IIIIIII) \downarrow. $\begin{aligned} & \text { DEDMAN COIIEGE } \\ & \text { OF HUMANIIIES \& SCIENCES }\end{aligned}$

Outline

- Stellar astrophysics
- White dwarfs
- Dwarf novae
- Classical novae

- Supernovae
- Neutron stars

Apparent magnitude	Brightness relative to magnitude 0	Example	Apparent magnitude	Brightness relative to magnitude 0	Example	Apparent magnitude	Brightness relative to magnitude 0	Pogson's ratio: $\begin{gathered}\sqrt[5]{100} \approx 2.512 \\ \text { Example }\end{gathered}$
-27	6.31×10^{10}	Sun	-7	631	SN 1006 supernova	13	6.31×10^{-6}	3C 273 quasar / limit of 4.5-6" $(11-15 \mathrm{~cm})$ telescopes
-26	2.51×10^{10}		-6	251	ISS (max)	14	2.51×10^{-6}	Pluto (max) / limit of 8-10" $(20-25 \mathrm{~cm})$ telescopes
-25	1×10^{10}		-5	100	Venus (max)	15	1×10^{-6}	
-24	3.98×10^{9}		-4	39.8		16	3.98×10^{-7}	Charon (max)
-23	1.58×10^{9}		-3	15.8	Jupiter (max), Mars (max)	17	1.58×10^{-7}	
-22	6.31×10^{8}		-2	6.31	Mercury (max)	18	6.31×10^{-8}	
-21	2.51×10^{8}		-1	2.51	Sirius	19	2.51×10^{-8}	
-20	1×10^{8}		0	1	Vega, Saturn (max)	20	1×10^{-8}	
-19	3.98×10^{7}		1	0.398	Antares	21	3.98×10^{-9}	Callirrhoe (satellite of Jupiter)
-18	1.58×10^{7}		2	0.158	Polaris	22	1.58×10^{-9}	
-17	6.31×10^{6}		3	0.0631	Cor Caroli	23	6.31×10^{-10}	
-16	2.51×10^{6}		4	0.0251	Acubens	24	2.51×10^{-10}	
-15	1×10^{6}		5	0.01	Vesta (max), Uranus (max)	25	1×10^{-10}	Fenrir (satellite of Saturn)
-14	3.98×10^{5}		6	3.98×10^{-3}	typical limit of naked eye ${ }^{\text {[note 2] }}$	26	3.98×10^{-11}	
-13	1.58×10^{5}	Full moon	7	1.58×10^{-3}	Ceres (max)	27	1.58×10^{-11}	visible light limit of 8 m telescopes
-12	6.31×10^{4}		8	6.31×10^{-4}	Neptune (max)	28	6.31×10^{-12}	
-11	2.51×10^{4}		9	2.51×10^{-4}		29	2.51×10^{-12}	
-10	1×10^{4}		10	1×10^{-4}	typical limit of 7×50 binoculars	30	1×10^{-12}	
-9	3.98×10^{3}	Iridium flare	11	3.98×10^{-5}		31	3.98×10^{-13}	
-8	1.58×10^{3}		12	1.58×10^{-5}		32	1.58×10^{-13}	visible light limit of HST

Distance Modulus

$m-M=5\left[\log _{10}(d)-1\right]$

- Absolute magnitude (M)
- Apparent magnitude of an object at a standard
luminosity distance of exactly 10.0 parsecs ($\sim 32.6 \mathrm{ly}$) from the observer on Earth
- Allows true luminosity of astronomical objects to be compared without regard to their distances
- Unit: parsec (pc)
- Distance at which 1 AU subtends an angle of $1^{\prime \prime}$
- 1 AU = 149597870700 m ($\approx 1.50 \times 10^{8} \mathrm{~km}$)
- 1 pc ≈ 3.26 ly
- 1 pc ≈ 206265 AU

Distant stars

Earth's motion around Sun

Stellar Astrophysics

- Stefan-Boltzmann Law:

$$
F_{b o l}=\sigma T^{4} ; \sigma=\frac{2 \pi^{5} k^{4}}{15 c^{2} h^{3}}=5.67 \times 10^{-5} \mathrm{egs}^{-1} \mathrm{~cm}^{-2} \mathrm{~K}^{-4}
$$

