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I. INTRODUCTION

The monatomic classical ideal gas, which is called the
ideal gas in this paper, is a staple of introductory physics. It
is understandable in the context of a system of noninteracting
point particles,' and its equations of state are tractable math-
ematically. These virtues of the ideal gas are summarized in
Table 1. With them come several less desirable characteris-
tics. First, it is based on classical physics or the semiclassical
limit of a quantum ideal gas, and hence does not provide
insights on quantum or relativistic phenomena. Second, the
internal energy is independent of volume, a property that
holds only in the low density limit for real gases. Third, the
ideal gas gives no insight into changes of state such as the
vapor to liquid transition. Finally, because it is usually the
only system for which equations of state are encountered,
students tend to come away with a sense that every system
behaves as an ideal gas.

In contrast, the photon gas is a quantum mechanical sys-
tem of particles (quanta of the electromagnetic field) called
photons.? The thermal behavior of photons in blackbody ra-
diation has played a pivotal role in the development of quan-
tum mechanics. In addition, because photons move with the
speed of light, the photon gas is a relativistic system. Thus it
reflects two major developments of 20th century physics:
quantum mechanics and relativity. Over a decade ago, the
Introductory University Physics Project called for more 20th
century physics in introductory courses.® Inclusion of the
photon gas would work toward this goal.

The quantum mechanical probability amplitudes for pho-
tons can interfere constructively or destructively with one
another, but photons do not ordinarily affect one another’s
energies, momenta, or polarizations, which simplifies their
thermodynamic behavior. Unlike the ideal gas, the internal
energy function for the photon gas is volume dependent. Re-
markably, despite its nonatomic nature, the photon gas can
provide insights into the liquid—vapor phase transition. Fi-
nally the very notion of the photon gas disabuses students of
the thought that every thermodynamic system behaves as an
ideal classical gas.

A key feature of the photon gas is that it has a variable
particle number, N. Consider a container of volume V,
whose walls are maintained at temperature 7. Suppose it has
been emptied of matter by a vacuum pump. It cannot be
entirely “empty” because the walls radiate photons into the
container. Some photons scatter off the walls, with some be-
ing absorbed and new ones being emitted continually. A dy-
namic equilibrium exists when the average absorption and
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emission rates are equal. Thus, an apparently empty con-
tainer actually is filled with a photon gas, a fact that can
intrigue students.

Unlike the ideal gas, for which there are three independent
variables, N, T, and V, the photon gas has just two indepen-
dent, controllable variables, 7 and V. We can envisage build-
ing a photon gas from energy stored in the container walls.
Consider the container in Fig. 1. Imagine purging it of all
atoms with a vacuum pump, and then moving the piston to
the left until it touches the left wall. The volume is then zero
and the walls (including the piston) have temperature 7.
Now slowly move the piston to the right, keeping the wall
temperature constant using a reservoir. Photons will pour out
of the walls as the volume increases, until the dynamic equi-
librium described above occurs. In this way, we mentally
construct a photon gas of volume V and temperature 7', with
average photon number N(7,V). Building the photon gas
using this thought experiment can help develop an under-
standing of the nature of the variable particle photon gas.

The most straightforward approach for introducing the
photon gas in introductory physics is to define it in a way
similar to that in the preceding paragraphs, and to then dis-
play the relevant thermodynamic equations of state and ex-
amine their implications. The extent to which the equations
of state are used can vary. At minimum, the equations can be
presented and interpreted. If time allows and the interest
level is sufficient, they also can be used to analyze isother-
mal and adiabatic processes for the photon gas, as is done in
the body of this paper.

A more ambitious approach is to use kinetic theory to
establish the connection between internal energy and pres-
sure for the photon gas, and to use calculus to derive the
equations of state. This procedure is presented in the Appen-
dix as a resource for teachers.

