
Lecture 2   The First Law of 
Thermodynamics  (Ch.1) 

Outline:
1. Internal Energy, Work, Heating

2. Energy Conservation – the First Law

3. Quasi-static processes

4. Enthalpy 

5. Heat Capacity



Internal Energy

system U = kinetic + potential
system 

boundary

“environment”

The internal energy of a system of particles, U, is the sum of the kinetic
energy in the reference frame in which the center of mass is at rest and the
potential energy arising from the forces of the particles on each other.

Difference between the total energy and the internal energy?

The internal energy is a state function – it depends only on
the values of macroparameters (the state of a system), not
on the method of preparation of this state (the “path” in the
macroparameter space is irrelevant).

U = U (V, T)In equilibrium [ f (P,V,T)=0 ] :

U  depends on the kinetic energy of particles in a system and an average 
inter-particle distance (~ V-1/3) – interactions.  
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For an ideal gas (no interactions) :   U = U (T) - “pure” kinetic



Internal Energy of an Ideal Gas

The internal energy of an ideal gas
with f degrees of freedom: TNkfU B2

=

f  ⇒ 3 (monatomic),  5  (diatomic),  6  (polyatomic)

How does the internal energy of air in this (not-air-tight) room change 
with T if the external P = const?
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(here we consider only trans.+rotat. degrees of freedom, and neglect 
the vibrational ones that can be excited at very high temperatures)

- does not change at all, an increase of the kinetic energy of individual 
molecules with T is compensated by a decrease of their number.



Work and Heating (“Heat”)

We are often interested in ΔU , not U. ΔU is due to:
Q - energy flow between a system and its

environment due to ΔT across a boundary and a finite
thermal conductivity of the boundary

– heating (Q > 0) /cooling (Q < 0)
(there is no such physical quantity as “heat”; to
emphasize this fact, it is better to use the term
“heating” rather than “heat”)

W - any other kind of energy transfer across
boundary - work

Heating/cooling processes:
conduction: the energy transfer by molecular contact – fast-moving

molecules transfer energy to slow-moving molecules by collisions;
convection: by macroscopic motion of gas or liquid
radiation: by emission/absorption of electromagnetic radiation.

HEATING

WORK

Work and Heating are both defined to describe energy transfer
across a system boundary.



The First Law

For a cyclic process (Ui = Uf) ⇒ Q = - W.
If, in addition, Q = 0  then W = 0

The first law of thermodynamics: the internal energy of a system can be
changed by doing work on it or by heating/cooling it.

ΔU = Q + W conservation of energy.

P

V T

An equivalent formulation:

Perpetual motion machines of the first type do not exist.

Sign convention: we consider Q and W to be positive if energy 
flows into the system.

Presenter
Presentation Notes
From the microscopic point of view, the statement of 1st law is equivalent to a statement of conservation of energy.

Perpetual motion machines come in two types: type 1 violates 
the 1st Law (energy would be created from nothing), type 2 violates 
the 2nd Law (the energy is extracted from a reservoir in a way that causes the net entropy of the machine+reservoir to decrease).




Quasi-Static Processes

Quasi-static (quasi-equilibrium) processes – sufficiently
slow processes, any intermediate state can be considered
as an equilibrium state (the macroparamers are well-
defined for all intermediate states).

Examples of quasi-
equilibrium processes:

isochoric: V = const
isobaric: P = const
isothermal: T = const
adiabatic: Q = 0

For quasi-equilibrium processes, P, V, T are
well-defined – the “path” between two states
is a continuous lines in the P, V, T space.
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Advantage: the state of a system that participates in a quasi-equilibrium
process can be described with the same (small) number of macro
parameters as for a system in equilibrium (e.g., for an ideal gas in quasi-
equilibrium processes, this could be T and P). By contrast, for non-
equilibrium processes (e.g. turbulent flow of gas), we need a huge number
of macro parameters.



Work

The sign: if the volume is decreased, W is positive (by
compressing gas, we increase its internal energy); if the
volume is increased, W is negative (the gas decreases
its internal energy by doing some work on the
environment).
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The work done by an external force on a gas 
enclosed within a cylinder fitted with a piston:

W = (PA) dx = P (Adx) = - PdV

Δx

P

W = - PdV - applies to any 
shape of system boundary

The work is not necessarily associated with the volume changes – e.g.,
in the Joule’s experiments on determining the “mechanical equivalent of
heat”, the system (water) was heated by stirring.

dU = Q – PdV 

A – the 
piston 
area

force



W and Q are not State Functions
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CD
- the work is negative for the “clockwise” cycle; if
the cyclic process were carried out in the reverse
order (counterclockwise), the net work done on
the gas would be positive.
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- we can bring the system from state 1 to
state 2 along infinite # of paths, and for each
path P(T,V) will be different.

U is a state function,  W - is not  ⇒
thus, Q is not a state function either.

