4321

1. Find the real number coefficients b_{i} for the set of basis vectors \hat{u}_{i} from the lecture notes when you decompose the vector $\vec{F}=(4,-4,4)$.
2. (a) Construct a 3 -dimensional orthonormal basis $\left\{\hat{v}_{1}, \hat{v}_{2}, \hat{v}_{3}\right\}$ using $(1,0,1)$ as one of the directions.
(b) Expand the vector $\vec{F}=(4,-4,4)$ in your basis.
(c) Verify explicitly that your orthonormal basis is complete by showing that $\sum_{n=1}^{3} \hat{v}_{n} \hat{v}_{n}$ is the 3 by 3 identity matrix.
3. For $\vec{A}=(1,2,3)$ and $\vec{B}=(-1,0,2)$, find
(a) the inner product of \vec{A} and \vec{B}. What kind of object is this?
(b) the cross product of \vec{A} and \vec{B}. What kind of object is this?
(c) the outer product of \vec{A} and \vec{B}. What kind of object is this?

7305

1. The error

$$
E_{N}\left(c_{1}, \ldots, c_{N}\right) \equiv \int_{a}^{b} d \xi\left|f(\xi)-f_{N}(\xi)\right|^{2}=\int_{a}^{b} d \xi\left[f(\xi)-f_{N}(\xi)\right]^{*}\left[f(\xi)-f_{N}(\xi)\right]
$$

made in the approximation

$$
f_{N}(\xi)=\sum_{n=1}^{N} c_{n} u_{n}(\xi)
$$

to the function $f(\xi)$ is minimized if the expansion coefficients are chosen as

$$
c_{n}=\int_{a}^{b} d \xi u_{n}^{*}(\xi) f(\xi)
$$

Prove this assertion. Hint: Write $c_{n}=a_{n}+i b_{n}$ where a_{n} and b_{n} are real constants, and $\int_{a}^{b} d \xi u_{n}^{*}(\xi) f(\xi)=A_{n}+i B_{n}$ where A_{n} and B_{n} are real constants. Then require that

$$
\frac{\partial E_{N}}{\partial a_{k}}=0=\frac{\partial E_{N}}{\partial b_{k}} .
$$

2. (a) Find $\vec{A}_{\|}$, the piece of \vec{A} parallel to \vec{B}, in terms of \vec{A} and \vec{B}.
(b) Find \vec{A}_{\perp}, the piece of \vec{A} perpendicular to \vec{B}, in terms of \vec{A} and \vec{B}.
(c) What are the two answers above for $\vec{A}=(1,2,3)$ and $\vec{B}=(-1,0,2)$?

Bonus: Solve as much of the other class' assignment as you can.

