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To the Student: How to

Read a Mathematics Book

How should you read a mathematics book? The answer, which applies

to every book on mathematics, and in particular to this one, can be given

in one word—actively. You may have heard this before, but it can never

be overstressed—you can only learn mathematics by doing mathematics.

This means much more than attempting all the problems assigned to you

(although attempting every problem assigned to you is a must). What it

means is that you should take time out to think through every sentence

and confirm every assertion made. You should accept nothing on trust;

2



How to Read a Mathematics Book 3

instead, not only should you check every statement, you should also attempt

to go beyond what is stated, searching for patterns, looking for connections

with other material that you may have studied, and probing for possible

generalizations.

Let us consider an example:

Example 0.1

On page 91 in Chapter 2, you will find the following sentence:

Yet, even in this extremely familiar number system, mul-

tiplication is not commutative; for instance, 1 0

0 0

 ·
 0 1

0 0

 6=
 0 1

0 0

 ·
 1 0

0 0

 .

(The “number system” referred to is the set of 2× 2 matrices whose entries

are real numbers.) When you read a sentence such as this, the first thing

that you should do is verify the computation yourselves. Mathematical

insight comes from mathematical experience, and you cannot expect to gain
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mathematical experience if you merely accept somebody else’s word that the

product on the left side of the equation does not equal the product on the

right side.

The very process of multiplying out these matrices will make the set

of 2 × 2 matrices a more familiar system of objects, but as you do the

calculations, more things can happen if you keep your eyes and ears open.

Some or all of the following may occur:

1. You may notice that not only are the two products not the same,

but that the product on the right side gives you the zero matrix. This

should make you realize that although it may seem impossible that two

nonzero “numbers” can multiply out to zero, this is only because you

are confining your thinking to the real or complex numbers. Already,

the set of 2×2 matrices (with which you have at least some familiarity)

contains nonzero elements whose product is zero.

2. Intrigued by this, you may want to discover other pairs of nonzero

matrices that multiply out to zero. You will do this by taking arbitrary

pairs of matrices and determining their product. It is quite probable
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that you will not find an appropriate pair. At this point you may be

tempted to give up. However, you should not. You should try to be

creative, and study how the entries in the various pairs of matrices you

have selected affect the product. It may be possible for you to change

one or two entries in such a way that the product comes out to be zero.

For instance, suppose you consider the product 1 1

1 1

 ·
 4 0

2 0

 =

 6 0

6 0


You should observe that no matter what the entries of the first matrix

are, the product will always have zeros in the (1, 2) and the (2, 2) slots.

This gives you some freedom to try to adjust the entries of the first

matrix so that the (1, 1) and the (2, 1) slots also come out to be zero.

After some experimentation, you should be able to do this.

3. You may notice a pattern in the two matrices that appear in our in-

equality on page 3. Both matrices have only one nonzero entry, and

that entry is a 1. Of course, the 1 occurs in different slots in the two

matrices. You may wonder what sorts of products occur if you take
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similar pairs of matrices, but with the nonzero 1 occuring at other lo-

cations. To settle your curiosity, you will multiply out pairs of such

matrices, such as  0 0

1 0

 ·
 0 1

0 0

 ,

or  0 0

1 0

 ·
 0 0

1 0

 .

You will try to discern a pattern behind how such matrices multiply.

To help you describe this pattern, you will let ei,j stand for the matrix

with 1 in the (i, j)-th slot and zeros everywhere else, and you will try

to discover a formula for the product of ei,j and ek,l, where i, j, k, and

l can each be any element of the set {1, 2}.

4. You may wonder whether the fact that we considered only 2×2 matrices

is significant when considering noncommutative multiplication or when

considering the phenomenon of two nonzero elements that multiply out

to zero. You will ask yourselves whether the same phenomena occur

in the set of 3 × 3 matrices or 4 × 4 matrices. You will next ask
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yourselves whether they occur in the set of n × n matrices, where

n is arbitrary. But you will caution yourselves about letting n be

too arbitrary. Clearly n needs to be a positive integer, since “n × n
matrices” is meaningless otherwise, but you will wonder whether n can

be allowed to equal 1 if you want such phenomena to occur.

