Monte Carlo Techniques

Professor Stephen Sekula
Guest Lecture — PHYS 4321/7305

— S ‘ DEDMAN COLLEGE
I\' I U OF HUMANITIES & SCIENCES

What are “Monte Carlo Techniques”?

e Computational algorithms that rely on repeated
random sampling in order to obtain numerical
results

e Basically, you run a simulation over and over again
to calculate the possible outcomes, either based on
probability or to determine probability

e Like playing a casino game over and over again and
recording all the game outcomes to determine the
underlying rules of the game

* Monte Carlo is a city famous for its gambling —
hence the name of this class of techniques

Stephen J. Sekula - SMU

Simulated Asset Paths

RE Dynarmics™w

New! Download demo and compars heavy oif in ity combustion veing STARS and Eclipge-300
thermal models!!

Paraliel inferaclive fdroaynanes for peagical scele Tested on giand fslds of YWestem snd Essfemn
Sibang

Why to switch fram Eclipge. MORE, CMG? Warch hare:

hitpedsww. youtube.comPockFiowDynamics

Asset Price

[T Login: §pe| Passwond: B , aod press PRI tutton

4‘.“50 45 40 35 30 25 20 15 10 5 0
Time to Expiry

MATLAB is used to Monte Carlo
simulate financial evolution

foz e w Monte Carlo modeling of
mems waroeomane gaplogical hydrodynamics

http://rfdyn.com/ for hydrocarbon extraction

eant4

Design and use of “phantoms” to
model radiation dose in human tissue
— necessary for prepping a patient for
radiation-based cancer therapy.

Stephen J. Sekula - SMU 3

http://rfdyn.com/

HAVE YOU EVER (KNOWINGLY) USED

“MONTE CARLO TECHNIQUES™?

Stephen J. Sekula - SMU 4

EVER PLAYED
“BATTLESHIP”?

MISSES

: |

: |

AR

5 X |X
IF SO, YOU : X ™ X >><<
HAVE APPLIED HITS -\ X X X
MONTE CARLO 0

TE C HNI QUE S . Stephen J. Sekula - SMU 5

A Simple Physical Example

» Let's illustrate this class of techniques with a simple
physical example: numerical computation of i

e 11: the ratio of the circumference of a circle to its
diameter: 3.14159265359...

e [t's difficult to whip out a measuring tape or ruler
and accurately measure the circumference of an
arbitrary circle.

e The Monte Carlo method avoids this problem
entirely

Stephen J. Sekula - SMU

Begin by drawing a square, inscribed into which is a circle. The
properties of the square are much easier to measure.

Stephen J. Sekula - SMU

What do we know?

Stephen J. Sekula - SMU

We know the relationship between the radius of a circle and the x and
y coordinate of a point on the circle boundary:

FZ\/x2+y2
1

Stephen J. Sekula - SMU

Let us imagine that we have a way of randomly throwing a dot into

the square (imagine a game of darts being played, with the square as
the board...)

Knowns:

I
I
I
I
+
I
I
I
I

r=\/x2+y2

Stephen J. Sekula - SMU

There is a probability that a uniformly, randomly thrown dot will land
in the circle, and a probability that it will land out of the circle. What
are those probabilities?

Knowns:

I
I
I
I
+
I
I
I
I

r=yxt+)

Stephen J. Sekula - SMU

Probability of landing in the circle is merely given by the ratio of the areas of
the two objects:)

. tr
P(in|dot)=—==
, 4r 4

| ----+---- |

Knowns:

r=yxt+)

Stephen J. Sekula - SMU 12

That's nice — but we're missing a piece . . . just what is that probability on the
left side? How can we determine it?

| ----+---- |

Knowns:

r=vx’+)
P(in|d0t)=%

Stephen J. Sekula - SMU 13

ANSWER: “numerically” - by throwing dots uniformly in the square and
counting the number that land inside the circle, divided by the number that we
have thrown in total:

N.

| P (in|dot)=—2=

total

Knowns:

