
Monte Carlo Techniques

Professor Stephen Sekula
Guest Lecture – PHY 4321/7305

Sep. 3, 2014

Stephen J. Sekula - SMU 2

What are “Monte Carlo Techniques”?

● Computational algorithms that rely on repeated
random sampling in order to obtain numerical
results

● Basically, you run a simulation over and over again
to calculate the underlying probabilities that lead to
the outcomes

● Like playing a casino game over and over again and
recording all the game outcomes to determine the
underlying rules of the game

● Monte Carlo is a city famous for its gambling –
hence the name of this class of techniques

Stephen J. Sekula - SMU 3

HAVE YOU EVER (KNOWINGLY) USED
“MONTE CARLO TECHNIQUES”?

Stephen J. Sekula - SMU 4

HITS

MISSES

EVER PLAYED
“BATTLESHIP”?

IF SO, YOU
HAVE APPLIED
MONTE CARLO
TECHNIQUES.

Stephen J. Sekula - SMU 5

A Simple Physical Example

● Let's illustrate this class of techniques with a simple
physical example: numerical computation of π

● π: the ratio of the circumference of a circle to its
diameter.

● It's difficult to whip out a measuring tape or ruler
and accurately measure the circumference of an
arbitrary circle.

● The Monte Carlo method avoids this problem
entirely

Stephen J. Sekula - SMU 6

Begin by drawing a square, inscribed into which is a circle. The
properties of the square are much easier to measure.

Stephen J. Sekula - SMU 7

What do we know?

Stephen J. Sekula - SMU 8

We know the relationship between the radius of a circle and the x and
y coordinate of a point on the radius:

r=√ x2+ y2

Stephen J. Sekula - SMU 9

Let us imagine that we have a way of randomly throwing a dot into
the square (imagine a game of darts being played, with the square as
the board...)

r=√ x2+ y2

Knowns:

Stephen J. Sekula - SMU 10

There is a probability that a uniformly, randomly thrown dot will land
in the circle, and a probability that it will land out of the circle. What
are those probabilities?

r=√ x2+ y2

Knowns:

Stephen J. Sekula - SMU 11

Probability of landing in the circle is merely given by the ratio of the areas of
the two objects:

r=√ x2+ y2

Knowns:

P (in∣dot)=
π r2

4 r2 =
π
4

Stephen J. Sekula - SMU 12

That's nice – but we're missing a piece . . . just what is that probability on the
left side? How can we determine it?

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4

Stephen J. Sekula - SMU 13

ANSWER: “numerically” - by throwing dots uniformly in the square and
counting the number that land inside the circle, divided by the number that we
have thrown in total:

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4

P (in∣dot)=
N in

N total

Stephen J. Sekula - SMU 14

ANSWER: “numerically” - by throwing dots uniformly in the square and
counting the number that land inside the circle, divided by the number that we
have thrown in total:

r=√ x2+ y2

Knowns:

N in

N total

=π
4

Stephen J. Sekula - SMU 15

π is then simply determined numerically via:

r=√ x2+ y2

Knowns:

N in

N total

=π
4

π=4
N in

N total

Stephen J. Sekula - SMU 16

The Pieces

● Random numbers
● needed to “throw dots” at the board

● Uniformity of coverage
● we want to pepper the board using uniform random

numbers, to avoid creating artificial pileups that create new
underlying probabilities

● Code/Programming
● You can do this manually with a square, an inscribed

circle, coordinate axes, and a many-sided die.
● But that limits your time and precision – computers are

faster for such repetitive tasks

Stephen J. Sekula - SMU 17

Computational Examples

● I will demonstrate the underlying computation
framework principles using OCTAVE, a free and
open-source computation framework similar to
MATLAB (which costs a lot of money)
● Why? I have a web interface running on my own server

that lets us ALL follow along and write code today!

● At the end of this, you will have a program you can
take with you and adapt into ANY language.

● If you've never seriously written code before, today
is your “lucky” day

Stephen J. Sekula - SMU 18

Basics of Coding
● Numbers – all programming languages can minimally

handle numbers: integers, decimals

● Variables – placeholders for numbers, whose values can be
set at any time by the programmer

● Functions – any time you have to repeatedly perform an
action, write a function. A “function” is just like in math – it
represents a complicated set of actions on variables

● Code – an assembly of variables and functions whose goal
is determined by the programmer. “Task-oriented
mathematics”

● Coding is the poetry of mathematics – it takes the basic
rules of mathematics and does something awesome with
them.

Stephen J. Sekula - SMU 19

You type it, it does it.

Stephen J. Sekula - SMU 20

Stephen J. Sekula - SMU 21

Uniform Random Numbers

● Computers can generate (pseudo)random numbers
using various algorithms
● this is a whole lecture in and of itself – if you're

interested in pseudo-random numbers, etc. go do some
independent reading

● We will utilize the “rand” function in OCTAVE to
obtain our uniform random numbers

Stephen J. Sekula - SMU 22

“rand” generates a uniform random decimal number
between 0 and 1 (inclusive)

Stephen J. Sekula - SMU 23

Designing our “game board”

Stephen J. Sekula - SMU 24

Designing our “game board”

We don't need the
whole game board –
we can just use one-
quarter of it. This
keeps the program
simple!