A rich literature, mainly related to blackbody radiation,
exists in books on modern physics,* quantum physics,’
optics,® and classical and statistical thermodynamics.”'* Nu-
merous citations to the literature are given in Ref. 14. Nev-
ertheless, the photon gas has not found its way into introduc-
tory physics textbooks. The main purpose of this paper is to
encourage teachers of introductory physics and textbook au-
thors to adopt the photon gas as a supplement to the ideal
gas. Some of the ideas here might also be useful to teachers
of modern physics and junior-senior level thermal physics.

II. PHOTON GAS EQUATIONS OF STATE AND
PROCESSES

The equations of state for the internal energy U(7,V) and
pressure P(T) are
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Table I. Summary of monatomic classical ideal gas properties.

Property type Description

N, V,T

Collection of N noninteracting
point particles, each with mass m,
described by classical mechanics

Independent variables
System

Temperature-independent result U= %pv

from kinetic theory, relating the

internal energy U and pressure P

Internal energy U= %NkT
Pressure P=NkTIV
Entropy® S=Nk[In(T**V/N)

+ InQmmk/h)**+ 3]
Work W on the gas for isothermal W= —NkT In(1+AV/V)
volume change by AV
Energy QO added to gas by heat
process for isothermal volume
change by AV
Entropy change of gas for isothermal
volume change by AV
Reversible adiabatic condition,
where the heat capacity ratio
C,/Cy=5/3

Q=NkT In(1+AV/V)

AS=Nk In(1+AV/IV)

PV*3=constant

“The expression for the entropy is the Sackur—Tetrode equation, the classical

limit for Bose—Einstein and Fermi—Dirac quantum ideal gases with atoms
of mass m. Planck’s constant & connotes the Sackur—Tetrode equation’s
quantum origin, and k reflects the thermodynamic nature of the gas.

U(r,v)=bvT* (1)

and
P(T)= ibT*. (2)

The constant b cannot be determined from thermodynamics,
but its value can be borrowed from statistical physics or ex-
perimental results. It is given by

8 mk*

b=m=7.56X10_16JK_4m_3. (3)

Note that b depends on Planck’s constant &, which reflects
the quantum mechanical nature of the photon gas, the speed
of light ¢, which reflects its relativistic nature, and Boltz-
mann’s constant k, which reflects its thermodynamic nature.
At the introductory level, we can introduce Egs. (1) and (2)
and give the numerical value of b, without broaching the
formula in Eq. (3).

A% ———

AV

Fig. 1. Photon gas in a container with wall temperature 7" and volume V.
The right wall is movable and its quasistatic movement can alter V revers-
ibly by AV.
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Given the foregoing, it is straightforward to analyze iso-
thermal processes for the photon gas. Consider a quasistatic
volume change from V to V+AV. From Eq. (1), if T is
constant,

AU=bT*AV. 4)

From the first law of thermodynamics, AU=Q + W, where
W=~ [P(T)dV is the work done on the photon gas. When
T is constant, so is P(T), and Eq. (2) implies that

W=— {bT*AV. (5)

Thus the energy gained by the photon gas from the concomi-
tant increase or decrease in the number of photons, which
constitutes a radiative heat process, is

0= 31bT*AV. (6)

The slow isothermal volume change under consideration is
reversible, and the entropy change, Q/T, of the photon gas is

AS= 3bT3AV. (7)

This entropy change, which is linear in AV, is very different
from the logarithmic volume dependence of the correspond-
ing entropy change for an ideal gas, which is shown in Table

Now suppose we build the photon gas as described earlier
by choosing the initial volume in Eq. (7) to be zero and the
final volume to be V. We then allow the piston to move to
the right slowly to volume V, creating the photon gas. Be-
cause at zero volume, the photon number N=0, evidently
S§=0; that is, there can be no entropy if there are no photons.
Equation (7) then implies that at volume V,

S=3%bpvT3. (8)

Notice that Egs. (1) and (2) imply that the enthalpy'® H
=U+PVis

H=$bVT*. )

Clearly for an isothermal volume change, AH=Q and for an
expansion from zero volume to volume V, H=Q=TS. This
example makes clear that enthalpy is the energy needed to
form the photon gas and to do the work needed to make
available the volume V it occupies.'®