I
I
I
I
+
I
I
I
I

e .
P (in|dot)="

Stephen J. Sekula - SMU 14

ANSWER: “numerically” - by throwing dots uniformly in the square and
counting the number that land inside the circle, divided by the number that we
have thrown in total:

I
I
I
I
+
I
I
I
I

Stephen J. Sekula - SMU 15

m is then simply determined numerically via:

Ntotal

|

|

|

|

|

— 4 —

|

|

Knowns: !

|

2 2

r=yx+ y :
Nin 1
Ntotal 4

Stephen J. Sekula - SMU 16

The Pieces

e Random numbers
* needed to “throw dots” at the board
* Uniformity of coverage

e we want to pepper the board using uniform random
numbers, to avoid creating artificial pileups that create new
underlying probabilities

e Code/Programming

* You can do this manually with a square, an inscribed
circle, coordinate axes, and a many-sided die.

e But that limits your time and precision — computers are

faster for such repetitive tasks
Stephen J. Sekula - SMU 17

Computational Examples

e [will demonstrate the underlying computation
framework principles using PYTHON, a free and
open-source programming language and
computation framework

 Why? Because every PC in the lab has PYTHON
installed and ready to go!

* At the end of this, you will have a program you can
take with you and adapt into ANY language.

 If you've never seriously written code before, today
is your “lucky” day

Stephen J. Sekula - SMU

18

Basics of Coding

Numbers — all programming languages can minimally
handle numbers: integers, decimals

Variables — placeh

olders for numbers, whose values can be

set at any time by the programmer

Functions — any time you have to repeatedly perform an
action, write a function. A “function” is just like in math — it

represents a compf

Code — an assemb|

icated set of actions on variables

y of variables and functions whose goal

is determined by tl
mathematics”

he programmer. “Task-oriented

Coding is the poetry of mathematics — it takes the basic
rules of mathematics and does something awesome with

them.

Stephen J. Sekula - SMU 19

Python and Jupyter

e Python is a programming language

» Jupyter is a framework for developing web-based
interactive python software

 We will use Python and Jupyter together today. I
think it makes programming more fun and also more

share-able.

e Jupyter notebooks can be shared with other people, who
can improve them and share them again.

Stephen J. Sekula - SMU 20

Using JupyterHub

Open a web browser on your computer. Make sure you are connected to
the SMU network (lab PCs already are).

Visit: http://guatemala.physics.smu.edu:8000

You should see something like this:
Sign in using the
information from the
instructor.

Stephen J. Sekula - SMU 22

Terminal Control Panel Logout

Files Running Clusters MNbextensions
Select itemns to perform actions on them. Upload | New~ | &

~ B / Documents / Department / Teaching / smu-honors-physics MNarne 4 Last Modified 4
O seconds ago
[0 AdventuresinSpacetime 7 months ago
O Fall2017 7 months ago
[0 fractals_mandlebrot ¥ months ago
O fractals_random 5 months ago
03 gravity_simulator 9 minutes ago
[0 images 7 months ago
(3 mathematics_of_life 5 months ago
(3 pi_monte_carlo 9 minutes ago
[0 python_basics 7 months ago
(3 LICENSE 7 months ago
(Y README md 7 months ago

Navigate the folders you see to smu-honors-physics — pi_monte_carlo.
Click on the “Monte Carlo Lecture Code.ipynb” notebook.

This code is available anytime for use and editing from:

https://github.com/stephensekula/smu-honors-physics
Stephen J. Sekula - SMU 24

http://guatemala.physics.smu.edu:8000/

Monte Carlo Lecture Code Last Checkpoint: 12 minutes ago (autosaved) v Terminal Caontrol Panel Logout
File Edit View nsert Cell Kerne Widgets Help Trusted Python3 O

B+ = B + + H B C Markdown v =

Monte Carlo Methods: Computation of Pi

Basics: variables, values, printing

In [58]: Ntotal = 160
print{Ntotal)

1600

In [51]: Nin = 55.0
print{Ntotal/Nin}

1.8181818181818181

Random Numbers: Uniformly Distributed Random Numbers 9]

In [52]: import random
random.uniform(0.0,1.0)

Out[52]: ©.35946385256831836

The program and some text and information are available in the
notebook. Run the whole notebook by clicking Cell — Run All.

