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What are “Monte Carlo Techniques”?

● Computational algorithms that rely on repeated 
random sampling in order to obtain numerical 
results

● Basically, you run a simulation over and over again 
to calculate the underlying probabilities that lead to 
the outcomes 

● Like playing a casino game over and over again and 
recording all the game outcomes to determine the 
underlying rules of the game

● Monte Carlo is a city famous for its gambling – 
hence the name of this class of techniques
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HAVE YOU EVER (KNOWINGLY) USED 
“MONTE CARLO TECHNIQUES”?
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HITS

MISSES

EVER PLAYED 
“BATTLESHIP”?

IF SO, YOU 
HAVE APPLIED 
MONTE CARLO 
TECHNIQUES.
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A Simple Physical Example

● Let's illustrate this class of techniques with a simple 
physical example: numerical computation of π 

● π: the ratio of the circumference of a circle to its 
diameter.

● It's difficult to whip out a measuring tape or ruler 
and accurately measure the circumference of an 
arbitrary circle.

● The Monte Carlo method avoids this problem 
entirely
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Begin by drawing a square, inscribed into which is a circle. The 
properties of the square are much easier to measure.
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What do we know?
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We know the relationship between the radius of a circle and the x and 
y coordinate of a point on the radius:

r=√ x2+ y2
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Let us imagine that we have a way of randomly throwing a dot into 
the square (imagine a game of darts being played, with the square as 
the board...)

r=√ x2+ y2

Knowns:
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There is a probability that a uniformly, randomly thrown dot will land 
in the circle, and a probability that it will land out of the circle. What 
are those probabilities?

r=√ x2+ y2

Knowns:
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Probability of landing in the circle is merely given by the ratio of the areas of 
the two objects:

r=√ x2+ y2

Knowns:

P (in∣dot)=
π r2

4 r2 =
π
4
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That's nice – but we're missing a piece . . . just what is that probability on the 
left side? How can we determine it?

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4
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ANSWER: “numerically” - by throwing dots uniformly in the square and 
counting the number that land inside the circle, divided by the number that we 
have thrown in total:

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4

P (in∣dot)=
N in

N total
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ANSWER: “numerically” - by throwing dots uniformly in the square and 
counting the number that land inside the circle, divided by the number that we 
have thrown in total:

r=√ x2+ y2

Knowns:

N in

N total

=π
4
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π is then simply determined numerically via:

r=√ x2+ y2

Knowns:

N in

N total

=π
4

π=4
N in

N total
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The Pieces

● Random numbers
● needed to “throw dots” at the board

● Uniformity of coverage
● we want to pepper the board using uniform random 

numbers, to avoid creating artificial pileups that create new 
underlying probabilities

● Code/Programming
● You can do this manually with a square, an inscribed 

circle, coordinate axes, and a many-sided die. 
● But that limits your time and precision – computers are 

faster for such repetitive tasks
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Computational Examples

● I will demonstrate the underlying computation 
framework principles using OCTAVE, a free and 
open-source computation framework similar to 
MATLAB (which costs a lot of money)
● Why? I have a web interface running on my own server 

that lets us ALL follow along and write code today!

● At the end of this, you will have a program you can 
take with you and adapt into ANY language.

● If you've never seriously written code before, today 
is your “lucky” day
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Basics of Coding
● Numbers – all programming languages can minimally 

handle numbers: integers, decimals

● Variables – placeholders for numbers, whose values can be 
set at any time by the programmer

● Functions – any time you have to repeatedly perform an 
action, write a function. A “function” is just like in math – it 
represents a complicated set of actions on variables

● Code – an assembly of variables and functions whose goal 
is determined by the programmer. “Task-oriented 
mathematics”

● Coding is the poetry of mathematics – it takes the basic 
rules of mathematics and does something awesome with 
them.
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You type it, it does it.
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Uniform Random Numbers

● Computers can generate (pseudo)random numbers 
using various algorithms
● this is a whole lecture in and of itself – if you're 

interested in pseudo-random numbers, etc. go do some 
independent reading

● We will utilize the “rand” function in OCTAVE to 
obtain our uniform random numbers
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“rand” generates a uniform random decimal number 
between 0 and 1 (inclusive)
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Designing our “game board”
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Designing our “game board”

We don't need the 
whole game board – 
we can just use one-
quarter of it. This 
keeps the program 
simple!

