Physics 3374/6351 Professor Scalise
Homework Assignment #2 Fall 2025
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1. Read Schroeder chapter 1. Did you read all the pages?

2. Along an adiabat, the pressure and volume of an ideal gas are related by PV?Y =

constant. Show that
dl T

= F0p

and find the function F(v).
3. See the attached problem with a PV diagram.

4. Schroeder 1.55. See last page of this set.
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1. (a) Describe and draw all of the quadratic degrees of freedom of a carbon dioxide
molecule.

(b) What is f at high temperature, so that none of the modes are frozen out?

(c¢) Treating C'Oy as an ideal gas, what is the molar heat capacity at constant volme
in terms of the gas constant R?

(d) What is the molar heat capacity at constant pressure?

2. Starting from the first law dU = TdS — PdV, show that the equation of state for
an ideal gas leads to the conclusion that U depends only on 7. Proceed as follows:
U could depend on T, V, and P, but because of the ideal gas equation of state (a
constraint), the internal energy really only depends on two independent variables. The
entropy S will also depend on these same two variables. Find the differential d.S and
use a Maxwell relation.

Bonus: Solve as much of the other class’ assignment as you can.
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The adjacent p-V diagram shows
the so-called Stirling cooling cycle
(refrigerator). Its working fluid is a
monoatomic gas (for instance,
helium). Processes 152 and 3—4 are
isothermal: the fluid is held at
constant temperature by thermal
baths at temperatures T, (“hot”) and
T (“cold”), respectively. Processes
23 and 4—1 are isochoric: they take
place at constant volumes V, and V,,

respectively. The heat capacity of the
working fluid at constant volume, per
mole, is C,, .

Determine the heat absorbed by the fluid in ...

.. the process 152
... the process 2—3
.. the process 3—»4
.. the process 4—+1
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Determine the net work done on the fluid per cycle.
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Problem 1.55. Heat capacities are normally positive, but there is an important
class of exceptions: systems of particles held together by gravity, such as stars and
star clusters.

(a) Consider-a system of just two particles, with identical masses, orbiting in
circles about their center of mass. Show that the gravitational potential
energy of this system is —2 times the total kinetic energy.

(b) The conclusion of part (a) turns out to be true, at least on average, for any
system of particles held together by mutual gravitational attraction:

Upotential = '—2Ukinetic .

Here each U refers to the total energy (of that type) for the entire system,
averaged over some sufficiently long time period. This result is known as the
virial theorem. (For a proof, see Carroll and Ostlie (1996), Section 2.4.)
Suppose, then, that you add some energy to such a system and then wait
for the system to equilibrate. Does the average total kinetic energy increase
or decrease? Explain.

A star can be modeled as a gas of particles that interact with each other
only gravitationally. According to the equipartition theorem, the average
kinetic energy of the particles in such a star should be %kT, where T is
the average temperature. Express the total energy of a star in terms of its
average temperature, and calculate the heat capacity. Note the sign.

Use dimensional analysis to argue that a star of mass M and radius R
should have a total potential energy of —GM? /R, times some constant of
order 1.

Estimate the average temperature of the sun, whose mass is 2 x 1039 kg
and whose radius is 7 x 10% m. Assume, for simplicity, that the sun is made
entirely of protons and electrons.