Next, consider a slow adiabatic volume change. Adiabatic
means that no photons are emitted or absorbed by the con-
tainer walls. For a photon gas, the only possible type of heat
process is via radiation; that is, energy can be exchanged
with the container only by the emission and absorption of
photons. An adiabatic volume change requires that the con-
tainer walls be perfectly reflecting mirrors. Under such a
process the photon number cannot change because a perfect
reflector is also a nonemitter of photons. Because the number
of photons cannot change, N(7,V)=constant. Furthermore,
a slow, reversible adiabatic process leaves the entropy of the
photon gas unchanged, so S(7,V)=constant. The constancy
of both N(T,V) and S(T,V) implies that N(T',V)=constant
X S(T,V), which along with Eq. (8), leads to the conclusion
that

N(T,V)=rVT3, (10)
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Fig. 2. A plot of pressure P versus volume V for a reversible Carnot cycle
using a photon gas as the working fluid. The horizontal segments 1-2 and
3—4 are isothermals at temperatures 7, and T, respectively. Segment 2—3
is a reversible adiabatic expansion. Segment 4—1 occurs at zero volume and
therefore entails only the container walls and not the photon gas.

where r is a constant. As was the case for b, r cannot be
evaluated within the domain of thermodynamics, but its
value can be borrowed from statistical physics,'”

k 3
r=60.4(ﬁ) =2.03%10" m 3K 3. (11)
As before, the constants 4, ¢, and k illustrate the quantum
mechanical, relativistic, and thermodynamic nature of the
photon gas. Also as before, to keep the discussion elemen-
tary, the value of r can be stated without broaching the for-
mula in Eq. (11).

From Egs. (8) and (2), it is clear that the condition of
constant entropy is

T°V=constant or PV*3=constant. (12)

Interestingly, the second form in Eq. (12) is similar to the
corresponding condition in Table I for an ideal gas, for which
PV7=constant, where y=C p/ Cy=>5/3. However, the simi-
larity is only formal because for the photon gas, C,, does not
even exist, because one cannot vary the temperature at con-
stant pressure for a photon gas.

Having found Egs. (2) and (12), we can sketch a reversible
Carnot cycle on a pressure—volume diagram. We take advan-
tage of the fact that the photon gas can be brought to zero
volume, so that the Carnot cycle looks as shown in Fig. 2.
The horizontal isotherms 1-2 and 3—4 come from the fact
that P=P(T). The adiabatic segment 2—3 is qualitatively
similar to reversible adiabatic curves for the ideal gas. The
vertical segment 4—1 corresponds to heating the container
walls from T, to T),, with zero photons in the zero volume
container. Along this segment, the walls undergo a heat pro-
cess, but there is no photon gas present and thus Q=0 for a
photon gas working fluid.

Figure 2 makes it clear that the pressure—volume represen-
tation of a Carnot cycle does not necessarily appear as it does
for an ideal gas. The purpose here is not to exhibit a real
working fluid, but rather to illustrate that a Carnot cycle’s
P—V plot can differ from that obtained for the ideal gas. It is
a good exercise for students to use the photon gas equations
to show that, as expected, the thermal efficiency is n=1
—T./T,, the reversible Carnot cycle efficiency for any
working fluid.

III. COMPARISON: IDEAL AND PHOTON GASES

After introducing the photon gas and examining its behav-
ior under isothermal and adiabatic processes, it is useful to
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Table II. Comparison of equations for classical ideal and photon gases.

Classical ideal gas Photon gas
N is specified and fixed N=rvT?
U=3NkT U=bVT*=2INkT
P=NKT/V P=3bT*=09NKT/V

S=NK[In(T*2V/N) + InQmmk/h)**+ 3] S=3bVT3=3.6Nk

compare it with the ideal gas. One comparison examines
corresponding equations of state of the two gases. Such a
comparison is shown in Table II, using the fact that N
=2.03X% 107 VT?. In this view, the pressure and internal en-
ergy functions are remarkably similar if the dependent vari-
able N is displayed explicitly for the photon gas. Thus for
example, the average energy per photon in a photon gas is
2.7 kT, compared with 1.5 kT for the ideal gas. Similarly,
the pressure P of the photon gas is 0.9 NkT/V compared
with NkT/V for the ideal gas. Keep in mind, however, that N
is not an independent variable for the photon gas, so the
similarities are strictly formal. The entropy functions are
very different looking for the photon and ideal gases. Nota-
bly, the entropy per photon is 3.6k, independent of tempera-
ture.