Run an individual cell’s code by clicking on the cell and either pressing
the play button on the toolbar at the top or by pressing
<SHIFT>+<ENTER>.

Stephen J. Sekula - SMU 25

In [2]: Ntotal = 10@
print (Ntotal

100

A simple example of defining a variable (“Ntotal”), setting its value (“=" is
the “assignment operator” in Python, and using 100 without a decimal point
after the number indicates this is an integer), and then printing its value. To
obtain the line-break, press <ENTER>. To execute the whole block of code
you just wrote, press <SHIFT+ENTER>.

Stephen J. Sekula - SMU 26

https://github.com/stephensekula/smu-honors-physics

In [2]: | Ntotal = 160
print(Ntotal)

100

In [3]: Nin = 55.0
print(Ntotal/Nin

1.8181818181818181

Play with the code. Begin by trying to define or refine a variable in the first
block(s) of code (e.g. “Nin”) and set it to 55.0 (decimal points indicate that
this number is a “floating point number” - a number with decimal
precision). Print the mathematical operation of dividing Ntotal by Nin (“/”
is the “divide by” operator in Python).

Note that although Ntotal was an integer and Nin was a floating point
number, the math operation return a floating point number.

Stephen J. Sekula - SMU 28

Uniform Random Numbers

e Computers can generate (pseudo)random numbers
using various algorithms

e this is a whole lecture in and of itself — if you're
interested in pseudo-random numbers, etc. go do some
independent reading

 We will utilize the PYTHON “random” library and
its “.uniform()” function to obtain our uniform
random numbers

Stephen J. Sekula - SMU

30

https://docs.python.org/3/library/random.html
In [6]: import random
random.uniform(@.0,1.0)

Outi6]: ©.9249294856462658

In [7]: random.uniform(@.0,1.0)
OQut[7]: ©.9162778141642234

In [8]: random.uniform(@.0,1.8)
Qut[&8]: ©.98560410817/61423

In [9]: random.uniform(@.0,1.8)

Out[2]: ©.2455499563864707

“random.uniform(0.0,1.0)” generates a uniform random floating-point decimal

number between 0 and 1 (inclusive)
Stephen J. Sekula - SMU 31

Designing our “game board”

)
i

Stephen J. Sekula - SMU

33

Designing our “game board”

LI=2

Stephen J. Sekula - SMU

We don't need the
whole game board —
we can just use one-
quarter of it. This
keeps the program
simple!

Alternative: you can
redefine the range of
“uniform()” to
generate random
numbers between -1
and 1

34

In

https://docs.python.org/3/library/math.html

import math
import random
Ntotal = 160
Nin = ©

X = random.uniform(©.0,1.0)
y random.uniform(©.0,1.0)
r = math.sqrt(x**2 + y**2)

print(x)

print(y)
print(r)

0.0903585396665
B.316618141258
B.329259340187

Stephen J. Sekula - SMU

36

Repetition

You don't want to manually type 100 (or more)
computations of your dot throwing

You need a loop!

A “loop” is a small structure that automatically
repeats your computation a specified number of

times
In PYTHON:

Ntotal = 100

Nin = 0

for i in range(0,Ntotal):
X
y

random.uniform(0.0,1.0)
random.uniform(0.0,1.0)

Stephen J. Sekula - SMU 37

In [16]: dimport math
Ntotal = 100
Nin = 0

for i in range(0,Ntotal):

X
y

random.uniform(0.0,1.0)
random.uniform(0.0,1.0)

r = math.sqrit(x**2 + y**2)
print("x=%f, y=%f, r=%f" % (x,y.r))

