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The Spin-Statistics Theorem and 
Identical Particle Distribution Functions

by Dwight E. Neuenschwander

In the restaurants of some countries, the maître d’ will seat your party at a table already 
occupied by strangers if the table has sufficient empty chairs. In other cultures, new diners 
expect to be seated at empty tables even when occupied tables are surrounded by sur-
plus seats. Elementary particles, and composites made of them, fall analogously into two 
categories: bosons and fermions. Bosons readily share the same state, analogous to the 
first group of diners. Fermions prefer solitude, like the second group of diners. This article 
offers a simple argument for their respective distribution functions that describe how a 
system of identical particles populates the states available to them.

Elegant Connections in Physics

	 Since the most stable configuration of 
a system typically finds it in the state of 
lowest energy, why don’t all the electrons 
in an atom reside in the 1s orbital? If they 
did, there would be no chemistry, and thus 
no biology and no life—nor would metals 
conduct electricity, and white dwarf stars 
would collapse into black holes. The uni-
verse would be very different indeed, and 
we would not be around to appreciate it! 
The Pauli exclusion principle formally ar-
ticulates the hypothesis that electrons, as 
fermions, do not all collapse into an atom’s 
1s orbital; only two of them can live there, 
and then only with opposite spins, to not 
be in the same space-spin state.  
	 The exclusion principle grew out of the 
realization that the discrete quantum states 
for electrons could not, by themselves, 
explain the periodic table of the elements. 
The crucial clue towards a resolution came 
in 1924, when Edmund Stoner published 
a paper noting a correlation between the 
number of electron states of alkali metals 
placed in a magnetic field and the number 
of closed-shell electrons in noble gases.
[1,2] From this observation Pauli realized 

the sequence of closed-shell electron num-
bers 2, 8, 18,…is equivalent to the rule that 
no state can hold more than one electron. 
To implement this rule he had to invent an 
extra quantum number. It was soon iden-
tified with electron spin, when Samuel 
Goudsmit and George Uhlenbeck pro-
posed it in the autumn of 1925.[3] Pauli’s 
spin-statistics theorem of 1940 general-
ized the argument about spin and statistics.
[4] Its flip side, that bosons can coalesce, 
finds dramatic illustration in superfluidity 
and superconductivity, variations of Bose-
Einstein condensation.
	 The word “state” carries three contexts 
in this discussion: macroscopic thermo-
dynamic states, and microscopic states in 
two varieties—single-particle and mul-
tiparticle microstates. The macroscopic 
state of a bottle of hydrogen gas in thermal 
equilibrium is characterized by observ-
ables such as pressure, temperature, and 
volume. Microscopically, each atom has a 
set of available internal states, such as the 
atomic orbitals with spin, ψnlml ms that de-
scribe the electron relative to the nucleus. 
For other purposes, as in the kinetic theory 

of gases, it may be sufficient to model a 
hydrogen atom as a solid point mass mov-
ing with momentum p and located at posi-
tion r. Here the atom’s microstate consists 
of six numbers, the momentum and posi-
tion coordinates in phase space. 
	 Between macrostates and single-par-
ticle microstates are states of a system of 
N particles. For N = 2, with one particle 
in the single-particle state ψa and the other 
in microstate ψb, how simple it would be 
mathematically if the two-particle state 
was merely the product of the two one-
particle wave functions, ψ = ψaψb. This 
works fine for systems of distinguishable 
particles, such as the deuteron—a proton 
and a neutron bound together.[5] But the 
plot thickens when the particles are indis-
tinguishable. If ψ = ψaψb was the whole 
story for identical particles, the universe 
would be rather sterile. Simplicity is beau-
tiful, but complexity can be essential.
	 Statistical mechanics aims to under-
stand macroscopic states in terms of mi-
crostates. The next section reviews how 
this game is played.  
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Statistical Mechanics Review 
 
 Consider a system of N molecules, each in one of the many 
possible microstates available to it (“molecule” here is a generic 
term which could also denote a nucleus or a neutrino, depending 
on the problem). Label the various single-particle microstates as 
state a, state b, and so on.  Let ni denote the number of 
molecules in state i.  If I were to reach into a box of these 
molecules and pick one at random, the probability Pi of selecting 
one in state i is ni /N.  Since every molecule must be in one 
microstate or another,  
 
!!! =    !!

