\[
F(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} F(\omega) d\omega \\
F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega t} F(t) dt
\]

Notice signs are different.

Pull out Fourier & Fourier Transformations.

Important: Be you can start w/ a difficult time-domain prob. That becomes easy in the frequency domain!

Time-Domain \hspace{1cm} \text{F.T.} \hspace{1cm} \text{Frequency-Domain}

- F(t) that solves some time-dependent diff eqn.
- Now it's just an algebraic sign (F(\omega))

Get your answer back in the time-domain. Inverse F.T.

\[F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} F(t) dt \]

\[f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega t} F(\omega) d\omega \]

\[\text{Laplace Transform} \]

Normalization \rightarrow no hw or test problems.

\[\delta(t) \]

\[\text{dirac delta function introduced next time} \]
\[F(t) = \frac{N}{\sqrt{2\pi}} e^{-t^2} \]

\[\int F(t) \, dt \]

Root mean square

\[\sigma = \sqrt{\sum (t-t_0)^2} \]

\[\sigma = \sqrt{\int (t-t_0)^2 \, dt} \]

\[\sigma \propto \Delta t \cdot \Delta \omega \]

\[\Delta t \cdot \Delta \omega = \frac{\hbar}{2} \]

where \(\Delta t \cdot \Delta \omega = \hbar \) constant

For Gaussian: \(\Delta t \cdot \Delta \omega \geq \frac{\hbar}{2} \)

\(t \) = time \quad \omega = \text{angular frequency} \]

\(\hbar = \text{quantum mechanical energy} \)

\[\Delta \omega \Delta \omega = \frac{\hbar}{2} \]

\(\Delta \omega \Delta \omega \geq \frac{\hbar}{2} \)

Heisenberg Uncertainty Relationship

\(\xi, \xi^2, \text{complementary observables} \)

you can only measure one or the other but not both at the same time

Some other complementary observables:

\(\xi P, \xi^2, \xi^3, P \xi^2, \xi^2 P, P \xi, \xi P \)

Another Example:

\[\text{Angular momentum} \]

\[\omega = \frac{2\pi}{\hbar} \]

\[F(w) \]

\[\text{finite wave train} \]

\[\text{slow sine not finite} \]

\[\text{Dirac delta function} \]
\[F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i \omega t} \, \text{Re} \{ F(i \omega) \} e^{i \omega u} \, du \, d\omega \]

-changing the minus sign -> taking complex conjugates —

\[F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i \omega t} \, \text{Re} \{ F(i \omega) \} e^{-i \omega u} \, du \, d\omega \]

Gives You:

\[F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i \omega t} \, \text{Re} \{ F(i \omega) \} e^{i \omega u} \, du \, d\omega \]

rewritten as:

\[F(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t') dt' \]

\[\Theta = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i \omega t} \, e^{-i \omega u} \, du \]

acts as delta function for stuff.

\[\delta(t-t') = \delta(x) \]

Dirac Delta "Function"

\(\delta(x) \) is not quite a function but almost a new category.

Functions exist. Distributions also exist:

\(\delta(x) \) & friends

\[\delta(x) - \begin{cases}
0 & x \neq 0 \\
\infty & x = 0
\end{cases} \]

\[\int_{-\infty}^{\infty} \delta(x) \, dx = 1 \]

Think of \(\delta(x) \) as the limit of:

\[\lim_{\epsilon \to 0} \frac{1}{\epsilon} \, \text{Peaks around zero} \]

Then take limit as \(\epsilon \to 0 \).
Dirac Delta Function is the Continuum Analog of Kronecker Delta

\[f(x) = \sum_{n=1}^{\infty} f_n(x) = a f_1 + a f_2 + \ldots + 2 f_{\frac{1}{2}} + a f_{\frac{1}{n}} + \ldots \]

\[f(x) = \int_{-\infty}^{\infty} g(y) f(y) \, dy \]

\[\text{let } 4x = y, \quad 4dx = dy \]

\[\int_{-\infty}^{\infty} s(4x) f(x) \, dx = \frac{1}{4} f(0) \]

\[\text{generalize zero now} \]
Delta "function" was invented by Dirac to describe the charge density of a point particle at the origin.

\[\text{THE PROTON: } R \approx 10^{-10} \text{m, } 2 \text{ fermi;} \]

Model of solid sphere - uniform charge (only depends on distance from charge)

\[p(r) = \begin{cases} \frac{e}{4\pi \epsilon_0 R^3}, & r < R \\ 0, & r > R \end{cases} \]

(Inside the proton)

\[p(r) \text{ dV} = \text{total charge} = e^2 \]

\[\iiint p(r) \text{ dV} = \text{total charge} = e^2 \]

but, \[\iiint p(r) \text{ dV} = \text{total charge} = e^2 \]

\[p(r) = e \delta(r) = e \delta(x) \delta(y) \delta(z) \]

(Product of 3 \(\delta \)'s, 1 for each coordinate)

\[\iiint p(r) \text{ dV} = \iiint [-e \delta(x) \delta(y) \delta(z)] \text{ dV} = e \]

\[\iiint [-e \delta(x) \delta(y) \delta(z)] \text{ dV} = e \]
$f(x)$ has dimension, length

$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \quad \text{(as long as integrals}
\quad \uparrow \quad \text{limits include 0)} \quad \text{make a limit of}
\quad \downarrow \quad \text{integration}
\quad \therefore \quad f(x) \text{ must have limits of length, though.}

\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} f(x) \, dx = 0 \quad \text{for a real function}

\underline{Fourier Transform of a Delta Function:}

$$F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\omega t} \delta(t) \, dt \quad \text{where: } F(t) = \delta(t - T)