A numerical comparison is shown in Table III. The ideal
gas is taken to have the mass of monatomic argon and is at
300 K and normal atmospheric pressure. The numerical val-
ues of N, U, P, and S for the photon gas are all approxi-
mately 10 or more orders of magnitude smaller than for the
ideal gas, which is why we can ignore the photon gas when
discussing the thermodynamics of an ideal gas in the vicinity
of room temperature and atmospheric pressure.

On the other hand, for sufficiently high temperatures, the
number of photons can exceed the number of ideal gas atoms
in an equal volume V. Indeed, it is straightforward to show
that if 1.00 mol of argon ideal gas is at standard atmospheric
pressure, 1.01X10° Pa, the corresponding average number
of photons exceeds the number of atoms for any V if T
>1.38X10° K. The equations in Table II imply that for T
~1.41x10° K, the ideal and photon gases have nearly the
same internal energies and pressures, while the ideal gas en-
tropy is still significantly larger than the photon gas entropy.
Of course, because of the T° behavior of N and S, and the T*
behavior of P and U, the photon gas will dominate the ideal
gas in all respects for sufficiently high 7. In this discussion
we have ignored the ionization of the ideal gas atoms that
would occur at such high temperatures.

Other comparisons are possible. For example, the ideal
gas entropy becomes negative for sufficiently small 7 and
diverges to negative infinity in the limit 7—0. This inad-

Table III. Numerical comparison of classical ideal and photon gas functions.
Here the ideal gas is 1.00 mol of monatomic argon at P=1.01X 10° Pa,
V=247x10"? m*, and T=300 K.

Function Classical ideal gas Photon gas
N 6.02X 10% atoms 1.35X 10" photons
U 3.74X10% J 1511077 ]
P 1.01X10° Pa 2.04X107° Pa
N 155 J/KK 6.71x1071° J/K
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equacy of the ideal gas model comes from its classical char-
acter. In contrast, the photon gas entropy approaches zero in
the 7=0 limit. Similarly, the ideal gas constant volume heat
capacity is constant and remains so in the zero temperature
limit, unlike real gases, whose heat capacities approach zero,
consistent with the third law of thermodynamics. The photon
gas heat capacity at constant volume, C,=4bVT>, ap-
proaches zero in this limit, as the number of photons ap-
proaches zero. The behavior of the photon gas reflects its
quantum mechanical nature.

The ideal gas gives no indication of the condensation phe-
nomenon that a real gas experiences at temperatures below
its critical temperature. As a real gas is compressed isother-
mally at a temperature below its critical temperature, part of
it begins to condense into the liquid state, keeping the pres-
sure constant. Although it is a very different kind of system,
with very different physics, the photon gas can shed light on
this phenomenon because under isothermal compression,
photons get absorbed, becoming part of the energy of the
walls, providing an analogy to the vapor-to-liquid transition:
the photons play the role of the vapor molecules, and the
absorbed energy of the walls are the analog of the liquid
molecules. The energy of compression to zero volume for the
photon gas is the rough analog of the heat of condensation
for the real gas.

For the photon gas, the pressure remains constant as the
volume decreases at constant temperature because the num-
ber of photons decreases while the energy of the walls in-
creases. For a real gas, the pressure remains constant during
isothermal compression because the number of gas mol-
ecules decreases as gas molecules become liquid molecules.
Condensation phenomena occur because of attractive forces
between molecules, while photon absorption occurs because
atoms and molecules continually absorb and emit radiation,
as their electronic energies increase and decrease. Although
the physics differs for the two phenomena, both are charac-
terized by constant temperature, constant pressure, and a
variable number of gas particles. Discussion of these matters
can shed light not only on radiation, but on the phenomenon
of condensation.