5. You may combine 3 and 4 above, and try to define the matrices ei,j

analogously in the general context of n × n matrices. You will study

the product of such matrices in this general context and try to discover

a formula for their product.

Notice that a single sentence can lead to an enormous amount of mathemati-

cal activity! Every step requires you to be alert and actively involved in what

you are doing. You observe patterns for yourselves, you ask yourselves ques-

tions, and you try to answer these questions on your own. In the process, you

discover most of the mathematics yourselves. This is really the only way to

learn mathematics (and in particular, it is the way every professional math-

ematician has learned the subject). Mathematical concepts are developed

precisely because mathematicians observe patterns in various mathematical
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objects (such as the 2 × 2 matrices), and to have a good understanding of

these concepts you must try to notice these patterns for yourselves.

May you spend many many hours happily playing in the rich and beautiful

world of mathematics!

Exercise 0.2

Carry out the program in steps (1) through (5)
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To the Student: Proofs

Many students confronting mathematics beyond elementary calculus for

the first time are stumped at the idea of proofs. Proofs seem so contrary to

how students have done mathematics so far: they have coasted along, mostly

adopting the “plug-and-chug,” “look-up-how-one-example-is-worked-out-in-

the-text-and-repeat-for-the-next-twenty-problems” style. This method may

have appeared to have worked for elementary courses (in the sense that it

may have allowed the students to pass those courses, not necessarily to have

truly understood the material in those courses), but will clearly not work for

more advanced courses that focus primarily on mathematical ideas and do

not rely heavily on rote calculation or symbolic manipulation.

10



On Proofs 11

It is possible that you, dear reader, are also in this category. You may even

have already taken an introductory course on proofs, or perhaps on discrete

mathematics with an emphasis on proofs, but might still be uncomfortable

with the idea of proofs. You are perhaps looking for some magic wand that

would, in one wave, teach you instantly “how to do proofs” and alleviate

all your discomfort. Let’s start with the bad news (don’t worry: there is

good news down the road as well!): there is no such wand. Not only that,

no one knows “how to do proofs,” when stated in that generality. No one,

not even the most brilliant mathematicians of our time. In fact, hoping

to learn “how to do proofs” is downright silly. For, if you “know how to do

proofs,” stated in that generality, this means that not only do you understand

all the mathematics that is currently known, but that you understand all

the mathematics that might ever be known. This, to many, would be one

definition of God, and we may safely assume that we are all mortal here.

The good news lies in what constitutes a proof. A proof is simply a step-

by-step revelation of some mathematical truth. A proof lays bare connections

between various mathematical objects and in a series of logical steps, leads

you via these connections to the truth. It is like a map that depicts in detail
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how to find buried treasure. Thus, if you have written one proof correctly, this

means that you have discovered for yourself the route to some mathematical

treasure–and this is the good news! To write a proof of some result is to

fully understand all the mathematical objects that are connected with that

result, to understand all the relations between them, and eventually to “see”

instantly why the result must be true. There is joy in the whole process: in

the search for connections, in the quest to understand what these connections

mean, and finally, in the “aha” moment, when the truth is revealed.

(It is in this sense too that no one can claim to “know how to do proofs.”

They would in effect be claiming to know all mathematical truths!)

Thus, when students say that they “do not know how to do proofs,” what

they really mean, possibly without being aware of this themselves, is that

they do not fully understand the mathematics involved in the specific result

that they are trying to prove. It is characteristic of most students who have

been used to the “plug and chug” style alluded to before that they have

simply not learned to delve deep into mathematics. If this describes you as

well, then I would encourage you to read the companion essay To the Student:

How to Read a Mathematics Book (Page 2). There are habits of thought
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that must become second nature as you move into advanced mathematics,

and these are described there.

Besides reading that essay, you can practice thinking deeply about math-

ematics by trying to prove a large number of results that involve just ele-

mentary concepts that you would have seen in high school (but alas, perhaps

could never really explore in depth then). Doing so will force you to start

examining concepts in depth, and start thinking about them like a mathe-

matician would. We will collect a few examples of proofs of such results in

this chapter, and follow it with more results left as exercises for you to prove.

