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MATH BACKGROUND FOR THERMODYNAMICS

A. Partial Derivatives and Total Differentials

Partial Derivatives Given afunction f(X3,Xz,...,Xm) of m independent variables, the partial derivative
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Total Differentials Given afunction f(x,xz,...,
f, df, is defined by

D0of 0O
df = Yy 0—0 dx
;mxi L I
j#i
BB B aee. PR
Ek9x1DX2 - L Wx, E 2z [IdmeX1 . m’
where dx; isan infinitesimally small but arbitrary change in the variable x;.
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B. Some Useful Propertiesof Partial Derivatives

The order of differentiation in mixed second derivativesisimmateria; e.g., for afunction f(x,y)
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in the commonly used short-hand notation. (Thisrelation can be shown to follow from the
definition of partial derivatives.)

Given afunction f(x,y):
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Proof: Thetotal differential of fis
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We could, in principle, solve the equation f = f(x,y) for yintermsof x and f; i.e., we could
obtain the function y(x,f). Itstotal differential would be given by

dy = V0 ax + B2XQ df
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Substituting the above expression for df into the right-hand side of the expression for dy, we
obtain
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Since dx and dy are arbitrary infinitessmal changes, the only way that the right-handside of (1)
can be zero for all choices of dx and dy isif the coefficients of dx and dy are each separately
equal to zero. Setting the coefficient of dy equal to zero gives

%&_y% EDiD =1 or DdyD = = ed
of00oyn " ot T e

5]
S¥
OO

y



Moreover, since any of the three variablesf, x, and y could have been chosen as the dependent
variable, it must also be true that
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Solution: From the cyclic rule
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3. Giventwo functions of x andy: f(x,y) and g(x,y),
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Proof: Thetotal differential of f considered to be afunction of xandyis
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while the total differential of y considered to be afunction of xand gis
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Substituting this expression for dy into the expression for df above gives
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But if f is considered to be afunction of x and g, rather than of x and y, itstotal differentia is
given by
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These two expressions for df must be identical for any choice of the arbitrary infinitesimal
changes dx and dg. Therefore, it must be true that
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Examples:

1. For avan der Waals gas (i.e., amodel system which obeys the van der Waals equation of
state), the pressure p and the internal energy U, as functions of n, V, and T, are given by
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respectively, where aand b are constants. Use these equations and the chain rule to derive an
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2. Given that the constant-volume heat capacity Cy, = 4[] , show that
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Note: In this section, we have considered functions of two independent variables. However, all the
relations derived hold for functions of more than two variables provided all the additional
independent variables are held constant; e.g., for afunction f(w,x,y,2),




C. Exact and Inexact Differentials; LineIntegrals

Linear Differentials An infinitessmal quantity

m
dz = ) M;i(Xy, X000y X ) 0¥,
i=1
= Mdx; + M,dx, + ... + M_dx,,

iscaled alinear differential; the right-hand side of the equation is called alinear differential formin
m variables. We shall be concerned primarily with linear differentialsin two variables; in this case,
let uswrite

dz = Mdx + Ndy

where M and N are, in general, functions of x and y.

Exact Differentials: dz = Mdx + Ndy is an exact differential if and only if there exists afunction of
xandy, F(x,y), such that dF = dzfor all valuesof xand y.

A more practically useful test for exactnessisthe following: dz = Mdx + Ndy is an exact differential
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It is easy to see that this relation must be true for an exact differential dz because in that case
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It can also be shown that the converseistrue; i.e, if U—L01 = U—0 , then dzis exact.
dody DX ox Dy

Inexact Differentialsdw = M'dx + N'dy is an inexact differential if and only if there exists no
function F(x,y), such that dF = dw for all values of x and y. Equivalently, dw isinexact if and only if
M'l [WWN'O

O—>0 # O—0.
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Examples: Thelinear differential dz = xy?dx + x%ydy is an exact differential because it is the total
differential of the function F = % x%* + C, where C is an arbitrary constant. Here,
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On the other hand, the linear differential dw = x?ydx + xy?dy isinexact, as can most easily be
demonstrated by noting that
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Line Integrals Consider acurve C in the X-Y plane connecting two points (x',y') and (x",y") and

imagine that we chop the curve up into n segments as
shown at the left. Then thelineintegral | of the linear
differential dz= Mdx + Ndy on the curve C is defined

by
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ith segment where M(x,y) and N(x,y) are given functions and

ﬁ?i M(x;,yi) and N(x;, y;) are the values of these functions
1 at the midpoint of theith segment. The notation we
shall usefor thisintegral is
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In order to carry out this integration, one must eliminate one of the variables x or y, which are related
via the equation for the curve C, and then evaluate the resulting ordinary definite integral.