!!
= 1.                             (1) 

 
If Ei denotes a molecule’s energy when in state i, and U the total 
energy carried by all the molecules (the internal energy of 
thermodynamics), then 
 
! =    !!!!! = !   !!!!  ! = ! ! ;            (2) 
 
!  denotes the average molecular energy.    

 A primary responsibility of statistical mechanics expresses Pi  
in terms of Ei and the ambient thermal energy kT in which the 
molecules find themselves, when in thermal equilibrium with 
their surroundings at temperature T.  Boltzmann’s constant k = 
1.381×10─23 J/K forms a conversion factor between temperature 
and energy. A derivation of Pi as a function of T can be 
approached at least two ways: through the “method of most 
probable distribution,”[6] or with phase space arguments based 
on Liouville’s theorem.[7] One finds   
 
!!   =   

!
!
  !!!!/!",                            (3) 

 
where the normalization factor Z, determined by Eq. (1), is the 
“partition function,” 
 
  ! =    !!!!/!"! .                                 (4) 
 
In terms of Z, the computation of U can be expressed succinctly. 
From Eqs. (2) and (3), 
 
! =   !

!
!!!   !!!!!,                     (5)  

 
where β = 1/kT.  Thanks to a nice property of the exponential,  
 
!  !!" =  !

!"
 !!",  Eq. (5) becomes 

 
! =   −! !

!"
ln !.                              (6) 

 
 The partition function offers a window from the macroscopic 
world of thermometers and pressure gauges into the microscopic 
world of atomic structures and interactions.  For example, 
consider a system of N identical switches, each one either off 
(with energy E1 = 0) or on (with energy E2 = ε), so that Z = 1 + 
e−εβ . To see if a real macroscopic system can be well modeled 
by such a set of switches, we could compare the measured heat 
capacity C = dU/dT  to the prediction of it calculated from Z. 
  
 
 

Indistinguishable Particles 
in Quantum Mechanics  
 
 Now let’s enlarge our perspective and speak of the states of 
an N-particle system. As before, each individual particle will be 
in a single-particle microstate of energy Ei. A possible N-particle 
state is specified by a list 
 
!  = (n1, n2, n3, …),         (7) 
 
where !!! =   !. Each ! labels one possible state of the N-
particle system. The energy !! of state ! is the sum 
 
!! = !!! !!.          (8) 
 
In this context the partition function of Eq. (4) becomes the sum 
over the allowed !: 
 
!! =    !!!!!!   = !!! !!!!!! .     (9) 
 
For example, suppose N = 2 and each particle can be in one of 
three one-particle microstates. The possible states of the two-
particle system are: 
 
1 =  (1,1,0) 2 =  (1, 0, 1)   3 = (0, 1, 1) 
 
4 = (2, 0, 0) 5 = (0, 2, 0)       6 = (0, 0, 2) 
 
with respective energies 
 
!! = E1 + E2 !! = E1 + E3  !! = E2 + E3 
 
!! = 2E1  !! = 2E2  !! = 2E3. 
 
From Eq. (9) the partition function reads 
 
!! =    !!!!! +   !!!!! + ⋯+    !!!!!   
 
     = !!!!!!!!!!   + !!!!!!!!!!   + ⋯+  !!!!!!  
  