- Effective temperature of a star: Temp. of a black body with the same luminosity per surface area
- Stars can be treated as black body radiators to a good approximation
- Effective surface temperature can be obtained from the B-V color index with the Ballesteros equation:
$T=4600\left(\frac{1}{0.92(B-V)+1.70}+\frac{1}{0.92(B-V)+0.62}\right)$
- Luminosity:

$$
L=4 \pi r_{*}^{2} \sigma T_{E}^{4}
$$

Life History of Stars

| Mass | Core Details | Comments |
| :---: | :--- | :--- | \left\lvert\, | $>0.08 \mathrm{M}_{\text {sun }}$ | Low mass ball of gas, not
 hot enough for hydrogen
 fusion |
| :---: | :--- | | Stars in this mass range are not |
| :--- |
| stars, but brown dwarfs of spectral |
| type L and T. |\right.

- Core of solar mass star
- Pauli exclusion principle: Electron degeneracy
- Degenerate Fermi gas of oxygen and carbon
- 1 teaspoon weigh ~5 tons
- No energy produced from fusion or gravitational contraction

Hot white dwarf NGC 2440. The white dwarf is surrounded by a "cocoons" of the gas ejected in the collapse toward the white dwarf stage of stellar evolution.

Figure 4.2 Several examples of planetary nebulae, newly formed white dwarfs that irradiate the shells of gas that were previously shed in the final stages of stellar evolution. The shells have diameters of $\approx 0.2-1 \mathrm{pc}$. Photo credits: M. Meixner, TA. Rector, B. Balick et al., H. Bond, R. Ciardullo, NASA, NOAO, ESA, and the Hubble Heritage Team

White Dwarfs

Sirius B is a white dwarf companion to Sirius A.

In 1844 German astronomer Friedrich Bessel deduced the existence of a companion star from changes in the proper motion of Sirius.

In 1915 Walter Adams observed the spectrum of the star, determining it was a faint whitish star. This lead astronomers to conclude it was a white dwarf.

Matter at Quantum Densities

As stars evolve, their cores contract and the core density increases. At some point the distance between the atoms is smaller than their de Broglie wavelengths and classical assumptions can no longer be used.

Recall: de Broglie Wavelength

$$
\lambda=\frac{h}{p}=\frac{h}{(2 m E)^{1 / 2}} \approx \frac{h}{(3 m k T)^{1 / 2}}
$$

Since,

$$
\begin{aligned}
& p=m v \\
& p=\sqrt{2 m E}
\end{aligned}
$$

$$
\begin{array}{rlrl}
E_{K} & =\frac{1}{2} m v^{2} & E \sim \frac{3 k T}{2} \\
v & =\sqrt{\frac{2 E}{m}} & & \begin{array}{l}
\text { mean energy } \\
\text { of a particle }
\end{array}
\end{array}
$$

Question: Which will reach the quantum domain first, electrons or protons?

Although both electrons and protons share the same energy, electrons have smaller mass and longer wavelengths. The electron density will reach the quantum domain first.

When the inter particle spacing is of order $1 / 2$ a de Broglie wavelength, quantum effects will become important.

$$
\rho_{q} \approx \frac{m_{p}}{(\lambda / 2)^{3}}=\frac{8 m_{p}\left(3 m_{e} k T\right)^{3 / 2}}{h^{3}}
$$

Calculate the quantum density at the center of the sun $\left(\mathrm{T}=15 \times 10^{6} \mathrm{~K}\right)$.

$$
\begin{aligned}
& \left.\rho_{q} \approx \frac{8 \times 1.7 \times 10^{-24} \mathrm{~g}\left(3 \times 9 \times 10^{-28} \mathrm{~g} \times 1.4 \times 10^{-16} \mathrm{erg} \mathrm{~K}\right.}{}{ }^{-1} \times 15 \times 10^{6} \mathrm{~K}\right)^{3 / 2} \\
& p_{q}=640 \mathrm{~g} \mathrm{~cm}^{-3} \quad \begin{array}{l}
\text { The core density of the sun is } \left.150 \mathrm{~g} \mathrm{~cm}^{-27} \mathrm{erg} \mathrm{~s}\right)^{3} . \\
\text { Much below the quantum regime. }
\end{array}
\end{aligned}
$$

Pressure Exerted by Ideal Gas

Consider ideal gas particles hitting the sides of a container.

