
Monte Carlo Techniques

Professor Stephen Sekula
Guest Lecture – PHY 4321/7305



Stephen J. Sekula - SMU 2

What are “Monte Carlo Techniques”?
● Computational algorithms that rely on repeated 

random sampling in order to obtain numerical 
results

● Basically, you run a simulation over and over again 
to calculate the possible outcomes, either based on 
probability or to determine probability

● Like playing a casino game over and over again and 
recording all the game outcomes to determine the 
underlying rules of the game

● Monte Carlo is a city famous for its gambling – 
hence the name of this class of techniques



Stephen J. Sekula - SMU 3

http://rfdyn.com/ 

Monte Carlo modeling of 
geological hydrodynamics 
for hydrocarbon extraction

Design and use of “phantoms” to 
model radiation dose in human tissue 
– necessary for prepping a patient for 
radiation-based cancer therapy.

MATLAB is used to Monte Carlo 
simulate financial evolution

http://rfdyn.com/


Stephen J. Sekula - SMU 4

HAVE YOU EVER (KNOWINGLY) USED 
“MONTE CARLO TECHNIQUES”?



Stephen J. Sekula - SMU 5

HITS

MISSES

EVER PLAYED 
“BATTLESHIP”?

IF SO, YOU 
HAVE APPLIED 
MONTE CARLO 
TECHNIQUES.



Stephen J. Sekula - SMU 6

A Simple Physical Example

● Let's illustrate this class of techniques with a simple 
physical example: numerical computation of π 

● π: the ratio of the circumference of a circle to its 
diameter: 3.14159265359...

● It's difficult to whip out a measuring tape or ruler 
and accurately measure the circumference of an 
arbitrary circle.

● The Monte Carlo method avoids this problem 
entirely



Stephen J. Sekula - SMU 7

Begin by drawing a square, inscribed into which is a circle. The 
properties of the square are much easier to measure.



Stephen J. Sekula - SMU 8

What do we know?



Stephen J. Sekula - SMU 9

We know the relationship between the radius of a circle and the x and 
y coordinate of a point on the circle boundary:

r=√ x2+ y2



Stephen J. Sekula - SMU 10

Let us imagine that we have a way of randomly throwing a dot into 
the square (imagine a game of darts being played, with the square as 
the board...)

r=√ x2+ y2

Knowns:



Stephen J. Sekula - SMU 11

There is a probability that a uniformly, randomly thrown dot will land 
in the circle, and a probability that it will land out of the circle. What 
are those probabilities?

r=√ x2+ y2

Knowns:



Stephen J. Sekula - SMU 12

Probability of landing in the circle is merely given by the ratio of the areas of 
the two objects:

r=√ x2+ y2

Knowns:

P (in∣dot)=
π r2

4 r2 =
π
4



Stephen J. Sekula - SMU 13

That's nice – but we're missing a piece . . . just what is that probability on the 
left side? How can we determine it?

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4



Stephen J. Sekula - SMU 14

ANSWER: “numerically” - by throwing dots uniformly in the square and 
counting the number that land inside the circle, divided by the number that we 
have thrown in total:

r=√ x2+ y2

Knowns:

P (in∣dot)= π
4

P (in∣dot)=
N in

N total



Stephen J. Sekula - SMU 15

ANSWER: “numerically” - by throwing dots uniformly in the square and 
counting the number that land inside the circle, divided by the number that we 
have thrown in total:

r=√ x2+ y2

Knowns:

N in

N total

=π
4



Stephen J. Sekula - SMU 16

π is then simply determined numerically via:

r=√ x2+ y2

Knowns:

N in

N total

=π
4

π=4
N in

N total



Stephen J. Sekula - SMU 17

The Pieces

● Random numbers
● needed to “throw dots” at the board

● Uniformity of coverage
● we want to pepper the board using uniform random 

numbers, to avoid creating artificial pileups that create new 
underlying probabilities

● Code/Programming
● You can do this manually with a square, an inscribed 

circle, coordinate axes, and a many-sided die. 
● But that limits your time and precision – computers are 

faster for such repetitive tasks



Stephen J. Sekula - SMU 18

Computational Examples

● I will demonstrate the underlying computation 
framework principles using PYTHON, a free and 
open-source programming language and 
computation framework
● Why? Because every PC in the lab has PYTHON 

installed and ready to go!

● At the end of this, you will have a program you can 
take with you and adapt into ANY language.

