$\overline{4321}$

- 1. Consider two-dimensional polar coordinates r(t) and $\phi(t)$.
 - (a) Find $\dot{\hat{e}}_{\phi} = \frac{d}{dt}\hat{e}_{\phi}$ in terms of $\hat{e}_r, \hat{e}_{\phi}, r, \phi, \dot{r}$, and $\dot{\phi}$.
 - (b) Find the radial and tangential components of the acceleration.
 - (c) Find the radial and tangential components of the jerk (time derivative of the acceleration).
- 2. Derive the scale functions (h_i) 's) for cylindrical polar coordinates. Show all the work.
- 3. Find the scale functions $(h_i$'s) for the transformation from Cartesian (x, y, z) to (u, v, w) coordinates:

$$x = \frac{1}{2}(u^2 - v^2)$$
$$y = uv$$
$$z = w$$

- 4. Give a numerical answer or simplify as much as possible:
 - (a) $\vec{\nabla} \cdot \vec{r}$ (divergence of the displacement vector).
 - (b) $\vec{\nabla} \times \vec{r}$ (curl of the displacement vector).
 - (c) $\vec{\nabla} |\vec{r}|$ (gradient of the length of the displacement vector).
 - (d) $\nabla^2 |\vec{r}|$ (Laplacian of the length of the displacement vector).
 - (e) $\vec{\nabla} \times \hat{\phi}$ (curl of the azimuthal angle unit vector in cylindrical polar coordinates).

7305

- 1. Consider the vector field $\vec{v}(\vec{r}) = (x^2 + y^2)\hat{e}_x + (x^2 + y^2)\hat{e}_y + z^2\hat{e}_z$. Decompose the vector field $\vec{v}(\vec{r})$ into the sum of two other vector fields, $\vec{a}(\vec{r})$ and $\vec{b}(\vec{r})$, such that $\vec{a}(\vec{r})$ has no divergence (it is solenoidal) and $\vec{b}(\vec{r})$ has no curl (it is irrotational). The answer is not unique. This is the Helmholtz decomposition.
- 2. What is $\vec{\nabla} \times \hat{\phi}$ (curl of the azimuthal angle unit vector in spherical polar coordinates)?
- 3. (a) What is $\frac{\partial}{\partial x_j} \left(\frac{1}{r}\right)$?
 - (b) What is $\frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{1}{r}\right)$?
 - (c) Verify that $\nabla^2 \left(\frac{1}{|\vec{r} \vec{r}'|} \right) = 0$ for $\vec{r} \neq \vec{r}'$ by direct calculation in Cartesian coordinates. Use the previous result.

4. The Green function (heat kernel) for the one-dimensional heat equation is

$$G(x,t) = \frac{1}{\sqrt{4\pi kt}} \exp\left(\frac{-x^2}{4kt}\right)$$

- (a) Is G(x,t) a solution to the heat equation everywhere/everywhen? Show your work.
- (b) Explain in words what this Green function is physically.
- (c) Given a boundary condition at time zero u(x, 0) = f(x), write the integral using the Green function that you would use to find u(x, t).

Bonus: Solve as much of the other class' assignment as you can.