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10-2 THE INTRINSIC MAGNETIC MOMENT

OF SPIN 1/2 PARTICLES

The existence of spin has immediate consequences for physical systems. We shall see
later that the spin of the electron alters the Hamiltonian for the hydrogen atom (and by ex-
tension, for other atoms). The reason is that the electron has an intrinsic magnetic dipole
moment by virtue of its spin. Under certain circumstances it is possible to treat the elec-
tron spin as the only degree of freedom that an electron possesses: This happens when an
electron is localized inside a crystal lattice. When this is the case, the coupling of the
magnetic moment to an externally imposed magnetic field has consequences that will be
explored in this and the next section.
The magnetic moment is’
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Where g, the gyromagnetic ratio, is very close to 2.2 For such a localized electron, the
Hamiltonian in the presence of a magnetic field B is just the potential energy
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H=-M+B 4ch (10-22)
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The Schrddinger equation for the state () = ( Eg) is
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If B is taken to define the z-axis, and if we write Y@ = e (Z"), then the equation

becomes
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One eigenvalue is wy = egB/4m, and the corresponding solution is <(1)> The other eigen-

value is w, = —egBl4m, and the eigenvector is (?) If the initial state is

WO = (§> 024
then the state at a later time will be

—iwot
Yo = (“Ifew> (10-25)

IA classical charge —e moving in a circle with angular momentum L will form a current loop whose magnetic
moment is M = —eL/2m. Since spin has no “classical limit,” the justification for (10-21) has to be found
elsewhere. The relativistic Dirac equation yields this result, as well as the value g = 2.

The value of g = 2(1.0011596 ...) is one of the most accurately measured (and calculated) numbers in all of
physics. The theoretical and experimental values agree 0 the last decimal place, with the only theoretical
uncertainties coming from the still poorly understood short-distance properties of the fundamental particles.
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Suppose that at time ¢ = 0 the spin is in an eigenstate of S, with eigenvalue #/2, so that it
“points in the x-direction.” This means that

20 )o)=2()

that is,
(90
At a later time, .
(o) = —\lf—z <ee_:,r> (10-27)
At the time ¢,
(S = %—\}_—2 (Cadd e—iwot)<(l) (1)> % (e;i’j) = %cos 2wt (10-28)
Similarly,
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Thus the spin precesses about the direction of B with a frequency
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. = eB/2m, is called the cyclotron Jrequency. The same frequency of precession occurs
if the spin makes an angle 6 with the z-axis, rather than lying in the x-plane. For a mag-
netic field of 1T, the magnitude of w, = 0.9 X 10!! radjans/s.

It is worth commenting that the “motion” of the spin can easily be interpreted when
written in the Heisenberg picture. There we have

2(!)0 =

% = é [H, S)] (10-31)

With
H= ;f; S‘B=yS-B (10-32)
we can calculate
_l TIBIS, S+ BiS, S + BS, 5,
= %[—iﬁBz& + ihB,S,} = y(B X S),

Similar calculation for the other components yields

B0 - ysxB) (10-33)

This, however, is exactly the equation for the precession of a classical angular momentum
vector (associated with a magnetic dipole) subject to a torque due to a magnetic field. In this
form we easily see that the precession is not restricted to the case of spin’ 1/2. Given that the
magnetic moment of a system with angular momentum J is vJ, the same equation holds.
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10-3 PARAMAGNETIC RESONANCE

In a solid the gyromagnetic factor g of an electron is affected by the nature of the forces act-
ing in the solid. A knowledge of g provides very useful constraints on what these forces could
be, and it is therefore important to be able to measure g. This can be done by the paramag-
netic resonance method. The principle of the method is the following: We have a magnetic
field pointing in the z-direction, and the electron spin precesses about that direction. How fast
does it do so? If we could introduce a magnetic field that is perpendicular to the z-axis and ro-
tates with the spin, then the field would “see” an electron spin at rest. The component of the
electron spin that points in the x-y plane would preferentially align in a direction opposite to
the magnetic field to reach the minimum energy state. For those electrons not already aligned
in the minimum energy direction, a transition to the lowest energy will take place, and in the
process, energy—in the form of radiation—is given up. This can be detected and measured. !

It is not practical to have a magnetic field rotating with a frequency of the order |
of 10" radians per second. If, however, we have a magnetic field that points in the - |
x-direction, say, and oscillates with a frequency w, it may be viewed as a superposition of a
field rotating in the x-y plane clockwise with frequency w, and a field rotating counter-
clockwise with the same frequency, with the phase arranged so that the net effect is in the
x-direction. (This is analogous to obtaining a linear polarization out of the sum of two cir-
cular polarizations.) Only one of the components will travel in the same direction as the
precessing spin. The other component will move in a direction opposite to the spin pre-
cession, and its effect on the electron spin averages out to zero.