Recall, that particles with momentum p_{x} impart $2 p_{x}$ to the surface with each reflection.

The force per unit area imparted is then

$$
\frac{d F_{x}}{d A}=\frac{2 p_{x}}{d A d t}=\frac{2 p_{x} v_{x}}{d A d x}=\frac{2 p_{x} v_{x}}{d V}
$$

where we used:

To get the pressure, we sum forces due to particles of all momenta.

$$
P=\int_{0}^{\infty} d N(p) \frac{p_{x} v_{x}}{d V} d p
$$

Simplify:

$$
p_{x} v_{x}=m v_{x}^{2}=\frac{1}{3} m v^{2}=\frac{1}{3} p v
$$

$$
P=\int_{0}^{\infty} d N(p) \frac{p_{x} v_{x}}{d V} d p
$$

If we assume the velocities are isotropic: $v_{x}^{2}=v_{y}^{2}=v_{z}^{2}$
Substitute:

$$
P=\frac{1}{3} \int_{0}^{\infty} n(p) p v d p
$$

$$
\text { where we used: } \quad d N / d V \equiv n
$$

For a non-relativistic degenerate gas:

$$
n_{e}(p) d p= \begin{cases}8 \pi p^{2} \frac{d p}{h^{3}} & \text { if }|\mathbf{p}| \leq p_{f} \\ 0 & \text { if }|\mathbf{p}|>p_{f}\end{cases}
$$

$$
\begin{aligned}
P_{e} & =\frac{1}{3} \int_{0}^{p_{f}} \frac{8 \pi}{h^{3}} \frac{p^{4}}{m_{e}} d p=\frac{8 \pi}{3 h^{3} m_{e}} \frac{p_{f}^{5}}{5} \\
& =\left(\frac{3}{8 \pi}\right)^{2 / 3} \frac{h^{2}}{5 m_{e}} n_{e}^{5 / 3}
\end{aligned}
$$

$$
v=p / m_{e}
$$

$$
n_{e}=\frac{8 \pi}{3 h^{3}} p_{f}^{3}
$$

Finally, noting $\mathrm{n}_{\mathrm{e}}=\mathrm{Zn}_{+}=\mathrm{Z} \rho / \mathrm{Am}_{\mathrm{p}}$

$$
P_{e}=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m_{e} m_{p}^{5 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3} \rho^{5 / 3}
$$

Re-derive scaling relations between mass and radius with an index $(4+\varepsilon) / 3$.

$$
P \sim b \rho^{5 / 3} \longrightarrow P \sim \rho^{(4+\epsilon) / 3}=\frac{M^{(4+\epsilon) / 3}}{r^{(4+\epsilon)}}
$$

Equating with pressure from our stellar equations.

$$
P \sim \frac{G M \rho}{r} \sim \frac{M^{2}}{r^{4}}
$$

$$
\begin{aligned}
\frac{M^{4 / 3} M^{\epsilon / 3}}{r^{4} r^{\epsilon}}=\frac{M^{(4+\epsilon) / 3}}{r^{4+\epsilon}} & \sim \frac{M^{2}}{r^{4}} \\
r^{\epsilon} & \sim M^{(\epsilon-2) / 3} \\
r & \sim M^{(\epsilon-2) / 3 \epsilon}
\end{aligned}
$$

When $\epsilon \rightarrow 0$

$$
r \rightarrow M^{-\infty}=0
$$

$$
P_{e}=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m_{e} m_{p}^{5 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3} \rho^{5 / 3}
$$

Comments:

The electron pressure does not depend on temperature.
For a typical white dwarf, $\rho \sim 10^{6} \mathrm{~g} \mathrm{~cm}^{-3}$ and $\mathrm{T} \sim 10^{7} \mathrm{~K}$. Their $\mathrm{Z} / \mathrm{A} \sim 0.5$.