“Loops” are
powerful — they
are a major

x=0.603930, y=0.583929, r=0.840062 kh f
x=0.617583, y=0.411800, r=0.742286 WOt orse o
x=0.583378, y=0.175545, r=0.609217

x=0.718061, y=0.296141, r=0.776731 °
x=0.882985, y=0.222359, r=0.910553 ally FEPEtlthE
x=0.713252, y=0.352325, r=0.795526 .
Xx=0.206826, y=0.916204, r=0.939258 taSk COdEd up 1n
x=0.670043, y=0.849535, r=1.081974 3
x=0.661410, y=0.311828, r=0.731231

x=0.887408, y=0.509556, r=1.023299 d prﬂgrammlng
x=0.223581, y=0.053212, r=0.229826

x=0.464946, y=0.972295, r=1.077745 language.
x=0.372330, y=0.029644, r=0.373508

x=0.712593, y=0.249793, r=0.755107

x=0.854628, y=0.581607, r=1.033758

x=0.155536, y=0.861277, r=0.875208

x=0.719621, y=0.606420, r=0.941063

x=0.241450, y=0.570622, r=0.619602

x=0.687749, y=0.674661, r=0.963414

x=0.123180, y=0.402574, r=0.420998

Stephen J. Sekula - SMU 38

Final Piece

e So we have generated a dot by generating its x and y
coordinates throwing uniform random numbers...

e How do we determine if it's “in” or “out” of the
circle?

* ANSWER:

 if r =V(x2+y2) <R, it's in or on the circle; otherwise, it is
out of the circle!

Stephen J. Sekula - SMU 40

In [17]: Ntotal = 100

Nin 0

R=1.08

for i in range(0,Ntotal):
random.uniform(©.0,1.0)
random.uniform{(8.0,1.0)
math.sqri(x**2 + y**2)

e A

if r == R:
Nin = Nin + 1
alternatively, Nin += 1 (auto-increment by 1)

print{"Number of dots: %d" % Ntotal)
print{"Number of hits: %d" % Nin)
print("Number of misses: %d" % (Ntotal-Nin))

my pi = 4.0*float(Nin)/float(Ntotal)
print("pi = %" % (my_pi))

Mumber of dots: 100
NMumber of hits: 83
Mumber of misses: 17
pi = 3.320000

A working program.

You can increase N to get increased precision!

Stephen J. Sekula - SMU

4]

A Comment on Precision

e Given finite statistics, each set of trials carries an
uncertainty (1 + o,,). A point, (X,y), can either be

in/on or out of the circle of radius, R. Thus the
uncertainty on N,, can be treated as a binomial error:

Oy = \/Ntotafp (1- p) where p:Nin/Ntotal

Propagating this to m:

On:4°ONin/Ntota1:4 2 N
Ntotal total

Stephen J. Sekula - SMU 43

Precision (continued)

e Relative error:

O, 1 1

T Nin Ntotal
For 100 trials, o, /m = 15.2% (e.g. 3.04 + 0.46) i improves by
Vv10=3.1623
For 1000 trials, o /m = 4.8% (e.g. 3.15 + 0.15) i improves by
For 10,000 trials: o /m =1.5% (e.g. 3.141 £ 0.047) = _

For 100,000 trials: o /m = 0.48% (e.g. 3.128 + 0.015)

improves by
v10=3.1623

Note that uncertainty scales only as 1/VvN total

Stephen J. Sekula - SMU 44

In

[25]: MNtotal = 160088
Nin = @
R=1.0
for i in range(l,Ntotal):
¥ = random.uniform(@.0,1.0)
y = random.uniform(0.0,1.0)
r = math.sqri(x**2 + y**2)

if r == R:
Nin = Nin + 1
alternatively, Nin += 1 (auto-increment by 1)

my_pi = 4.0*float(Nin)/float(Ntotal)
my_pi_uncertainty = my_pi * math.sqrt(l1.0/float(Nin) + 1.0/float(Ntotal))

print("pi = %.6f +/- %.6T (percent error= %.2f%%)" % (my_pi, my_pi_uncertainty, 100.0*my_pi_uncertainty/my_pi)})

pi = 3.131920 +/- 0.014945 (percent error= 0.48%)

Play around with computing all kinds of things, like
the percent error, the absolute error, and printing
extended and nicely formatted numbers. Python is
fun! Imagine if you had learned this earlier — how
much better a homework result could you have
prepared by attacking problems both analytically
AND numerically?