● If you've never seriously written code before, today 
is your “lucky” day



Stephen J. Sekula - SMU 19

Basics of Coding
● Numbers – all programming languages can minimally 

handle numbers: integers, decimals

● Variables – placeholders for numbers, whose values can be 
set at any time by the programmer

● Functions – any time you have to repeatedly perform an 
action, write a function. A “function” is just like in math – it 
represents a complicated set of actions on variables

● Code – an assembly of variables and functions whose goal 
is determined by the programmer. “Task-oriented 
mathematics”

● Coding is the poetry of mathematics – it takes the basic 
rules of mathematics and does something awesome with 
them.



Stephen J. Sekula - SMU 20

Python and Jupyter

● Python is a programming language
● Jupyter is a framework for developing web-based 

interactive python software
● We will use Python and Jupyter together today. I 

think it makes programming more fun and also more 
share-able.
● Jupyter notebooks can be shared with other people, who 

can improve them and share them again.



Stephen J. Sekula - SMU 21

Starting Jupyter
Start a “Terminal” - a window containing a prompt where you can enter 
commands. This is still a primary way in which computer scientists, 
physicists, and any other discipline that must command a computer 
interacts with the machine: you talk to it by typing commands.

At the terminal prompt, type this and then press the <ENTER> key (a 
key stroke will be enclosed in angle-brackets in this talk).

jupyter notebook

You will be told to either copy-and-paste or click a link to open a 
browser; or, the browser might open on its own.



Stephen J. Sekula - SMU 22

After the get the above page in your browser, select from the upper-
right “New” menu to make a Python (2,3) notebook. This will produce 
a blank Python canvas (in a new tab or window) upon which you can 
paint your mathematical masterpiece.



Stephen J. Sekula - SMU 23

This is the place where you can begin to experiment with Python 
programming. It's simple. You type a Python program command, then 
press <SHIFT+ENTER>, and the “kernel” (the running Python 
executable in the background) will process your code and return any 
results that are obtained. 

If you wish to alter or re-run a command, click on it and press 
<SHIFT+ENTER> again.



Stephen J. Sekula - SMU 24

A simple example of defining a variable (“Ntotal”), setting its value (“=” is 
the “assignment operator” in Python, and using 100 without a decimal point 
after the number indicates this is an integer), and then printing its value. To 
obtain the line-break, press <ENTER>. To execute the whole block of code 
you just wrote, press <SHIFT+ENTER>.



Stephen J. Sekula - SMU 26

Try defining a new variable in the next block of code (“Nin”) and set it to 
55.0 (decimal points indicate that this number is a “floating point number” - 
a number with decimal precision). Print the mathematical operation of 
dividing Ntotal by Nin (“/” is the “divide by” operator in Python).

Note that although Ntotal was an integer and Nin was a floating point 
number, the math operation return a floating point number.



Stephen J. Sekula - SMU 28

Uniform Random Numbers

● Computers can generate (pseudo)random numbers 
using various algorithms
● this is a whole lecture in and of itself – if you're 

interested in pseudo-random numbers, etc. go do some 
independent reading

● We will utilize the PYTHON “random” library and 
its “.uniform()” function to obtain our uniform 
random numbers



Stephen J. Sekula - SMU 29

“random.uniform(0.0,1.0)” generates a uniform random floating-point decimal 
number between 0 and 1 (inclusive)

https://docs.python.org/3/library/random.html



Stephen J. Sekula - SMU 31

Designing our “game board”



Stephen J. Sekula - SMU 32

Designing our “game board”

We don't need the 
whole game board – 
we can just use one-
quarter of it. This 
keeps the program 
simple!

Alternative: you can 
rescale the output of 
“rand” to generate 
random numbers 
between -1 and 1

(1/4)π r2

(1 /4)4 r2 =
π
4
=P (in∣dot)

L = 2

R=1



Stephen J. Sekula - SMU 33



Stephen J. Sekula - SMU 34

https://docs.python.org/3/library/math.html



Stephen J. Sekula - SMU 35

Repetition

● You don't want to manually type 100 (or more) 
computations of your dot throwing

● You need a loop!
● A “loop” is a small structure that automatically 

repeats your computation an arbitrary number of 
times

● In PYTHON:
Ntotal = 100
Nin = 0
for i in range(1,Ntotal):
    x = random.uniform(0.0,1.0)
    y = random.uniform(0.0,1.0)

Ntotal = 100
Nin = 0
for i in range(1,Ntotal):
    x = random.uniform(0.0,1.0)
    y = random.uniform(0.0,1.0)



Stephen J. Sekula - SMU 36

“Loops” are 
powerful – they 

are a major 
workhorse of 
any repetitive 

task coded up in 
a programming 

language.



Stephen J. Sekula - SMU 38

Final Piece

● So we have generated a dot by generating its x and y 
coordinates throwing uniform random numbers...

● How do we determine if it's “in” or “out” of the 
circle?