$$
P_{\mathrm{e}} \sim \frac{\left(6.6 \times 10^{-27} \mathrm{erg} 8\right)^{2}}{20 \times 9 \times 10^{-28} \mathrm{~g}\left(1.7 \times 10^{-24} \mathrm{~g}\right)^{5 / 8}} 0^{0.5^{\mathrm{5} / 3}}\left(10^{\mathrm{6}} \mathrm{~g} \mathrm{~cm}^{-3}\right)^{\mathrm{5} / 3}=3 \times 10^{22} \mathrm{dyne} \mathrm{~cm}^{-2}
$$

Compare to the thermal pressure of nuclei at this temperature.

$$
P=n k T=2 \times 10^{20} \text { dyne } \mathrm{cm}^{-2}
$$

Thus, degenerate electron pressure completely dominates the pressure in these stars.

Properties of White Dwarfs

Mass-Radius Relationship:

Recall the EOS for a degenerate non-relativistic electron gas:

$$
P_{e}=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m_{e} m_{p}^{5 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3} \rho^{5 / 3}
$$

The scaling relation for this equation is

$$
P \sim b \rho^{5 / 3} \sim b \frac{M^{5 / 3}}{r^{5}}
$$

where b is a constant
Recall our scaling relations from the equations of stellar structure:

$$
P \sim \frac{G M \rho}{r} \sim \frac{G M^{2}}{r^{4}}
$$

Equating these pressures yields:

$$
r \sim \frac{b}{G} M^{-1 / 3}
$$

Notice: The radius decreases with increasing mass!

A white dwarf with $\mathrm{Z} / \mathrm{A}=0.5$ and $\mathrm{M}=1 \mathrm{M}_{\text {sun }}$ has a radius of $\sim 4000 \mathrm{~km}$.

Fully working out the equations of stellar structure gives an equation for radius of

$$
r_{\mathrm{wd}}=2.3 \times 10^{9} \mathrm{~cm}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3}\left(\frac{M}{M_{\odot}}\right)^{-1 / 3}
$$

Mass/radius relation for degenerate star

- Stellar mass $=M$; radius $=R$
- Gravitational potential energy:
- Heisenberg uncertainty:
- Electron density:

$$
\begin{aligned}
& \text { Egr }=-\frac{3 G M^{2}}{5 R} \\
& \Delta x \Delta p \geq \hbar \\
& n=\frac{3 N}{4 \pi R^{3}} \approx \frac{M}{m_{p} R^{3}} \\
& \Delta x \approx n^{-1 / 3} \quad \Delta p \approx \frac{\hbar}{\Delta x} \approx \hbar n^{1 / 3}
\end{aligned}
$$

- Kinetic energy:

$$
\varepsilon=\frac{p^{2}}{2 m_{e}} \quad K=N \varepsilon=\frac{M}{m_{p}} \varepsilon \approx \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{2}}
$$

Mass/radius relation for degenerate star

- Total energy:

$$
E=K+U \approx \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{2}}-\frac{G M^{2}}{R}
$$

- Find R by minimizing E :

$$
\frac{d E}{d R} \approx-\frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{3}}+\frac{G M^{2}}{R^{2}}=0
$$

- Radius decreases as mass increases:

$$
R \approx \frac{\hbar^{2} M^{-1 / 3}}{G m_{e} m_{p}^{5 / 3}}
$$

Mass vs radius relation

$$
r \rightarrow M^{-\infty}=0
$$

What does it mean?

At masses so high that electrons become ultra-relativistic, the electron pressure is unable to support the star against gravity.

If the density is high enough, degeneracy pressure due to protons and neutrons begins to operate. Stops collapse and produces a neutron star.

Chandrasekhar Mass:

The maximum stellar mass that can be supported by electron degeneracy pressure.