     = !!!! +  !!!! +  !!!! +  !!! +   !!! +   !!!,  (10) 
                        
where 
 
!!   =    !!!!! .                (11) 
 
With N held fixed some !  do not occur, as in our illustration 
where N = 2 excludes (0,0,0) and (1,1,1). To work with fixed N 
means the set of all allowed ! must be known before ZN can be 
evaluated.  That is feasible when N = 2, but statistical mechanics 
deals with systems that contain on the order of 1023 particles. 
However, if N were not fixed, then each ni in every ! could 
range over 0, 1, 2,…, Nmax.  To determine Nmax for identical 
particles, the spin-statistics theorem steps in. Such generality 
makes Z summable.  
 “Identical” here means that no method exists in principle to 
distinguish one particle from another. This raises concern about 
possibly double-counting microscopic states.  If particles 1 and 2 
in a two-particle system exchange places in their one-particle 
microstates, should that swapped configuration be counted as 
the same, or as distinct, from the original? According to the 

Statistical Mechanics Review Indistinguishable Particles
in Quantum Mechanics 
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rules of quantum mechanics,[8] one sums over both possibilities, 
which interfere with one another through the cross terms in |ψ|2 
= |ψoriginal + ψexchanged|2.  The N = 2 wave function therefore has 
two options for including one particle in state a and an identical 
one in state b: 
 
ψab(1,2) = corig ψa(1)ψb(2) + cexch ψa(2)ψb(1).    (12) 
 
If these exhaust the possibilities for arranging the two particles, 
then  |corig|2 + |cexch|2 = 1. But  |corig| = |cexch| because the particles 
are identical. Thus cexch = corig eiδ, where i2 = −1 with δ a real 
number. Equation (12) then becomes 
  
ψab(1,2) = !

!
[ψa(1)ψb(2) + eiδ ψa(2)ψb(1)].       (13) 

 
Now introduce the exchange operator Є that interchanges 
particles 1 and 2: 
 
Єψab(1,2)  =  ψab(2,1).              (14) 
 
If the interparticle potential is invariant under the exchange, then 
the exchange operator commutes with the Hamiltonian, and 
ψab(1,2) is an eigenstate of both Є and the Hamiltonian. Besides 
the energy eigenvalue of the latter, there also exists an 
eigenvalue λ of Є, which means that under the operation of Є 
the eigenstate is merely rescaled but otherwise unchanged: 
 
Є ψab(1,2) = λ ψab(1,2).                 (15) 
 
Therefore  
 
Є2 ψab(1,2)  = λ2 ψab(1,2).             (16) 
 
But in addition, 
 
Є2 ψab(1,2) = Є ψab(2,1) = ψab(1,2)          (17) 
 
and thus λ2 = 1, so that λ = ±1.  Operating with Є on the ψab(1,2) 
of Eq. (13) gives 
 
Є ψab(1,2) = !

!
 [ψa(2)ψb(1) + eiδ ψa(1)ψb(2)].    (18) 

 
By virtue of Eq. (15), this equals 
  
Є ψab(1,2) = ± !

!
  [ψa(1)ψb(2) + eiδ ψa(2)ψb(1)].    (19) 

 
Comparing Eqs. (18) and (19) shows that eiδ = ±1. Therefore, 
Eq. (13) becomes 
 
ψab(1,2) = !

!
 [ψa(1)ψb(2)  ±  ψa(2)ψb(1)].         (20) 

 
 What property of the particles determines which sign 
applies? One may define an elementary particle as a state of 
definite mass and spin. The spin S, the intrinsic angular 
momentum carried by the particle, becomes quantized in units of 
the reduced Planck’s constant ħ.  In particular, to say a particle 
carries spin s means that its spin vector squared has magnitude 
ħ2s(s+1).  One component of S can also be simultaneously 
measured, such as Sz = msħ, where ms takes on the 2s+1 possible 

values s, s − 1,…, −s. The quantum number s can be one of the 
possible values 0, !

!
, 1, !

!
, 2, !