And of course, as you read through the rest of this book, you will be

forced to think deeply about the mathematics presented here: there really

is no other way to learn this material. And as you think deeply, you will

find that it becomes easier and easier to write proofs. This will happen

automatically, because you will understand the mathematics better, and once

you understand better, you will be able to articulate your thoughts better,

and will be able to present them in the form of cogent and logical arguments.

Now for some practice examples and exercises. We will invoke a few

definitions that will be familiar to you already (although we will introduce
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them in later chapters too): Integers are members of the set {0,±1,±2, . . . }.
A prime is an integer n (not equal to 0 or ±1) whose only divisors are ±1

and ±n. If you are used only to divisibility among the positive integers,

just keep the following example in mind: −2 divides 6 because −2 times −3

equals 6. Similarly, −2 · 3 = −6, so −2 divides −6 as well. By the same

token, 2 divides −6 because 2 ·−3 = −6. In general, if m and n are positive

integers and m divides n, then, ±m divides ±n.

Example 0.3

Let us start with a very elementary problem: Prove that the sum of the

squares of two odd integers is even.

You can try to test the truth of this statement by taking a few pairs

of odd integers at random, squaring them, and adding the squares. For

instance, 32 + 72 = 58, and 58 is even, 52 + 12 = 26, and 26 is even,

and so on. Now this of course doesn’t constitute a proof: a proof should

reveal why this statement must be true.

You need to invoke the fact that the given integers are odd. Odd

integers are precisely those that are expressible as 2x+1 for some integer
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x (and of course, even integers are precisely those that are expressible as

2y for some integer y). Recall that the sum of two odd integers is even: if

one integer is expressed as 2x+1 for some integer x and the other as 2y+1

for some integer y (note that we are using y the second time around—we

must use a different letter or else the two integers we start with will be

equal!), then their sum is 2x+ 1 + 2y+ 1 = 2(x+ y) + 2 = 2(x+ y+ 1),

and this is even because it is a multiple of two.

Exercise 0.3.1

Modify the argument above and show that the sum of two even

integers is even, and the sum of an even integer and an odd integer

is odd.

Exercise 0.3.2

Now modify the argument above further and show that the product

of two odd integers is odd, the product of two even integers is even,

and the product of an even integer and an odd integer is even.

Now let us prove the assertion at the start of this example:



On Proofs 16

Proof. Let the first integer by 2x+1, and the second be 2y+1. We square

them and add: (2x+ 1)2 + (2y+ 1)2 = (4x2 + 4x+ 1) + (4y2 + 4y+ 1) =(
2(2x2 + 2x) + 1

)
+
(
2(2y2 + 2y) + 1

)
= (2k + 1) + (2l + 1), where

we have written k for 2x2 + 2x and l for 2y2 + 2y. But (2k + 1) and

(2l + 1) are odd integers, and their sum is necessarily even, as we have

seen above.

2

The truth therefore is simply in the algebra: on expanding, (2x + 1)2

is 4(x2 + x) plus 1, i.e., an even integer plus 1, i.e, an odd integer. The

same is true for (2y + 1)2. Thus, when we add the two squares, we end

up adding two odd integers, and their sum has to be even.

Now here is something key to understanding mathematics: you

shouldn’t stop here and go home! Ask yourself: what other results

must be based on similar algebra? For instance, what about the sum of

the cubes of two odd integers? The sum of the n-th powers of two odd

integers for arbitrary n ≥ 3? Or, going in a different direction, will the

sum of the squares of three odd integers be even or odd? The sum of the
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squares of four odd integers? Etc., Etc.! Formulate your own possible

generalizations, and prove them!

Example 0.4

Here is something a bit more involved: Show that if n is a positive

integer, show that n5 − n is divisible by 5.

How would one go about this? There are no rules of course, but your

experience with odds (“2x+ 1”) and evens (“2y”) might suggest to you

that perhaps when trying to show that some final expression is divisible

by 5, we should consider the remainders when various integers are divided

by 5. (This is the sort of insight that comes from experience—there really

is no substitute for having done lots of mathematics before!) The various

possible remainders are 0, 1, 2, 3, and 4. Thus, we write n = 5x + r

for some integer x, and some r in the set {0, 1, 2, 3, 4}, and then expand

n5−n, hoping that in the end, we get a multiple of 5. Knowledge of the

binomial theorem will be helpful here.