Consider an electron whose only degrees of freedom are the spin states, under the influ-
ence of a large magnetic field B, pointing in the z-direction and constant in time, and a small
oscillating field B, cos wt pointing in the x-direction. The Schrédinger equation now reads

o d(a®) _eshi( B B, cos wt \( a(t)
’ﬁ?d_z(b(t))_me (BI o 1—Bo )(b(t)) {0-24)

If B, = 0,
190 = 2 ) = wiatt)
20 — bt

so that a(r) = a(0)e™" and b(#) = b(0)e™. This suggests that if B, # 0 then we introduce
A(?) and B(?) as follows:
A®D) = a()e”

) 10-35
B() = b(t)e™ " ( )
where a(#) and b(7) obey (10-34).
If we also introduce the notation
egB
Wy = Wj (10-36)
then the equations for A(¢) and B(¢) read as follows
dA®D) _ .da(t) .
i 7l WA(®) + i I e
= —wA(t) + (wea(t) + w,b(@) cos wt)e’™” (10-37)

= w,B(f) cos wte*™

- %wlB(t)e(Ziwo—w)t
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In exactly the same way we obtain

dB(®) 1
dt 2

To obtain these equations in their final form we made use of the rorating wave approximation

w,A(f)e” @) (10-38)

cos wteZiwot — %(eﬁwo”'iwf + eZint—iwt) - % ei(ZwO—w)t (10_39)

The resonance condition @ = 2w, implies that the first term above will oscillate very
rapidly, and it contributes nothing on the average. We only used the second term in the ro-

tating wave approximation.
The two first-order differential equations can be combined into a single second-order

equation. We differentiate (10-37) and get

2 .
d“A(r) _ lw_li(ei(zwo—m);B(t))

d? 2 dt
- 22_1_ (2600 _ w)ei(Zwo—w)tB(t) . %l_ ei(Zwo—aJ)t dﬁ;t) (10_40)
_ _ dAD)  (w)?
= 2wy — w)i Jr (2) A®

To solve this differential equation, let us try the solution A(f) = A(0)e™Y. We get

~0? = —Qu, — W) — (%)2

This quadratic equation has two roots:

w o\, o
Q.= (wo - 5) + <w0 = 5) +4 (10-41)
We now write
A() = A e + A_t (10-42)
After a couple of lines of algebra this leads to

B() = — w% QA e + O_A_gi0) (10-43)

We can now finally write the solutions for a(#) and b(z). They are
a(t) = A(t)e ™
b(t) = B(t)e'™

Suppose that at time ¢ = 0 the spin is in the “up” spin state .. This means that a(0) = 1,
b(0) = 0, which translates into

(10-44)

Al =1 10-45
QA, +O.A_ =0 (0-43)
The solution is
Q.
A+ = —
. g* (10-46)
A_ - +
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We may now calculate the probability that at a time ¢, the system is in the “down”
spin state y_. That probability is "

Pt = [b@P = L |Q,4,6% + Q_A_dp
@i

_4( 2.0 ¥ Q. _ 02
P (Q_ - Q+) |t — -] (10-47)
_ 8 ‘Q+~Q—‘- 3 g
. w—% (m) 1- COS(.Q._ = Q+)t)
At resonance, when
w = 2w, (10-48)
(10-41) yields
@
= =
OQ.==* 5
This means that
P(® = 5(1 — cos w9 (10-49)

Off-resonance we have
2

Py=t P cos Vg — e + o) (10-50)
1

22wy — 0P+ w

which is small, since w > w,. At resonance the probability becomes of the order of unity.
Since the energy of the “up” state is different from that of the “down” state, this energy
difference, absorbed from the external field, is enhanced at resonance, when it matches
2w,. This allows us to determine g.

10-4 ADDITION OF TWO SPINS

In classical mechanics, angular momenta add vectorially. For example, if the angular mo-
mentum of the moon about the earth’s axis is S and the orbital angular momentum of the
earth about the sun is L, then there is meaning to the statement that the total angular mo-
mentum of the moon about the sun is

J=L+S8 (10-51)

Does this carry over to quantum mechanics? We will show that we can “add” two angular
momenta, but that the addition is not vectorial in the usual sense. We begin by consider-
ing the addition of two spins. An example of a two-spin system might be the ground state
of helium, which has two electrons, both with zero orbital angular momentum in the low-
est state. Thus the only contribution to the total angular momentum comes from the spins.
We ignore all other aspects of the problem and deal only with the spins.

Suppose we have two electrons, whose spins are described by the operators S, and S,.
Each of these sets of operators satisfies the standard angular momentum commutation
relations

[Sio Siy] = iASy, (and cycl.) (10-52)
and

[So S, = A5, (and cycl) (10-53)