!
, 3, …  Particles with integer s are 

bosons, and particles that carry half-odd-integer s are fermions. 
 Pauli’s 1940 proof of the spin-statistics theorem[4] makes 
consistent with relativistic quantum field theory the assertion 
that identical fermions use the minus sign in Eq. (20), and 
identical bosons use the plus sign. The Pauli exclusion principle 
emerges as a consequence: If two fermions are identical, they 
cannot be in the same state because, by Eq. (20), ψaa(1,2) = 0. 
But for identical bosons, the total wave function is enhanced: 
|ψaa(1,2)|2 = 2|ψa|2.  Consequently, calculations of the root-mean-
square distance separating identical bosons or fermions leads to 
the (misnomered) “exchange forces,” whereby identical bosons 
congregate closer together than do distinguishable particles, and 
identical fermions are farther apart.[9]   
   Although the result of the spin-statistics theorem is simple to 
state, connecting it to deeper principles is not simple. In the 
Feynman Lectures, Richard Feynman remarked, 
 
 Why is it that particles with half-integral spin are Fermi 
particles whose amplitudes add with the minus sign, whereas 
particles with integer spin are Bose particles whose amplitudes 
add with the plus sign?  We apologize for the fact that we cannot 
give you an elementary explanation.  An explanation has been 
worked out by Pauli from complicated arguments of quantum 
field theory and relativity.  He has shown that the two must 
necessarily go together, but we have not been able to find a way 
of reproducing his arguments on an elementary level…This 
probably means that we do not have a complete understanding 
of the fundamental principle involved…”[10] 
 
Feynman’s interpretation of what it means to “understand” a 
point of physics is extremely suggestive. In a 1994 contribution 
to a “Question and Answer” column in the American Journal of 
Physics, this Feynman quote was recalled, then followed with 
the question “Has anyone made any progress towards an 
‘elementary’ argument for the spin-statistics theorem?”[11] This 
question generated a lively discussion over the next three 
years,[12] culminating in the book Pauli and the Spin-Statistics 
Theorem by George Sudarshan and Ian Duck.  They wrote, 
 
 “Everyone knows the spin-statistics theorem but no one 
understands it.  The key word of course is ‘understand.’…The 
question is whether physics contains this fact, and if so how does 
this come about; or whether physics is merely consistent with 
the spin-statistics theorem and that some deeper explanation 
exists…[13] 
  
 Whether or not we “understand” the spin-statistics theorem, 
we can nevertheless apply it to systems of N identical bosons or 
fermions. 
 
 
 
Distributions of Identical Bosons or Fermions 
 
 Returning to ZN, we now allow every ni to range from 0 to 
Nmax in every !. According to the spin-statistics theorem, Nmax = 
1 for identical fermions, and Nmax = ∞ for  identical bosons.  In 
our previous example of particles each having three available 
microstates, as identical bosons the states of the multiparticle 
system exhibit these options, grouped by the value of N: 

Elegant Connections in Physics

Distributions of Identical Bosons or Fermions
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{!} =  {[ (0,0,0) ]N = 0,  
 
 [ (1,0,0), (0,1,0), (0,0,1) ]N = 1, 
 
 [ (2,0,0), (0,2,0), (0,0,2), 
   (1,1,0), (1,0,1), (0,1,1)]N = 2,  
 
 [(3,0,0), (0,3,0), (0,0,3), 
  (2,1,0), (2,0,1), (1,2,0), 
 (1,0,2), (0,1,2), (0,2,1), (1,1,1)]N = 3, …} 
 
continuing thus as N → ∞; for instance, the N = 4 group includes 
(4,0,0), (1,0,3), (2,1,1), (2,2,0) and so on. The partition function 
for this system of identical bosons with variable N becomes 
 
Zbosons = [1]N =0  + [x1 + x2 + x3]N = 1  
 
 + [!!! +   !!! +   !!! +   !!!! +  !!!! +  !!!!]N = 2  
 
 + [!!! +   !!! +   !!! +   !!!!! +   !!!!! + 
 
    !!!!! +   !!!!! + !!!!! +  !!!!! +   !!!!!! ]N = 3 + …  
 
 = (1 + !! +  !!! +   … ) 1 +  !! +   !!! + ⋯  
   1 +   !! +   !!! +   … .              (21)   
 
Each factor is a geometric series, 
 
1 + ! +  !! +  !! +   … =      !