Estimate Chandrasekhar Mass

Start with virial theorem

$$
\bar{P} V=-\frac{1}{3} E_{\mathrm{gr}}
$$

Substitute the ultra-relativistic electron degeneracy pressure and self gravity

$$
P_{e}=\left(\frac{3}{8 \pi}\right)^{1 / 3} \frac{h c}{4 m_{p}^{4 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{4 / 3} \rho^{4 / 3}
$$

$$
\left(\frac{3}{8 \pi}\right)^{1 / 3} \frac{h c}{4 m_{p}^{4 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{4 / 3} \rho^{4 / 3} V \sim \frac{1}{3} \frac{G M^{2}}{r}
$$

Simplify:

$$
\begin{array}{|}
\hline \rho \sim \frac{M}{V} \\
V=\frac{4 \pi}{3} r^{3} \\
\hline
\end{array}
$$

$$
M \sim 0.11\left(\frac{\mathcal{Z}}{A}\right)^{2}\left(\frac{h c}{G m_{p}^{2}}\right)^{3 / 2} m_{p}
$$

Full Solution using Equations of Stellar Structure:

$$
M_{\mathrm{ch}}=0.21\left(\frac{\mathcal{Z}}{A}\right)^{2}\left(\frac{h c}{G m_{p}^{2}}\right)^{3 / 2} m_{p}
$$

Accurately calculated value is $1.4 \mathrm{M}_{\text {sun }}$.

As electron velocities increase, the rates at which momentum transfers approaches c. So, we need to modify the EOS for degenerate electron gas.

$$
P_{e}=\left(\frac{3}{8 \pi}\right)^{1 / 3} \frac{h c}{4 m_{p}^{4 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{4 / 3} \rho^{4 / 3}
$$

EOS for an ultra-
\leftarrow relativistic degenerate spin- $1 / 2$ fermion gas

Compare to non-relativistic case:

$$
P_{e}=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m_{e} m_{p}^{5 / 3}}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3} \rho^{5 / 3}
$$

EOS for a degenerate
\longleftarrow non-relativistic electron gas

Notes: The power index changes.
The electron mass disappears.
For ultra-relativistic particles, the rest mass is negligible.
As we go from small to large white dwarf masses, we transition gradually from non-relativistic to ultra-relativistic.

Notes:

The accurately calculated Chandrashaker mass is $1.4 \mathrm{M}_{\text {sun }}$.

No white dwarfs with masses greater than M_{ch} have ever been found.

The lower bound of isolated white dwarfs found is $0.25 \mathrm{M}_{\text {sun }}$. Why is there a lower bound?

> The universe is too young! Stars that have mass <0.8 $\mathrm{M}_{\text {sun }}$ could produce smaller white dwarfs. However, even if they were formed in the early universe, they have not yet gone though their main sequence lifetime.

Mass vs radius relation

ROTSE

- Robotic Optical Transient Search Experiment
- Original purpose: Observe GRB optical counterpart ("afterglow")
- Observation \& detection of optical transients (seconds to days)
- Robotic operating system

0 Automated interacting Linux daemons
0 Sensitivity to short time-scale variation
0 Efficient analysis of large data stream
o Recognition of rare signals

- Current research:

0 GRB response
O SNe search (RSVP)
O Variable star search
0 Other transients: AGN, CV (dwarf novae), flare stars, novae, variable stars, X-ray binaries

White Dwarf Cooling

The temperature inside a white dwarf is approximately constant with radius. Let's estimate the temperature.

The white dwarf contacts until the degeneracy pressure stops the contraction of the thermal core. Just before equilibrium:

$$
E_{\mathrm{th}} \sim \frac{1}{2} \frac{G M^{2}}{r}=\frac{3}{2} N k T
$$

What are WD composed of?

$$
E_{\mathrm{th}}=\frac{3}{2} \frac{M}{m_{p}}\left(\frac{1}{2}+\frac{1}{4}\right) k T=\frac{9}{8} \frac{M}{m_{p}} k T
$$

Ans: Helium!

$\mathrm{N}_{\text {nuclei }}=\mathrm{M} / 4 \mathrm{~m}_{\mathrm{H}}$ and $\mathrm{N}_{\mathrm{e}}=\mathrm{M} / 2 \mathrm{~m}_{\mathrm{H}}$.