Proof. Write n = 5x+ r as above. Then n5−n = (5x+ r)5− (5x+ r),
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and using the binomial theorem and the symmetry of the coefficients

(
(
n
r

)
=
(

n
n−r
)
), this is (5x)5+5(5x)4r+(5·4)/2 (5x)3r2+(5·4)/2 (5x)2r3+

5(5x)r4 + r5− (5x+ r). Studying the terms, we see that all summands

except possibly r5− r are divisible by 5. We may hence write n5− n =

5y+ r5− r, where y is obtained by factoring 5 from all summands other

than r5 − r. It is sufficient therefore to prove that for any r in the set

{0, 1, 2, 3, 4}, r5− r is divisible by 5, for if so, we may write r5− r = 5z

for suitable z, and then write n5 − n = 5y + 5z = 5(y + z), which is

a multiple of 5. Since r only takes on five values, all of them small, we

can test easily that r5 − r is divisible by 5: 05 − 0 = 0, 15 − 1 = 0,

25 − 2 = 30, 35 − 3 = 240, and 45 − 4 = 1020, all divisible by 5 as

needed! 2

It is not time to go home yet! Remember the advice in the essay To the

Student: How to Read a Mathematics Book (Page 2). Go beyond what

is stated, search for patterns, look for connections, probe for possible

generalizations. . . . See the following exercise:
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Exercise 0.4.1

What was so special about the “5” in the example above? As n

varies through the positive integers, play with expressions of the

form nk − n for small values of k, such as k = 2, 3, 4, 6, 7 etc. Can

you prove that for all positive integers n, nk − n is divisible by k,

at least for these small values of k? (For instance, you can try to

modify the proof above appropriately.) If you cannot prove this

assertion for some of these values of k, can you find some counterex-

amples, i.e, some value of n for which nk − n is not divisible by n?

Based on your explorations, can you formulate a conjecture on what

values of k will make the assertion “nk − n is divisible by k for all

positive integers n” true? (These results are connected with some

deep results: Fermat’s “little” theorem, Carmichael numbers, and

so on, and have applications in cryptography, among other places.

Incidentally, the cases n = 3 and n = 5 appear again as Exercises

1.34 and 1.35 in Chapter 1 ahead, with a hint that suggests a slightly

different technique of proof.)
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Exercise 0.4.2

Show that n5 − n is divisible by 30 as well.

(Hint: Since we have seen that n5−n is divisible by 5, it is sufficient

to show that it is also divisible by 2 and by 3.)

Question 0.4.3

Suppose you were asked to prove that a certain integer is divisibly by

90. Notice that 90 = 15×6. Is it sufficient to check that the integer

is divisible by both 15 and 6 to be able to conclude that it is divisible

by 90? If not, why not? Can you provide a counterexample?

Example 0.5

Prove that if n is any positive integer and x and y are any two distinct

integers, then xn − yn is divisible by x− y.

When confronted with an infinite sequence of statements, one for each

n = 1, 2, . . . , it is worthwhile playing with these statements for small
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values for n, and checking if they are true for these values. Then, while

playing with them, you might see a pattern that might give you some

ideas.

The statement is clearly true for n = 1: x − y is of course divisible

by x− y! For n=2, we know that x2 − y2 = (x− y)(x + y), so clearly

x2 − y2 is divisible by x − y. When n = 3, you may remember the

identity x3 − y3 = (x − y)(x2 + xy + y2). So far so good. For n = 4?

Or even, for n = 3 if you didn’t remember the identity? How would you

have proceeded?

One possibility is to see if you can’t be clever, and somehow reduce the

n = 3 case to the n = 2 case. If we could massage x3 − y3 somehow so

as to incorporate x2− y2 in it, we would be able to invoke the fact that

x2− y2 is divisible by x− y, and with luck, it would be obvious that the

rest of the expression for x3−y3 is also divisible by x−y. So let’s do a bit

of algebra to bring x2−y2 into the picture: x3−y3 = x(x2−y2)+xy2−y3

(adding and subtracting xy2), and this equals x(x2 − y2) + y2(x − y).