Alternative: you can
rescale the output of
“rand” to generate
random numbers
between -1 and 1

(1/4)π r2

(1 /4)4 r2 =
π
4
=P (in∣dot)

L = 2

R=1

Stephen J. Sekula - SMU 25

Stephen J. Sekula - SMU 26

Repetition

● You don't want to manually type 100 (or more)
computations of your dot throwing

● You need a loop!
● A “loop” is a small structure that automatically

repeats your computation an arbitrary number of
times

● In OCTAVE:
Ntotal=100
for i=1:Ntotal
 x=rand
 y=rand
endfor

Ntotal=100
for i=1:Ntotal
 x=rand
 y=rand
endfor

Stephen J. Sekula - SMU 27

“Loops” are
powerful – they are
a major workhorse

of any repetitive
task coded up in a

programming
language.

Stephen J. Sekula - SMU 28

Final Piece

● So we have generated a dot by generating its x and y
coordinates throwing uniform random numbers...

● How do we determine if it's “in” or “out” of the
circle?

● ANSWER:
● if r = √(x2+y2) < R, it's in the circle; otherwise, it is out of

the circle!

Stephen J. Sekula - SMU 29

A working program.

You can increase N
total

to get increased
precision!

Stephen J. Sekula - SMU 30

A Comment on Precision

● Given finite statistics, each set of trials carries an
uncertainty (π ± σπ). A point, (x,y), can either be in
or out of the circle of radius, R. Thus the uncertainty
on Nin can be treated as a binomial error:

● Propagating this to π:

σN in
=√N total⋅p(1−p) where p=N in /N total

σπ=4⋅σN in
/N total=4 √ N in

N total
2 (1−

N in

N total

)

Stephen J. Sekula - SMU 31

Precision (continued)

● Relative error:

● For 100 trials, σπ/π = 5.0% (e.g. 3.20 ± 0.16)

● For 1000 trials, σπ/π = 1.7% (e.g. 3.12 ± 0.05)

● For 10,000 trials: σπ/π = 0.5% (e.g. 3.131 ± 0.017)

σπ
π =√ 1

N in

−
1

N total

Note that uncertainty scales only as 1/√Ntotal

Stephen J. Sekula - SMU 32

Why is this powerful?

● You've just learned how to compute an integral
NUMERICALLY.

● You can apply this technique to any function whose
integral (area) you wish to determine

● For instance, consider the next slide.

Stephen J. Sekula - SMU 33

● Given an arbitrary function, f(x), you can determine its integral numerically
using the “Accept/Reject Method”

● First, find the maximum value of the function (e.g. either analytically, if
you like, or by calculating the value of f(x) over steps in x to find the max.
value, which I denote F(x))

● Second, enclose the function in a box, h(x), whose height is F(x) and
whose length encloses as much of f(x) as is possible.

● Third, compute the area of the box (easy!)
● Fourth, throw points in the box using uniform random numbers. Throw a

value for x, denotes x'. Throw a value for y, denoted y'. If y' < f(x'), it's a
hit! If not, it's a miss!

Stephen J. Sekula - SMU 34

N hits

N total

=
I (f (x))
A(h(x))

This, in the real world, is how physicists, engineers,
statisticians, mathematicians, etc. compute integrals of
arbitrary functions.
Learn it. Love it. It will save you.

Stephen J. Sekula - SMU 35

Generating Simulations

● The Monte Carlo technique, given a function that
represents the probability of an outcome, can be
used to generate “simulated data”

● Simulated data is useful in designing an experiment,
or even “running” an experiment over and over to
see all possible outcomes

Stephen J. Sekula - SMU 36

Stephen J. Sekula - SMU 37

Young's Double-Slit Experiment
Simulation

● Consider slits of width, b, separated by a distance, d.
● Given the function that describes the probability of

finding a photon at a given angle:

I (θ)∝cos2 [π d sin (θ)
λ] sinc2 [πb sin (θ)

λ]

sinc(x)=
sin(x)/ x (x≠0)

1 (x=0)

Stephen J. Sekula - SMU 38

Next Steps

● Need the max. value of I(θ)
● occurs at θ = 0

● Use that to compute the height of the box; the width
of the box is 2π (ranging from -π to +π)

● “Throw” random points in the box until you get
1000 “accepts”

● Now you have a “simulated data” sample of 1000
photons scattered in the two-slit experiment.

Stephen J. Sekula - SMU 39

1000 simulated photons scattered through a double-slit experiment. This
was done in C++ using the free ROOT High-Energy Physics data analysis
framework, so I could easily generate a histogram – a binned data sample.

λ = 550 nm
d = 0.1 mm
b = 0

Stephen J. Sekula - SMU 40

Resources

● Octave: (open-source, free)
http://www.gnu.org/software/octave/

● Python: (open-source, free)
http://www.python.org/

● Mathematica: (non-free)
http://www.wolfram.com/mathematica/

● Maxima (open-source, free “Mathematica”)
http://maxima.sourceforge.net

● Monte Carlo Techniques:
http://en.wikipedia.org/wiki/Monte_Carlo_method

http://www.gnu.org/software/octave/
http://www.python.org/
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
http://en.wikipedia.org/wiki/Monte_Carlo_method