\therefore F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(\omega t) dt

\text{Sifting Property: } F(w) = \frac{1}{\sqrt{2\pi}} e^{-i\omega T} \quad \text{or also:}

F(w) = \frac{1}{\sqrt{2\pi}} \left[\cos(\omega T) + i \sin(\omega T) \right]

\uparrow \quad \text{Re}[F(w)]

\text{As } T \to 0, \text{ the cos flattens out and eventually forms a line } \omega T

\underline{Derivative of Dirac Delta Function:}

$$\delta'(t) = \frac{d}{dt} \delta(t)

\text{Remember:}

\begin{align*}
\delta(t) & \quad \frac{d}{dt} \delta(t) \\
\delta(t) & \quad \frac{d^2}{dt^2} \delta(t)
\end{align*}

\text{Then, dep.}

\begin{align*}
\delta(t) & \quad \frac{d^2}{dt^2} \delta(t) \\
\delta(t) & \quad \frac{d^3}{dt^3} \delta(t)
\end{align*}
\[\int_{-\infty}^{\infty} S'(t) f(t) \, dt = \int_{-\infty}^{\infty} \delta(t) f(t) \, dt = f(0) \]

Special Property:
- \(f(t) \) must have "bounded support," meaning \(f(t) \) is nonzero on a finite interval \([a, b]\)
- \(f(\pm \infty) \) (function is always zero at \(\pm \infty \))
 - must be bounded

\[\alpha(uv) = v(duv) + u(duv) \]
\[2uv = \int_{a}^{b} d(uv) = \int_{a}^{b} vdu + \int_{a}^{b} udv \]

& integrate both sides

\[\text{now, let } u = S(t) \text{ & } dv = f(t) \, dt \]
\[v = \int_{a}^{b} S(t) f(t) \, dt = S(t) f(t) \Big|_{a}^{b} - \int_{a}^{b} S(t) f'(t) \, dt \]

\[\text{surface term, } \int_{a}^{b} \text{ divergence theorem} \]

\[\text{surface term, } \int_{a}^{b} \text{ divergence theorem} \]

\[0 = -f'(0) = -\frac{df}{dt} \mid_{t=0} \]

EXAMPLE
- another distribution

\[\sin(at) \delta'(t) \text{ is a generalized distribution} \]
- simplify this
- distributions only make physical sense inside an integral, or multiplied by a "test" function

\[\int_{-\infty}^{\infty} \sin(at) \delta'(t) f(t) \, dt \]

\[\text{test function, } \]

\[\begin{align*}
\int_{-\infty}^{\infty} \sin(at) & S'(t) f(t) \, dt \\
= \sin(at) & S'(t) f(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{d}{dt} [\sin(at) f(t)] S(t) \, dt \\
= -\int_{-\infty}^{\infty} & [\cos(at) f(t) + \sin(at) f'(t)] S(t) \, dt
\end{align*} \]
\[\int_0^\infty \left[\cos(x) f(t) + \sin(x) f(t) \right] dt \]

Undergraduate

Original line: \[\int_0^\infty \sin(x t) f(t) dt \]

Can't see the distribution. If you go that far, you didn't start over.

\[\int_0^\infty \sin(x t) f(t) dt = \text{some function} \]

Don't report ans. If it'll be you didn't start up \(f(t) \).

\[\rightarrow \text{Similar to bonus problem} \]

Integration of Dirac Delta Function

\[\Theta(t) = \int_{-\infty}^{t} \delta(x) dx = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases} \]

\(\Theta(t) \) at \(t = 0 \), you pick what \(\Theta(t) \) equals. Some popular choices are \(\pm, 0, \pm \).

\[t - 3 < 0, \ \Theta = 0 \]
\[t - 3 > 0, \ \Theta = 1 \]

The homework problem starts at \(x = 0 \) at height 4.
Algebraic Equations: \(5x^2 = 2, \quad x^2 + 4 \)

Goal: Find the numbers \(c \) for \(x \) that make the equations true.

- Complex numbers: \(i^2 = -1 \), \(E = 2, \quad \bar{z} = \frac{1}{z} \)
- Good book on history of \(i \).

Differential Equations: first-order, ordinary, linear, diff.

\[\frac{df(x)}{dx} = \cos x, \quad f(x) = \cos x + C \]

Goal: Find function(s) \(f(x) \) that make the equation true.

No guaranteed ways to do this; bit of guesswork.
Differential Equations

\[\frac{dy(x)}{dx} - y(x) = 0 \]

Goal: find function \(y(x) \) that makes this true \(\forall x \) \(y(x) = c \) for all \(x \).

Guessing... \(y(x) = x^2 \)

\[x^2 + 2x - x^2 = 0 \] it was a bad guess

A better guess... \(y(x) = e^x \)

\[y(x) - y(x) = e^x - e^x = 0 \] \(\forall x \)

not most general equation \(Ae^x \) is the most general

where \(A \) is any constant

Highest derivative tells you # of arbitrary constants

\(y(t) = Ae^x \) has 1 arbitrary constant

so it's a first-order differential equation

Order: highest derivative \(y''(x) \)

\(y''(x) = 0 \) is first-order linear (in \(y \))

linear: derivatives of the function \(y(x) \), including the 0th derivative, occur to the first power

\[\frac{d^2y(x)}{dx^2} + y(x) = 0 \]

\(y'' + y = 0 \) 2nd order, linear & homogeneous

\(y''(x) + y(x) = 0 \) non-linear

\(y''(x) + \sin(y(x)) = 0 \) also non-linear

\([y''(x)]^2 - y(x) = 0 \rightarrow \left[\frac{dy(x)}{dx} \right]^2 - y(x) = 0 \) also non-linear