Thus,

$$
\frac{1}{2} \frac{G M^{2}}{r} \sim \frac{9}{8} \frac{M}{m_{p}} k T \quad \longrightarrow \quad k T \sim \frac{4}{9} \frac{G M m_{p}}{r}
$$

$$
k T \sim \frac{4}{9} \frac{G M m_{p}}{r} \quad r_{\mathrm{wd}} \sim \frac{h^{2}}{20 m_{e} m_{p}^{5 / 3} G}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3} M^{-1 / 3}
$$

Put it all together and we have:

$$
k T \sim \frac{80 G^{2} m_{e} m_{p}^{8 / 3}}{9 h^{2}}\left(\frac{\mathcal{Z}}{A}\right)^{-5 / 3} M^{4 / 3}
$$

For a $0.5 \mathrm{M}_{\text {sun }}$ white dwarf this give $\mathrm{T} \sim 8 \times 10^{8} \mathrm{~K}$.
The WD is then endpoint in stellar evolution. No nuclear reactions occur. Hence, it cools over time by radiating it's energy. The radiated luminosity is given by

$$
L=4 \pi r_{\mathrm{wd}}^{2} \sigma T_{E}^{4}
$$

We will assume that white dwarf is at a constant temperature and estimate the cooling time.

$$
L=4 \pi r_{\mathrm{wd}}^{2} \sigma T_{E}^{4} \quad E_{t h}=\frac{3}{8} \frac{M}{m_{p}} k T
$$

Putting it together:

$$
\begin{aligned}
4 \pi r_{\mathrm{wd}}^{2} \sigma T^{4} & \sim \frac{d E_{\mathrm{th}}}{d t}=\frac{3 M k}{8 m_{p}} \frac{d T}{d t} \\
d t & =\frac{3 M k}{32 \pi \sigma m_{p} r^{2}} T^{-4} d T
\end{aligned}
$$

We only take nuclei, not electrons.

Integral is left to the student. Put in $\mathrm{M}=0.5 \mathrm{M}_{\text {sun }}$ and $\mathrm{r}_{\mathrm{wd}}=4000 \mathrm{~km}$.

$$
\tau_{\text {cool }} \sim \frac{3 M k}{8 m_{p} 4 \pi r_{\mathrm{wd}}^{2} \sigma 3 T^{3}}=3 \times 10^{9} \mathrm{yr}\left(\frac{T}{10^{3} \mathrm{~K}}\right)^{-3}
$$

It would take our WD several Gyr to cool to $10^{3} \mathrm{~K}$. In reality, the insulating non-degenerate surface layers would result in an even slower cooling rate. Detailed models take this and other effects into account. For carbon/oxyen WD, cooling over 10^{10} yrs only brings temperatures down to $3000-4000 \mathrm{~K}$. This explains the high temperatures (and blue/white colors).

ROTSE-I

- $1^{\text {st }}$ successful robotic telescope
- 1997-2000; Los Alamos, NM
- Co-mounted, 4 -fold telephoto array (Cannon 200 mm lenses)
- CCD
o $2 \mathrm{k} \times 2 \mathrm{k}$ Thomson
o "Thick"
o Front illuminated
o Red sensitive
O R-band equivalent
o Operated "clear" (unfiltered)
- Optics

0 Aperture (cm): 11.1
0 f-ratio: 1.8
0 FOV: $16^{\circ} \times 16^{\circ}$

- Sensitivity (magnitude): 14-15
o Best: 15.7
- Slew time (90°): 2.8 s
- 990123: Observed $1^{\text {st }}$ GRB afterglow in progress
o Landmark event
o Proof of concept

ROTSE-III

- 2003 - present
- 4 Cassegrain telescopes
- CCD
o "Thin"
o Back illuminated
o Blue-sensitive
0 High QE (UBVRI bands)
o Default photometry calibrated to R-band

- Optics

0 Aperture (cm): 45
0 f-ratio: 1.9
0 FOV: $1.85^{\circ} \times 1.85^{\circ}$

- Sensitivity (magnitude): 19-20
- Slew time: < 10 s

Dwarf Novae

An artist's concept of the accretion disk around the piriary star WZ Sge. Using data from Kitt Peak National Observatory and I Spitzer Space Telescope, a new picture of this systeģ has emer which includes an asymmetric outer disk of dark matter.