Stephen J. Sekula - SMU

45

Why is this powerful?

* You've just learned how to compute an integral
NUMERICALLY.

* You can apply this technique to any function whose
integral (area) you wish to determine

e For instance, consider the next slide.

Stephen J. Sekula - SMU

46

 Given an arbitrary function, f(x), you can determine its integral numerically
using the “Accept/Reject Method”

 First, find the maximum value of the function (e.g. either analytically, if
you like, or by calculating the value of f(x) over steps in x to find the max.
value, which I denote F(x))

* Second, enclose the function in a box, h(x), whose height is F(x) and
whose length encloses as much of f(x) as is possible.

e Third, compute the area of the box (easy!)

e Fourth, throw points in the box using uniform random numbers. Throw a
value for x, denotes x'. Throw a value for y, denoted y'. If y' < {(x"), it's a
hit! If not, it's a miss!

Stephen J. Sekula - SMU 47

N s [(f(x))

Na Alh(x))

This, in the real world, is how physicists, engineers,
statisticians, mathematicians, etc. compute integrals of
arbitrary functions.

Learn it. Love it. It will save you.

Stephen J. Sekula - SMU

48

Generating Simulations

 The Monte Carlo technique, given a function that
represents the probability of an outcome, can be
used to generate “simulated data”

e Simulated data is useful in designing an experiment,
or even “running” an experiment over and over to
see all possible outcomes

Stephen J. Sekula - SMU 49

Stephen J. Sekula - SMU

50

Young's Double-Slit Experiment

Simulation

» Consider slits of width, b, separated by a distance, d.

e Given the function that describes the probability of

finding a photon at a given angle:

](G)OCCOS2

sINC(X)=-

ﬁdsin(@)'

A

/

. 2
SINC

'nbsin(ﬂ)'

A

sin(x)/x (x#0)

1 (x=0)

N

Stephen J. Sekula - SMU

51

Next Steps

Need the max. value of 1(0)
e occursat0 =20

Use that to compute the height of the box; the width
of the box is 2 (ranging from -m to +m)

“Throw” random points in the box until you get
1000 “accepts”

Now you have a “simulated data” sample of 1000
photons scattered in the two-slit experiment.

Stephen J. Sekula - SMU 52

35 A =550 nm =

d=0.1 mm 1

30 b=0 $ 3

4

25 +7 3 L —
%

20

15

10

||||||||Fﬁfﬁl§¢ﬁ_|_|.|||||||||||||

&

—
—_——

.

—_— =
—

.
_._q
III|II

Y

ﬁ#.... ...+.

-2

t’ ++ -~ H'ht.* Hj'

Scattering angle, 6 (radians)

o
s

()

Number of photons detectected / 0.063 rad

1000 simulated photons scattered through a double-slit experiment. This
was done in C++ using the free ROOT High-Energy Physics data analysis
framework, so I could easily generate a histogram — a binned data sample.

Stephen J. Sekula - SMU 53

Resources

« SMU Honors Physics Software Project
https://github.com/stephensekula/smu-honors-physics

e Python: (open-source, free)
http://www.python.org/

» Project Jupyter: (open-source, free)
http://jupyter.org/

* Mathematica: (closed-source, non-free)
http://www.wolfram.com/mathematica/

e Maxima (open-source, free “Mathematica”)
http://maxima.sourceforge.net

e Monte Carlo Techniques:
http://en.wikipedia.org/wiki/Monte_Carlo_method

Stephen J. Sekula - SMU

54