Alternative: you can 
rescale the output of 
“rand” to generate 
random numbers 
between -1 and 1

(1/4)π r2

(1 /4)4 r2 =
π
4
=P (in∣dot)

L = 2

R=1
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Repetition

● You don't want to manually type 100 (or more) 
computations of your dot throwing

● You need a loop!
● A “loop” is a small structure that automatically 

repeats your computation an arbitrary number of 
times

● In OCTAVE:
Ntotal=100
for i=1:Ntotal
 x=rand
 y=rand
endfor

Ntotal=100
for i=1:Ntotal
 x=rand
 y=rand
endfor
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“Loops” are 
powerful – they are 
a major workhorse 

of any repetitive 
task coded up in a 

programming 
language.
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Final Piece

● So we have generated a dot by generating its x and y 
coordinates throwing uniform random numbers...

● How do we determine if it's “in” or “out” of the 
circle?

● ANSWER:
● if r = √(x2+y2) < R, it's in the circle; otherwise, it is out of 

the circle!
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A working program. 

You can increase N
total

 
to get increased 
precision!
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A Comment on Precision

● Given finite statistics, each set of trials carries an 
uncertainty (π ± σπ). A point, (x,y), can either be in 
or out of the circle of radius, R. Thus the uncertainty 
on Nin can be treated as a binomial error:

● Propagating this to π:

σN in
=√N total⋅p(1−p) where p=N in /N total

σπ=4⋅σN in
/N total=4 √ N in

N total
2 (1−

N in

N total

)
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Precision (continued)

● Relative error:

● For 100 trials, σπ/π  = 5.0% (e.g. 3.20 ± 0.16)

● For 1000 trials, σπ/π  = 1.7% (e.g. 3.12 ± 0.05)

● For 10,000 trials: σπ/π  = 0.5% (e.g. 3.131 ± 0.017)

σπ
π =√ 1

N in

−
1

N total

Note that uncertainty scales only as 1/√Ntotal 
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Why is this powerful?

● You've just learned how to compute an integral 
NUMERICALLY.

● You can apply this technique to any function whose 
integral (area) you wish to determine

● For instance, consider the next slide.
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● Given an arbitrary function, f(x), you can determine its integral numerically 
using the “Accept/Reject Method”

● First, find the maximum value of the function (e.g. either analytically, if 
you like, or by calculating the value of f(x) over steps in x to find the max. 
value, which I denote F(x))

● Second, enclose the function in a box, h(x), whose height is F(x) and 
whose length encloses as much of f(x) as is possible.

● Third, compute the area of the box (easy!)
● Fourth, throw points in the box using uniform random numbers. Throw a 

value for x, denotes x'. Throw a value for y, denoted y'. If y' < f(x'), it's a 
hit! If not, it's a miss! 
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N hits

N total

=
I ( f (x))
A(h(x))

This, in the real world, is how physicists, engineers, 
statisticians, mathematicians, etc. compute integrals of 
arbitrary functions. 
Learn it. Love it. It will save you.
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Generating Simulations

● The Monte Carlo technique, given a function that 
represents the probability of an outcome, can be 
used to generate “simulated data”

● Simulated data is useful in designing an experiment, 
or even “running” an experiment over and over to 
see all possible outcomes
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Young's Double-Slit Experiment 
Simulation

● Consider slits of width, b, separated by a distance, d.
● Given the function that describes the probability of 

finding a photon at a given angle:

I (θ)∝cos2 [ π d sin (θ)
λ ] sinc2 [ πb sin (θ)

λ ]

sinc(x)=
sin( x)/ x  (x≠0)

1  (x=0)
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Next Steps

● Need the max. value of I(θ)
● occurs at θ = 0

● Use that to compute the height of the box; the width 
of the box is 2π (ranging from -π to +π)

● “Throw” random points in the box until you get 
1000 “accepts”

● Now you have a “simulated data” sample of 1000 
photons scattered in the two-slit experiment.   
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1000 simulated photons scattered through a double-slit experiment. This 
was done in C++ using the free ROOT High-Energy Physics data analysis 
framework, so I could easily generate a histogram – a binned data sample.

λ = 550 nm
d = 0.1 mm
b = 0
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Resources

● Octave: (open-source, free)
http://www.gnu.org/software/octave/

● Python: (open-source, free)
http://www.python.org/

● Mathematica: (non-free) 
http://www.wolfram.com/mathematica/  

● Maxima (open-source, free “Mathematica”)
http://maxima.sourceforge.net

● Monte Carlo Techniques: 
http://en.wikipedia.org/wiki/Monte_Carlo_method  

http://www.gnu.org/software/octave/
http://www.python.org/
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
http://en.wikipedia.org/wiki/Monte_Carlo_method