ΔU = Q + W

Since the work done on a system depends not
only on the initial and final states, but also on the
intermediate states, it is not a state function.
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the difference between the values of some (state) function 
z(x,y) at these points:

Comment on State Functions
U, P, T, and V are the state functions, Q and W are not. Specifying an initial and final
states of a system does not fix the values of Q and W, we need to know the whole
process (the intermediate states). Analogy: in classical mechanics, if a force is not
conservative (e.g., friction), the initial and final positions do not determine the work, the
entire path must be specified.

x

y z(x1,y1)

z(x2,y2)

dy
y
zdx

x
zzd

xy
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

( ) ( ), ,x ydz A x y dx A x y dy= + - it is an exact differential if it is

( ) ( )
x

yxA
y

yxA yx

∂

∂
=

∂
∂ ,,

( ) ( ), ,dz z x dx y dy z x y= + + −

A necessary and sufficient condition for this:

If this condition
holds: ( ) ( ) ( ) ( )

y
yxzyxA

x
yxzyxA yx ∂

∂
=

∂
∂

=
,,,,

e.g., for an ideal gas: ⎟
⎠
⎞

⎜
⎝
⎛ +=+= dV

V
TdTfNkPdVdUQ B 2

δ - cross derivatives
are not equal

dVPSdTUd −=

U

V 
S- an exact differential

In math terms, Q and W are not exact differentials of some functions
of macroparameters. To emphasize that W and Q are NOT the state
functions, we will use sometimes the curled symbols δ (instead of d)
for their increments (δQ and δW).



Problem

Imagine that an ideal monatomic gas is taken from its initial state A to state
B by an isothermal process, from B to C by an isobaric process, and from
C back to its initial state A by an isochoric process. Fill in the signs of Q,
W, and ΔU for each step.

V, m3

P, 
105 Pa

A

B
C

Step Q W ΔU

A → B

B → C

C → A

2

1

1 2

+ -- 0

-- + --

+ 0 +

T=const

TNkfU B2
= BPV Nk T=



Quasistatic Processes in an Ideal Gas

isochoric ( V = const )

isobaric  (  P = const )
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(see the last slide)



Isothermal Process in an Ideal Gas
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Wi-f > 0 if Vi >Vf (compression) 

Wi-f < 0 if Vi <Vf (expansion)

isothermal ( T = const ) :
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Adiabatic Process in an Ideal Gas

adiabatic (thermally isolated system)
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The amount of work needed to change the state of a thermally isolated system 
depends only on the initial and final states and not on the intermediate states.

021 =→Q 21→=WdU

to calculate W1-2 , we need to know P (V,T)
for an adiabatic process
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Adiabatic Process in an Ideal Gas (cont.)
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⇒ 1+2/3≈1.67 (monatomic),  1+2/5 =1.4 (diatomic),  1+2/6 ≈1.33 (polyatomic)γ
(again, neglecting the vibrational degrees of freedom)
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11

An adiabata is “steeper” than an isotherma:
in an adiabatic process, the work flowing
out of the gas comes at the expense of its
thermal energy ⇒ its temperature will
decrease.V2
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Summary of quasi-static processes of ideal gas

Quasi-Static 
process ΔU Q W Ideal gas 

law
isobaric  

(ΔP=0)
isochoric  

(ΔV=0) 0

isothermal  
(ΔT=0) 0

adiabatic  
(Q=0) 0
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Problem

Imagine that we rapidly compress a sample of air whose initial pressure is
105 Pa and temperature is 220C (= 295 K) to a volume that is a quarter of
its original volume (e.g., pumping bike’s tire). What is its final temperature?
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For adiabatic processes:

Rapid compression – approx. adiabatic, no time for the energy 
exchange with the environment due to thermal conductivity

constTP =− γγ /1also

- poor approx. for a bike pump, works better for diesel engines



Non-equilibrium Adiabatic Processes

- applies only to quasi-equilibrium processes !!! constTV =−1γ

2. On the other hand, ΔU = Q + W = 0
U  ~  T    ⇒ T – unchanged 
(agrees with experimental finding)

Contradiction – because approach
#1 cannot be justified – violent
expansion of gas is not a quasi-
static process. T must remain the
same.

constTV =−1γ1. V – increases
⇒ T – decreases (cooling)

Free expansion



The Enthalpy
Isobaric processes (P = const):

dU = Q - PΔV = Q -Δ(PV)   ⇒ Q = Δ U  + Δ(PV)

The enthalpy is a state function, because U, P,
and V are state functions. In isobaric processes,
the energy received by a system by heating equals
to the change in enthalpy.

Q = Δ H

isochoric:

isobaric:

in both cases, Q
does not
depend on the
path from 1 to 2.

Consequence: the energy released (absorbed) in chemical reactions at constant 
volume (pressure) depends only on the initial and final states of a system.

H ≡ U  + PV   - the enthalpy⇒

The enthalpy of an ideal gas:
(depends on T only) 
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Heat Capacity

T
QC
Δ

≡
δThe heat capacity of a system - the amount of energy

transfer due to heating required to produce a unit
temperature rise in that system

C is NOT a state function (since Q is not a 
state function) – it depends on the path 
between two states of a system        ⇒

T
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The specific heat capacity
m
Cc ≡

( isothermic  – C = ∞,  adiabatic – C = 0 )



CV and CP
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Another Problem
During the ascent of a meteorological helium-gas filled balloon,
its volume increases from Vi = 1 m3 to Vf = 1.8 m3, and the
pressure inside the balloon decreases from 1 bar (=105 N/m2) to
0.5 bar. Assume that the pressure changes linearly with volume
between Vi and Vf.
(a) If the initial T is 300K, what is the final T?
(b) How much work is done by the gas in the balloon?
(c) How much “heat” does the gas absorb, if any?
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