$\mathbf{3374}$

- 1. Read Schroeder sections 7.3 and 7.5-7.6. Did you read all the pages?
- 2. (a) What is the energy density of the photons in an oven at 350° F?
 - (b) What is the energy density of the air in an oven at 350° F?
- 3. At the surface of the sun, what fraction of the energy is in the visible part of the spectrum? You will need to perform an integral numerically; it will be easier if you use dimensionless variables.
- 4. (a) What is the energy of the Cosmic Microwave Background (CMB) today in the visible Universe?
 - (b) What is the entropy of the CMB today in the visible Universe?
- 5. Write the formula for the partition function Z of an electron in a hydrogen atom. If the sum is finite, to what value does it converge? If the sum is infinite, prove it.

6351

- 1. (a) For the black body spectrum, find $\frac{h\nu_{\text{peak}}}{k_B T}$ numerically.
 - (b) Derive a formula for the black body spectrum in terms of wavelength λ .
 - (c) Find $\frac{hc}{\lambda_{\text{peak}}k_BT}$ numerically.
 - (d) Explain why $\nu_{\text{peak}} \neq \frac{c}{\lambda_{\text{peak}}}$.
 - (e) For the sun, find ν_{peak} and λ_{peak} . To what part of the spectrum (what color) do they correspond?
- 2. We saw that the energy density of photons in a box at temperature T is $u = aT^4$, where a is the radiation constant. Show that the intensity of radiation escaping from a small hole in the box is $(\frac{c}{4})aT^4 = \sigma T^4$, where σ is the Stefan-Boltzmann constant.

Bonus: Solve as much of the other class' assignment as you can.