!!!
  ,              (22)  

 
which converges for |x| < 1, and thus 
 
Zbosons = (1 − !!)!!!

!!! .             (23) 
            
For identical fermions, in this instance where each one has three 
possible microstates, the list of N-particle states is much shorter: 
 
{!} =  {[ (0,0,0) ]N = 0,  
 
 [ (1,0,0), (0,1,0), (0,0,1) ]N = 1, 
 
 [ (1,1,0), (1,0,1), (0,1,1)]N = 2,  
 
 [(1,1,1)]N = 3 }, 
 
which yields 
 
Zfermions = 1 +  !! +  !! + !! 
 
                                +  !!!! +   !!!! + !!!! +  !!!!!! 
 
             = (1 + !!!

!!! ).         (24) 
 
More generally, with M one-particle microstates available to 
each member of an ensemble of identical particles, the partition 
function reads 
 
Z = (1   ±   !!)±!,!

!!!          (25) 
 
where the plus sign in Z holds for fermions and the minus sign 
for bosons. 

 In allowing the possibility of an open system of variable N, 
the Ei are shifted.  The first law of thermodynamics says that the 
internal energy of a closed system increases with the addition of 
heat and/or the performance of work; in the sign conventions 
typically used by physicists, we write dU = đQ  – đW. But 
allowing particles to enter or leave the system can also change 
the internal energy. For instance, the new particles might 
undergo exothermic chemical reactions with the original ones. 
In such circumstances dU picks up an addtional term µdN, 
 
  = !"# − !"# +   !"#,                     (26) 
 
where dN is the particle number increment (modeled as 
continuous since N is typically huge) and µ denotes the chemical 
potential,[14] the increase in internal energy per particle when 
particles are added to the system. The effect of µ can be starkly 
seen in processes of constant entropy and volume. In a closed 
system (ΔU)S,V = 0, so that by Eq. (2),  
 
0 =   Δ ! !   =   !Δ !!!!! .      (27) 
 
In contrast, in an open system, (Δ!)!,! =   !Δ!, 
which with the help of Eqs. (1), (2), and (26) says 
 
0 =   Δ !   ! −   !"    
 
= !  Δ    (!! −   !! !!  ] .                            (28) 
 
Thus the xi in Eq. (11) and thereafter get replaced with 
 
!!   =    !!!(!!!  !).           (29) 
 
 To calculate the average number of molecules !!  found in 
state i, sum over the multiparticle states {!}, each with 
probability !! =

!
!
!!!!!  : 

 
!! =    !!

!

!!   

 
         =    !

!
  !!! !!! !!(!!  –  !)!  

 
         =   − !

!
   !
!!!

ln !,         (30) 
 
where !!! !!!= 1 for i = j  and 0 for i ≠ j. For indistinguishable 
fermions, Eq. (29) becomes 
 
!! ! =   

!!
!! !!!!   !  !

 ,          (31) 
 
and for indistinguishable bosons, 
 
!! ! =   

!!
!! !!!!   !  !