IV. TWO BRIEF EXAMPLES

Perhaps the most exciting example of a g)hoton gas is the
cosmic microwave background radiation.'® The latter is in
essence a gas of “old” photons that was created in the early,
hot Universe approximately 13 billion years ago, and which
has cooled to 2.7 K. Inserting the latter temperature and the
value of r in Eq. (I11) into Eq. (10) gives N/V
=416 photons/cm>. Such photons, which make even dino-
saur bones seem rather young, are in our vicinity all the time.
An awareness of the photon gas opens the door to an under-
standing of this remarkable phenomenon.

A second example uses a well-known result from kinetic
theory'” together with Eq. (10). Suppose a photon gas exists
in a cavity within a solid that is at temperature 7', and that
photons can leak out through a small opening in the walls.
The kinetic theory result for the particle flux is $(N/V)c
= ircTS, and the energy flux, measured in watts/m?, is
HN/V)(UIN)=3cbT*. This result is the well-known energy
flux from a blackbody, where c¢b/4=0=5.67X 108
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Wm 2K *, is the Stefan—Boltzmann constant. In appropri-
ate contexts, one can move on to study Planck’s radiation
law and, ultimately, quantum mechanics.

V. CONCLUSIONS

The photon gas can enrich the introduction to thermody-
namics. Its basic equations lead students into new territory
involving creation and annihilation of photons, which pro-
vides a thought provoking introduction to modern physics
ideas.

An important related point is that photons are everywhere.
That is, because all matter radiates, it is literally impossible
to have a region of space that is free of photons. In this
sense, the photon gas has the distinction of being ubiquitous,
another point that can pique the intellectual curiosity of stu-
dents.

Despite the evident richness of the photon gas, its equa-
tions of state are tractable and have straightforward interpre-
tations. In addition to its potential for enriching the study of
thermal physics, the photon gas serves as a good foundation
for subsequent introduction to cavity radiation.

In summary, the photon gas has much to offer teachers and
students. Its study can supplement the ideal gas or can be
initiated in a course on modern physics. A more in-depth
treatment is appropriate for junior or senior level thermal
physics.
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APPENDIX

The objective of the Appendix is to derive Egs. (1) and
(2). Kinetic theory enables us to deduce a simple relationship
between the internal energy U and pressure P of a photon
gas,

1 u(r,v) 1
P(T)= 3 v 3 u(T). (A1)
The right-hand side defines the energy density u(T).

To obtain Eq. (Al), we make several assumptions. First,
we assume isotropy, namely, the average number of right-
ward moving photons within a specified range of velocity is
the same as the corresponding average number of leftward
moving photons. Denote the number of photons per unit vol-
ume with x components of velocity between c¢, and c,
+dc, by n(c,)dc,. The assumed isotropy implies n(c,)
=n(—c,). (Because photons all have speed c, c, varies
solely because of differing velocity directions.) Integration
over ¢, gives

fc n(cx)dcx=2fcn(cx)dcx=g, (A2)

e 0 14
where N is the (average) number of photons. The function
Vn(c,)/N is a probability distribution function that can be
used to calculate averages such as

— (¢ Vn(c,) cVn(c,)
2 X 2 X 2
= =2 . A3
cy f—c N Cx dc, fo N Cx dc, (A3)
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The last step follows because n(cx)c)zc is an even function of
¢, . Equation (A3) will be used in our derivation of Eq. (A1).

Our second assumption is that there is a well-defined av-
erage photon energy (e), which depends solely on the wall
temperature and not on the system volume V. This assump-
tion is motivated by the expectation that the energy distribu-
tion of the emitted photons depends on the wall temperature.
In contrast, the average number of photons N must depend
on both temperature 7 and volume V because in equilibrium,
the absorption and emission rates can be equal only if N
achieves a sufficiently large value, which increases with V.
Our last assumption is that N is proportional to the system
volume; that is, N(T,V)=n(T)V. We now proceed with the
kinetic theory derivation.