Examples:

1. Caculatethelineintegral of theinexact differential dw = x?ydx + xydy along the curvey = x
from (0,0) to (1,1).
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Solution: | :I(OO)[xzdx+xydy] But y=x and dy=dx. Therefore,
y=x
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2. Caculatethelineintegral of dw = x?ydx + xydy along the curve y = x* from (0,0) to (1,1).
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Solution: | =I( )[xzdx+xydy] Buty=x* and dy = 2xdx. Therefore,
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Cyclic Integrals Thecyclicintegral | :fcdz isalineintegral of the linear differential dzin which
the path of integration is aclosed curve; i.e., in which theinitial and fina points on C are the same.

Important Properties of Exact Differentials

1. If dzisan exact differential, then fcdz = 0 for any closed curve C.

(X2,Y2)
2. Ifdzisanexact differential, then | = [ dz isindependent of the path C between theinitial

(%0.¥1)
C

point (X,y1) and the final point (X2,y2).

These properties are fairly obviousintuitively. Clearly, if dzisexact, it isthetota differential of

(X2,Y2)
some function F(x,y) and, therefore, | = (dfz Y= F(X2,¥2) - F(X1,y1) independent of the path C.
X%
Cc

Furthermore, if (X2,y2) = (X1,y1), then | isclearly equal to zero. Rigorous proofs of properties 1 and 2
are given at the end of this section for anyone interested. First, however, I'd like to preview the
thermodynamic significance of exact and inexact differentials and line integrals.

Thermodynamic Significance Aswe shall see shortly, the properties of exact and inexact
differentials and of line integrals are of very great importance in thermodynamics. For any
infinitesimal thermodynamic transformation (change of state), the changes dp, dV, dU, dH, dS dG,
etc. in the various thermodynamic state functions are exact differentials, while the work done on the
system dw and the heat absorbed by the system dqg during the process are inexact differentials. For a
finite thermodynamic transformation from state 1 to state 2, the change AF in any state function F is
given by AF =F; - F;. Onthe other hand, g and w must be determined by evaluating line integrals
whose value depends on the path of the transformation.

Proof of Property 1 It has been shown that the line integral of any linear differential around a closed
curve C can be expressed in terms of a surface integral as follows:
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where the integration on the right is over the area enclosed by the curve C. But (dM/2dy)x =
(IN/9x)y. since thisis anecessary and sufficient condition for dz to be an exact differential. Hence,

fC[de+ Ndy] = 0 g.e.d.



Proof of Property 2 Consider the closed curve C shown at the left. If dzis an exact differentid,
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Asistrue for any definite integral, if we interchange its limits of integration, the integral on the right
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But C; and C; could be any arbitrary curves connecting the points (x;,y1) and (xo,y2). Hence it must
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betruethat [dz Isindependent of the path C.
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g.ed.

Exercises

1. Determinethetotal differential of each of the following functions:

a z=¢eY
1
= Xty

c. z=In(xy)

d. z=xsiny+ysnx
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2. A useful equation of state for areal gas at low pressure and low temperature is the following:
RT RTa
1) = 0— - —
PV 1) = 3~ = 2

where Vy, is the molar volume of the gas and a isaconstant. Using this equation and the
properties of partial derivatives, derive expressions for each of the following:

opd  0op0  [BVeld  BVal
PP, goPp, Pmp, P¥mg
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3. Giventhefunctionsf(xy) = & +xy2 and g(xy) = e ™) derive expressions for the

ofQ pfU
partial derivatives G—0 and G—0 .
0Jg O, 00 x Dg

4. Determine whether or not each of the following linear differential formsis an exact differential.

a O _d
X2y, Xy2
d d

b_X2+Ty
Xy Xy

c.  2xfydx+xdy

d. Inydx + §dy

5. Evauate each of the following line integrals:

220 dx dy O ¥y

a O— + —D b. J' [xsinydx + ysinxdy]
@D Ky x?yH (0,0)
y=x y=X

c §. [x*ydx + x?y*dy] over the triangular w1

path C’ shown at the right, which begins
and ends at (x,y) = (0,0).

(0.0 (1,0