 .          (32) 
 
Since the partition function is a sum over states and not merely a 
sum over energies, these distribution functions on the right-hand 
sides of Eqs. (31) and (32) also pick up a factor gi for any 
polarization or spin multiplicities.   
 Although N was allowed to vary in order to  derive these 
distributions, in applications they hold whether or not N is 
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varied. Let us illustrate their use in Bose-Einstein condensation 
(BEC). 
 Its story begins in 1924 when Satyendra Bose sent to Albert 
Einstein a paper about counting the quantum states of photons. 
Bose had trouble getting his paper accepted, but Einstein was 
impressed, translated the paper from English into German, and 
submitted it on Bose’s behalf to the Zeitschrift f!r Physik, where 
it was published under Bose’s name.[15]  Then Einstein 
extended Bose’s arguments to massive particles such as atoms. 
He showed that if atoms with integer spin were cooled to very 
low temperatures, a critical temperature exists below which the 
atoms coalesce into their state of lowest energy, forming a 
macroscopic object.   
 Picking up this idea, in 1938 Fritz London suggested that 
such condensates explained the superfluidity of helium-4.[16] 
Helium was first liquefied by Kamerlingh Onnes in 1908, when 
he allowed it to reach its boiling point at 4.2 K.  Below 2.17 K, a 
discontinuity in the heat capacity occurs, the density drops, and 
some of the liquid becomes a “superfluid” with zero viscocity. It 
will creep through microscopic holes in vessels thought to be 
leak proof, and climb up a vertical tube or wall (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The number density of atoms needs to be high, and the 
temperature low, so the de Broglie wavelengths are long and 
overlap. To make Bose-Einstein statistics relevant, the atoms 
must be identical, a purity difficult to achieve when starting 
from macroscopic samples. Under these stringent conditions, the 
overlapping wave functions of the individual helium-4 atoms 
coalesce into a coherent state with macroscopic effects.  
 Superconductivity, first demonstrated by Onnes in 1911 with 
mercury, occurs below a critical temperature (4.1 K for Hg), 
when the metal loses all electrical resistance. The mechanism for 
such type I superconductivity in pure metals (distinct from type 
II high-temperature superconductivity in alloys) was not 
understood until the mid-1950s, with the so-called BCS theory 
of John Bardeen, Leon Cooper, and Robert Schreiffer. The 
crucial insight was that electrons, which are fermions, can pair 
up through interactions with the metal’s lattice.  The negatively 
charged electrons repel each other but are attracted to the 
positive charges in the lattice. Two electrons can thereby interact 
acoustically through lattice vibrations, even though they are far 
apart compared to the lattice spacing, quenching their Coulomb 
repulsion. These “Cooper pairs” carry integer spin, are subject to 
boson statistics, and can condense into a composite state whose 

energy leaves a gap of some 10−3 eV below the excited states.  
When kT is less than the gap, collisions are minimized, resulting 
in no resistance.[17]  
 Because photons are bosons, we might wonder if 
macroscopic light waves are some sort of collective state. 
Coherent radiation produced by a laser, where so many photons 
have the same phase, polarization, and frequency, suggests a 
candidate occurrence, at room temperature.  
 We can recreate the BEC prediction by starting with Eq. 
(32), assuming a gas of nonrelativistic, noninteracting bosons, 
each of mass m and carrying kinetic energy E = p2/2m. The 
microstate i means (p,r), a state of specific momentum and 
location. The number of bosons within volume dV and having 
momentum between p and p+dp is therefore 
 
!" =    !(!,!) !  4!!!!"  !"/ℎ!,      (33) 
 
where h is Planck’s constant, here taking the role of a phase-
space pixel to make the integration measure a dimensionless 
number for counting particles. I am supposing the momentum 
vectors point randomly in all directions, and assume spin 0 so 
that gi = 1 (otherwise a g gets carried along). Equation (32) 
becomes 
 

!(!,!) !   =     
!  !!!!!/!!

!!!!!!!!/!!
 ,                    (34) 

where ! =   !!".  Our objective is to calculate, as a function of 
temperature, the number of bosons no residing in the lowest-
energy microstate.  That ground state has p =  0, which from Eq. 
(34) gives the constraint no = w/(1− w), implying that 0 ≤ w ≤ 1 
since no can range from 0 to ∞.  Thus we complete Eq. (33) by 
counting bosons in the zero-momentum ground state: 
 

! =   !! +  
!!"
!!
   !!!!!!/!!