Fix the right wall in Fig. 1 and denote the container’s
horizontal length by L and its cross sectional area by A.
Choose a small time interval At<<L/c, and consider right-
ward moving photons with x-components of velocity be-
tween ¢, and c,+dc,, located within distance ¢, At from
the right wall. The latter region has spatial volume Ac, Az,
and an average number of photons, (Ac,Af)n(c,)dc,,
within it will collide with the right wall in time interval Az.
The momentum magnitude for a photon with energy e is e/c
and the x component of its momentum is (e/c)(c,/c). In an
elastic collision with the right wall a photon’s momentum
change is 2(e/c)(c,/c), and the average force it exerts on
the wall during time A7 is 2ec, /(c2Ar).?° The average force
for all such collisions by photons with average energy (e)
and x component of velocity between c, and c,+dc, is
(2{eYc /c?)(Ac)n(c)de, .

If we integrate over c, from O to ¢ and divide by area A,
the average pressure on the wall from photons impinging at
all angles is

2

e) (¢ e)N— 1 (e)N
p=2 [weoctae 0= LON
The penultimate step follows from Eq. (A3) and the last step
follows from the isotropy condition, cf=c2/3. In Eq. (A4),
N{e)=U, the internal energy of the photon gas. With our
assumptions that (e) is solely a function of 7 and N
=n(T)V, Eq. (A4) reduces to Eq. (Al), P(T)=3u(T),
where u(T)=U/V. It is clear from Eq. (A1) that pressure is
solely a function of temperature and thus, the pressure—
volume isotherms for a photon gas form a family of
constant—pressure curves. We now use the forms P=P(T)
and U=u(T)V, along with the Carnot cycle in Fig. 2 to
derive Eq. (1). Along segments 1-2, 2—3, 3—-4, and 41, the
internal energy changes of the photon gas are AU,
=u(T)V, AUp=—5V"* u(T)dV, AUy=—u(T)(V
+AV), and AU, =0, respectively. Because U is a state
function, these changes must add to zero along the cycle.
Simplification occurs when 7,—T.<T, and AV<V, in
which case we replace AV by dV. Then the addition of the
four internal energy changes gives u(T,)V—3u(T)dV
—u(T.)(V+dV)=0, where T.<T<T,. Replacement of
u(T) with u(T,) induces an additive error <du=u(T))
—u(T_.). Thus to first order in du and dV the sum of the

internal energy changes around the cycle reduces to
Vdu— 5udV=0. (A5)
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The individual entropy changes of the photon gas along
the Carnot cycle are AS,=3u(T,)V/T,, AS,;=0, ASy,
=—3u(T.)(V+dV)/T,, and AS, =0, respectively. Be-
cause S is a state function, these changes also must add to
zero along the cycle. Using dV<V and dT=T,—-T.<T,,
we have 1/T,~(1—dT/T,)/T., and the condition for zero
entropy change along the cyclic path becomes

4[(w(Ty)—u(T )V w(T.)dV  u(T,)VdT]
3 T, 1. T B

(A6)

Replacing 7. with T and T, with T+dT, and retaining only
first order terms, Eq. (A6) becomes

uVdr
Vdu—udV— T =0

(A7)

We can eliminate dV by combining Egs. (A5) and (A7) to
obtain

ld udT
Z M—? .

(AB)
Finally, integration of Eq. (A8) gives u(T)=bT", which is
equivalent to Eq. (1). As mentioned, the numerical value of b
is obtained from statistical mechanics. The combination of
Egs. (1) and (A1) gives Eq. (2).
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Lissajous Figure Drawing Device. Lissajous figures are the resultant of two simple harmonic motions at right angles to each other. In this dedicated device,
the SHMs are provided by two pendula swinging at right angles to each other. Horizontal rods coupled to the tops of the pendula drive a stylus P that scrapes
the soot from a smoked glass plate held on the stage of the overhead projector. The audience thus sees a black screen with the figure being traced out in white.
The illustration is from J. A. Zahm, Sound and Music, second edition (A. C. McClurg & Co., Chicago, 1900), p. 409 (Notes by Thomas B. Greenslade, Jr.,
Kenyon College)
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