● ANSWER:
● if r = √(x2+y2) ≤ R, it's in or on the circle; otherwise, it is 

out of the circle!



Stephen J. Sekula - SMU 39

A working program. 

You can increase N
total

 to get increased precision!



Stephen J. Sekula - SMU 41

A Comment on Precision

● Given finite statistics, each set of trials carries an 
uncertainty (π ± σπ). A point, (x,y), can either be 
in/on or out of the circle of radius, R. Thus the 
uncertainty on Nin can be treated as a binomial error:

● Propagating this to π:

σN in
=√N total⋅p(1−p) where p=N in /N total

σπ=4⋅σN in
/N total=4 √ N in

N total
2 (1−

N in

N total

)



Stephen J. Sekula - SMU 42

Precision (continued)

● Relative error:

● For 100 trials, σπ/π  = 15.2% (e.g. 3.04 ± 0.46)

● For 1000 trials, σπ/π  = 4.8% (e.g. 3.15 ± 0.15)

● For 10,000 trials: σπ/π  = 1.5% (e.g. 3.141 ± 0.047)

● For 100,000 trials: σπ/π  = 0.48% (e.g. 3.128 ± 0.015)

σπ
π =√ 1

N in

−
1

N total

Note that uncertainty scales only as 1/√Ntotal 

improves by 
√10=3.1623 

improves by 
√10=3.1623 

improves by 
√10=3.1623 



Stephen J. Sekula - SMU 43

Play around with computing all kinds of things, like 
the percent error, the absolute error, and printing 
extended and nicely formatted numbers. Python is 
fun! Imagine if you had learned this earlier – how 
much better a homework result could you have 
prepared by attacking problems both analytically 
AND numerically?



Stephen J. Sekula - SMU 44

Why is this powerful?

● You've just learned how to compute an integral 
NUMERICALLY.

● You can apply this technique to any function whose 
integral (area) you wish to determine

● For instance, consider the next slide.



Stephen J. Sekula - SMU 45

● Given an arbitrary function, f(x), you can determine its integral numerically 
using the “Accept/Reject Method”

● First, find the maximum value of the function (e.g. either analytically, if 
you like, or by calculating the value of f(x) over steps in x to find the max. 
value, which I denote F(x))

● Second, enclose the function in a box, h(x), whose height is F(x) and 
whose length encloses as much of f(x) as is possible.

● Third, compute the area of the box (easy!)
● Fourth, throw points in the box using uniform random numbers. Throw a 

value for x, denotes x'. Throw a value for y, denoted y'. If y' < f(x'), it's a 
hit! If not, it's a miss! 



Stephen J. Sekula - SMU 46

N hits

N total

=
I ( f (x))
A(h(x))

This, in the real world, is how physicists, engineers, 
statisticians, mathematicians, etc. compute integrals of 
arbitrary functions. 
Learn it. Love it. It will save you.



Stephen J. Sekula - SMU 47

Generating Simulations

● The Monte Carlo technique, given a function that 
represents the probability of an outcome, can be 
used to generate “simulated data”

● Simulated data is useful in designing an experiment, 
or even “running” an experiment over and over to 
see all possible outcomes



Stephen J. Sekula - SMU 48



Stephen J. Sekula - SMU 49

Young's Double-Slit Experiment 
Simulation

● Consider slits of width, b, separated by a distance, d.
● Given the function that describes the probability of 

finding a photon at a given angle:

I (θ)∝cos2 [ π d sin (θ)
λ ] sinc2 [ πb sin (θ)

λ ]

sinc(x)=
sin( x)/ x  (x≠0)

1  (x=0)



Stephen J. Sekula - SMU 50

Next Steps

● Need the max. value of I(θ)
● occurs at θ = 0

● Use that to compute the height of the box; the width 
of the box is 2π (ranging from -π to +π)

● “Throw” random points in the box until you get 
1000 “accepts”

● Now you have a “simulated data” sample of 1000 
photons scattered in the two-slit experiment.   



Stephen J. Sekula - SMU 51

1000 simulated photons scattered through a double-slit experiment. This 
was done in C++ using the free ROOT High-Energy Physics data analysis 
framework, so I could easily generate a histogram – a binned data sample.

λ = 550 nm
d = 0.1 mm
b = 0



Stephen J. Sekula - SMU 52

Resources

● Python: (open-source, free)
http://www.python.org/

● Project Jupyter: (open-source, free)
http://jupyter.org/ 

● Mathematica: (closed-source, non-free) 
http://www.wolfram.com/mathematica/  

● Maxima (open-source, free “Mathematica”)
http://maxima.sourceforge.net

● Monte Carlo Techniques: 
http://en.wikipedia.org/wiki/Monte_Carlo_method  