ROTSE3 J203224.8+602837.8

- $1^{\text {st }}$ detection (110706):
o ROTSE-IIIb \& ROTSE-IIId
o ATel \#2126
- Outburst (131002-131004):
o ROTSE-IIIb
o ATel \#5449
- Magnitude (max): 16.6
- $\quad($ RA, Dec $)=(20: 32: 25.01,+60: 28: 36.59)$
- UG Dwarf Nova
o Close binary system consisting of a red dwarf, a white dwarf, \& an accretion disk surrounding the white dwarf
o Brightening by 2-6 magnitudes caused by instability in the disk
o Disk material infalls onto white dwarf

Accretion disc

Novae (classical)

M33N 2012-10a

- $1^{\text {st }}$ detection: 121004 (ROTSE-IIIb)
- $\quad($ RA, $D e c)=(01: 32: 57.3,+30: 24: 27)$
- Constellation: Triangulum
- Host galaxy: M33
- Magnitude (max): 16.6
- $z=0.0002$ ($\sim 0.85 \mathrm{Mpc}, \sim 2.7 \mathrm{Mly}$)
- Classical nova
o Explosive nuclear burning of white dwarf
surface from accumulated material from the
o Explosive nuclear burning of white dwarf
surface from accumulated material from the secondary
o Causes binary system to brighten 7-16 magnitudes in a matter of 1 to 100s days
0 After outburst, star fades slowly to initial brightness over years or decades
- CBET 3250

ROTSE3 J013257.3+302427

RA: 01:32:57.28 Dec: + 30-24:27.3 (J2000)
From S1: 11.6" east, 92.1* south

Supernovae

SN 1994D (NGC 4526)

- Type la - Type Ib - Type Ic — Type IIb — Type II-L — Type II-P — Type IIn

SN 2012cg (NGC 4424)

SN 2012ha ("Sherpa")

- $\quad 1^{\text {st }}$ detection: 121120 (ROTSE-IIIb)

Type: Ia-normal
o Electron degeneracy prevents collapse to neutron star
o Single degenerate progenitor: C-O white dwarf in binary system accretes mass from companion (main sequence star)
o Mass \rightarrow Chandrasekhar limit ($1.44 \mathrm{M}_{\odot}$)
o Thermonuclear runaway
o Deflagration or detonation?
o Standardizable candles

- acceleration of expansion dark energy
Magnitude (max): 15.0
- Observed 1 month past peak brightness
- $\quad($ RA, Dec $)=(13: 00: 36.10,+27: 34: 24.64)$
- Constellation: Coma Berenices
- Host galaxy: PGC 44785
$z=0.0170$ ($\sim 75 \mathrm{Mpc} ; ~ \sim 240 \mathrm{Mly}$)

CBET 3319

SN 2013X ("Everest")

- Discovered 130206 (ROTSE-IIIb)
- Type la 91T-like
o Overluminous
o White dwarf merger?
o Double degenerate progenitor?
- Magnitude (max): 17.7
- Observed 10 days past maximum brightness
- $\quad($ RA, Dec $)=(12: 17: 15.19,+46: 43: 35.94)$
- Constellation: Ursa Major

- Host galaxy: PGC 2286144
- $\quad z=0.03260$ ($\sim 140 \mathrm{Mpc} ; ~ \sim 450 \mathrm{Mly}$)
- CBET 3413

What happens to a stellar core more mássivive than 1.44 solar masses?

1. There aren't any
2. They shrink to zero-siz
3. They explode
A. \because They become someth

Neutron Stars

- Extremely compact: ~ 10 km radius
- Extreme density: 1 teaspoon would weigh ~ 10^{9} tons (\sim as much as all the buildings in Manhattan)
- Spin rapidly: up to $600 \mathrm{rev} / \mathrm{s}$
- Pulsars
- High magnetic fields ($\sim 10^{10} \mathrm{~T}$): Compressed from magnetic field of progenitor star

An artist's rendering of a neutron star compared with the skyline of Chicago. Neutron stars are about 12 miles in diameter and are extremely dense. CreditDaniel Schwen/Northwestern, via LIGO-Virgo

Neutron Stars

- Dègenerate stellar cores heavier than 1.44 solar masses colle se to become neutron stairs?
- Formed in supernovae explosions
- Elećtrons áre not seoparate
- Combine with.nadecto form neutrons
- Neutron stars are degenerate Ferris. K .gas of heutrons

1 December 2017

Near the center of the Crab Nebula is a neutron star that rotates 30 times per second. Photo Courtesy of NASA.

