into a coherent state with macroscopic effects.  
 Superconductivity, first demonstrated by Onnes in 1911 with 
mercury, occurs below a critical temperature (4.1 K for Hg), 
when the metal loses all electrical resistance. The mechanism for 
such type I superconductivity in pure metals (distinct from type 
II high-temperature superconductivity in alloys) was not 
understood until the mid-1950s, with the so-called BCS theory 
of John Bardeen, Leon Cooper, and Robert Schreiffer. The 
crucial insight was that electrons, which are fermions, can pair 
up through interactions with the metal’s lattice.  The negatively 
charged electrons repel each other but are attracted to the 
positive charges in the lattice. Two electrons can thereby interact 
acoustically through lattice vibrations, even though they are far 
apart compared to the lattice spacing, quenching their Coulomb 
repulsion. These “Cooper pairs” carry integer spin, are subject to 
boson statistics, and can condense into a composite state whose 

energy leaves a gap of some 10−3 eV below the excited states.  
When kT is less than the gap, collisions are minimized, resulting 
in no resistance.[17]  
 Because photons are bosons, we might wonder if 
macroscopic light waves are some sort of collective state. 
Coherent radiation produced by a laser, where so many photons 
have the same phase, polarization, and frequency, suggests a 
candidate occurrence, at room temperature.  
 We can recreate the BEC prediction by starting with Eq. 
(32), assuming a gas of nonrelativistic, noninteracting bosons, 
each of mass m and carrying kinetic energy E = p2/2m. The 
microstate i means (p,r), a state of specific momentum and 
location. The number of bosons within volume dV and having 
momentum between p and p+dp is therefore 
 
!" =    !(!,!) !  4!!!!"  !"/ℎ!,      (33) 
 
where h is Planck’s constant, here taking the role of a phase-
space pixel to make the integration measure a dimensionless 
number for counting particles. I am supposing the momentum 
vectors point randomly in all directions, and assume spin 0 so 
that gi = 1 (otherwise a g gets carried along). Equation (32) 
becomes 
 

!(!,!) !   =     
!  !!!!!/!!

!!!!!!!!/!!
 ,                    (34) 

where ! =   !!".  Our objective is to calculate, as a function of 
temperature, the number of bosons no residing in the lowest-
energy microstate.  That ground state has p =  0, which from Eq. 
(34) gives the constraint no = w/(1− w), implying that 0 ≤ w ≤ 1 
since no can range from 0 to ∞.  Thus we complete Eq. (33) by 
counting bosons in the zero-momentum ground state: 
 

! =   !! +   
!!"
!!
   !!!!!!/!!

!!  !"!!!!/!!
!
!     !!!".        (35) 

 
With the change of variable y2 = p2/2m, and using the geometric 
series of Eq. (22) to integrate term by term, we find that  
 
! =   !! +   

!"(!)
!!

  ,                          (36) 
 
where a temperature-dependent correlation length λ emerges, 
 

! =    !!

!!"#$

!
!                                  (37) 

 
and 
 
! ! =    !!

!!/!
!
!!!  .                                (38) 

 
These results turn Eq. (36) into 
 
  !!
!
=   !

!
  −   !(!)

!!
 ,                                (39) 

 
which will be >0 provided N/V > !(w)/λ3.  The maximum value 
of !(w) occurs at w = 1, where !(1) = ζ(3/2) ≈ 2.612 offers an 
instance of the Riemann zeta function.  If N/V > !(3/2)/λ3 then 
no > 0.  The critical number density occurs when N/V = 
!(3/2)/λ3, giving a critical temperature 

Fig. 1. Liguid helium creeping up the sides of the cup, going over the 
rim, and dropping outside. Photo by Alfred Leitner (1963), public domain.
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!! =   
!!

!!"#
!/!
!.!"#

!/!
,                           (40) 

 
so that, for T < Tc, Eq. (39) may be written 
 
!!
!
= 1 −    !

!!

!/!
,                                    (41)   

 
with no/N = 0 for T > Tc (an example of a so-called second-order 
phase transition).  
 The first demonstration of BEC with non-helium atoms 
occurred in 1995 when a group at the University of Colorado 
and NIST-JILA led by Eric Cornell and Carl Wieman  
made a condensate with rubidium-87 atoms cooled to 170 nK. A 
few weeks later, Wolfgang Ketterle’s group at MIT produced a 
condensate with sodium-23 atoms.  For this achievement,  
Cornell, Wieman, and Ketterle shared the 2001 Nobel Prize in 
Physics.[18]   
 What about laser light as a collective effect of massless spin-
1 bosons? In November 2012 the first BEC in photons was 
demonstrated.[19]  
 In the logic of physics, what are we to make of the spin-
statistics theorem itself? The statement of the spin-statistics 
theorem is analogous, in its relation to the rest of physics, to the 
Planck-Einstein postulate E =hν; easy to state but (so far) not 
derived from any deeper principle.  The “proof of the spin-
statistics theorem” is not analogous to the demonstration that the 
work-energy theorem follows from F = ma; rather, the spin-
statistics proof shows consistency between the rest of known 
physics and the hypothesis of connecting spin to the plus/minus 
sign of Eq. (20). Sudarshan and Duck observed:  
 
“The spin-statistics theorem could conceivably be an essential 
ingredient of a more fundamental view of the world… 
  With such a point of view forced upon us, we should modify the 
meaning of ‘understand,’ and at the same time reduce our 
expectations of any proof the spin-statistics theorem.  What is 
proved…is that the existing theory is consistent with the spin-
statistics relation. What is not demonstrated is a reason for the 
spin-statistics relation…” 
…It is difficult to imagine a fundamental mechanism for the 
Pauli exclusion principle—upon which all depends—which 
predicates it…Must we reduce our demands on physics to 
require only consistency[?] Does an understanding of the 
‘Why?’ of the spin-statistics relation have no direct answer in 
physics? Or must physics be formulated to include it[?] The 
Pauli result does not explain the spin-statistics relation and 
cannot. [Those who seek an elementary explanation] must 
remain unsatisfied because the consistency of relativistic 
quantum mechanics and quantum field theory with the Pauli 
exclusion principle has every reason to be as complicated as 
these subjects are, not as simple and direct as the Pauli 
exclusion principle itself.”[20]  
 
For the foreseeable future we will have to leave it there! 
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