!!  !"!!!!/!!
!
!     !!!".        (35) 

 
With the change of variable y2 = p2/2m, and using the geometric 
series of Eq. (22) to integrate term by term, we find that  
 
! =   !! +  

!"(!)
!!

  ,                          (36) 
 
where a temperature-dependent correlation length λ emerges, 
 

! =    !!

!!"#$

!
!                                  (37) 

 
and 
 
! ! =    !!

!!/!
!
!!!  .                                (38) 

 
These results turn Eq. (36) into 
 
  !!
!
=    !

!
  −   !(!)

!!
 ,                                (39) 

 
which will be >0 provided N/V > !(w)/λ3.  The maximum value 
of !(w) occurs at w = 1, where !(1) = ζ(3/2) ≈ 2.612 offers an 
instance of the Riemann zeta function.  If N/V > !(3/2)/λ3 then 
no > 0.  The critical number density occurs when N/V = 
!(3/2)/λ3, giving a critical temperature 

Fig. 1. Liguid helium creeping up the sides of the cup, going over the 
rim, and dropping outside. Photo by Alfred Leitner (1963), public domain.
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!! =   
!!

!!"#
!/!
!.!"#

!/!
,                           (40) 

 
so that, for T < Tc, Eq. (39) may be written 
 
!!
!
= 1 −   !

!!

!/!
,                                    (41)   

 
with no/N = 0 for T > Tc (an example of a so-called second-order 
phase transition).  
 The first demonstration of BEC with non-helium atoms 
occurred in 1995 when a group at the University of Colorado 
and NIST-JILA led by Eric Cornell and Carl Wieman  
made a condensate with rubidium-87 atoms cooled to 170 nK. A 
few weeks later, Wolfgang Ketterle’s group at MIT produced a 
condensate with sodium-23 atoms.  For this achievement,  
Cornell, Wieman, and Ketterle shared the 2001 Nobel Prize in 
Physics.[18]   
 What about laser light as a collective effect of massless spin-
1 bosons? In November 2012 the first BEC in photons was 
demonstrated.[19]  
 In the logic of physics, what are we to make of the spin-
statistics theorem itself? The statement of the spin-statistics 
theorem is analogous, in its relation to the rest of physics, to the 
Planck-Einstein postulate E =hν; easy to state but (so far) not 
derived from any deeper principle.  The “proof of the spin-
statistics theorem” is not analogous to the demonstration that the 
work-energy theorem follows from F = ma; rather, the spin-
statistics proof shows consistency between the rest of known 
physics and the hypothesis of connecting spin to the plus/minus 
sign of Eq. (20). Sudarshan and Duck observed:  
 
“The spin-statistics theorem could conceivably be an essential 
ingredient of a more fundamental view of the world… 
  With such a point of view forced upon us, we should modify the 
meaning of ‘understand,’ and at the same time reduce our 
expectations of any proof the spin-statistics theorem.  What is 
proved…is that the existing theory is consistent with the spin-
statistics relation. What is not demonstrated is a reason for the 
spin-statistics relation…” 
…It is difficult to imagine a fundamental mechanism for the 
Pauli exclusion principle—upon which all depends—which 
predicates it…Must we reduce our demands on physics to 
require only consistency[?] Does an understanding of the 
‘Why?’ of the spin-statistics relation have no direct answer in 
physics? Or must physics be formulated to include it[?] The 
Pauli result does not explain the spin-statistics relation and 
cannot. [Those who seek an elementary explanation] must 
remain unsatisfied because the consistency of relativistic 
quantum mechanics and quantum field theory with the Pauli 
exclusion principle has every reason to be as complicated as 
these subjects are, not as simple and direct as the Pauli 
exclusion principle itself.”[20]  
 
For the foreseeable future we will have to leave it there! 
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