Neutron Energy Levels

Degenerate gas: all lower energy levels filled with two particles each (opposite spins). Particles locked in place.

Neutron Stars

Similar to white dwarfs - basic physics is degenerate fermion gas. However, we have neutrons, not electrons. Replace m_{e} with m_{p}.

$$
r_{\mathrm{ns}} \approx 2.3 \times 10^{9} \mathrm{~cm} \frac{m_{e}}{m_{n}}\left(\frac{\mathcal{Z}}{A}\right)^{5 / 3}\left(\frac{M}{M_{\odot}}\right)^{-1 / 3} \approx 14 \mathrm{~km}\left(\frac{M}{1.4 M_{\odot}}\right)^{-1 / 3}
$$

Note: the Z/A factor is one, since almost all nucleons are neutrons.

Important Effects (we neglected):

1. Nuclear interactions play an important role in the EOS. The EOS is poorly known due to our poor understanding of details of the strong interaction.
2. The star is so compact that the effects of GR must be taken into account.

Compare gravitational and rest mass energies of a test particle of mass m.

$$
\begin{gathered}
E_{g r}=\frac{G M m}{2 r} \quad \text { and } \quad E=m c^{2} \\
\frac{E_{\mathrm{gr}}}{m c^{2}}=\frac{G M}{r c^{2}} \approx \frac{6.7 \times 10^{-8} \mathrm{cgs} \times 1.4 \times 2 \times 10^{33} \mathrm{~g}}{10 \times 10^{5} \mathrm{~cm}\left(3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)^{2}} \approx 20 \%
\end{gathered}
$$

Matter falling onto a neutron star loses 20% of its rest mass and the mass of the star as measured via Kepler's law is 20% smaller than the total mass that composed it!

Detailed calculations that take into account GR and nuclear interactions give a radius of 10 km for a neutron star of $1.4 \mathrm{M}_{\text {sun }}$.

Limiting mass of a neutron star is not accurately known. The value is between $2 \mathrm{M}_{\text {sun }}$ and $3.2 \mathrm{M}_{\text {sun }}$.

Magnetarś

GW 170817

This illustration depicts the first moments after a neutron-star merger. A jet of gamma rays erupts perpendicular to the orbital plane, while radioactively heated ejecta glow in multiple wavelengths. Credit: NSF/LIGO/Sonoma State University/A. Simonnet

SSS17a

August 17, 2017

- August 21, 2017

Swope \& Magellan Telescopes The Swope and Magellan Telescopes in Chile captured the first optical and near-IR images of the aftermath of the 17 August neutron-star collision. Over four days the source became dimmer and redder. Credit: 1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

The two LIGO detectors measured a clear signal from the merging neutron stars. Virgo data helped localize the source. Credit: B. P. Abbott et al., Phys. Rev. Lett., 2017

Detection by LIGO Hanford, LIGO Livingston, \& Virgo (Italy)

- 3 LIGO detectors enabled triangulation of event to be within 60 square degrees
- Much improved over previous binary black hole mergers (600 square degrees)
- "Chirps" lasted 1.5 min , 3300 oscillations
- GRB 170817: Detection of short-duration GRB (kilonova) by Fermi \& INTEGRAL satellites 1.7 s after GW detection
- Followed by ground-based observations by 70+ telescopes in Southern Hemisphere
- Both GW \& EM (γ-ray, X-ray, UV, optical, IR, radio) event
- NGC 4993, 40 Mpc
- Binary neutron star merger
- $1.6 \mathrm{M}_{\mathrm{s}}$ neutron star merged with $1.1 \mathrm{M}_{\mathrm{s}}$ neutron star $=2.7 \mathrm{M}_{\mathrm{s}}$ neutron star (or black hole)
- End product: Black hole or fat neutron star?
- Origin of heavy elements Ag, Pt, $\mathrm{Au}, \& \mathrm{U}$ by nuclear r -process
- Produced \sim_{104} Earth masses of elements heavier than Fe; 10-15 Earth masses of Au
- Crucible of cosmic alchemy
- Era of multi-messenger astronomy begins!