Ah! The first summand is divisible by x − y as we saw above for the
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n = 2 case, and the second is clearly divisible by x − y, so the sum is

divisible by x− y! Thus, the n = 3 case is done as well!

This suggests that we use induction to prove the assertion:

Proof. Let P (n), for n = 1, 2, . . . denote the statement that xn− yn is

divisible by x− y for any two distinct integers x and y. The statement

P (1) is clearly true, Let us assume that P (k) is true for some integer

k ≥ 1. Consider xk+1−yk+1. Adding and subtracting xyk, we may write

this as x(xk− yk) +xyk− yk+1, which in turn is x(xk− yk) + yk(x− y).

By the assumption that P (k) is true, xk − yk is divisible by x− y. The

second summand yk(x− y) is clearly divisible by x− y. Hence, the sum

x(xk− yk) + yk(x− y) is also divisible by x− y. Thus, P (k+ 1) is true.

By induction, P (n) is true for all n = 1, 2, . . . . 2
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Remark 0.5.1

Remember, a statement is simply a (grammatically correct) sen-

tence. The statement need not actually be true: for instance, “All

humans live forever” is a perfectly valid statement, even though

the elixir of life has yet to be found. When we use constructs like

“P (n),” we mean that we have an infinite family of statements, la-

beled by the positive integers. Thus, P (1) is the statement that

x1 − y1 is divisible by x− y, P (2) is the statement that x2 − y2 is

divisible by x− y, etc., etc. The Principle of Induction states that

if P (n), n = 1, 2, . . . is a family of statements such that P (1) is

true, and whenever P (k) is true for some k ≥ 1, then P (k + 1) is

also true, then P (n) is true for all n ≥ 1.. (You are asked to prove

this statement in Exercise 1.37 of Chapter 1 ahead.)
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Remark 0.5.2

A variant of the principle of induction, sometimes referred to as

the Principle of Strong Induction, but logically equivalent to the

principle of induction, states that given the statements P (n) as

above, if P (1) is true, and whenever P (j) is true for all j from 1 to

k, then P (k + 1) is also true, then P (n) is true for all n ≥ 1.

Another variant of the principle of induction, is that if P (s) is

true for some integer s (possibly greater than 1), and if P (k) is true

for some k ≥ s, then P (k+ 1) is also true, then P (n) is true for all

n ≥ s (note!).

Example 0.6

Prove that given any 6 integers, there must be at least one pair among

them whose difference is divisible by 5.

Let us first work on an easier problem:
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Exercise 0.6.1

Prove that in a group of 13 people, there must be at least two people

whose month of birth is the same.

The proof is very simple, but there is a lovely principle behind it

which has powerful applications! The idea is the following: there

are 12 possible months of birth, January through December. Think

of each month as a room, and place each person in the room corre-

sponding to their month of birth. Then it is clear that because there

are 13 people but only 12 rooms, there must be at least one room

in which more than just one person has bee placed. That proves it.

This principle is known as the Pigeon Hole Principle. Pigeon holes

are open compartments on a desk or in a cupboard where letters are

placed. The principle states that if more than n letters are distributed

among n pigeon holes, then at least one pigeon hole must contain two

or more letters. Another version of this principle is that if more than kn

letters are distributed among n pigeon hole, then at least one pigeon hole
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must contain k + 1 or more letters. (This is because if, on the contrary,

every pigeon hole only contained a maximum of k letters, then the total

number of letters would be at most kn, whereas we started out with

more than kn letters.)

Exercise 0.6.2

Show that if there are 64 people in a room, there must be at least

six people whose months of birth are the same.

Now let us prove the statement that started this exercise: given six

integers, we wish to show that for at least one pair, the difference is

divisible by 5. If a1, . . . , a6 are the six integers, let r1, . . . , r6 denote the

remainders when a1, . . . , a6 respectively when divided by 5. Note that

each ri is either 0, 1, 2, 3, or 4. Apply the pigeon hole principle: there

are 5 possible values of remainders, namely, 0 through 4 (the pigeon

holes), and there are six actual remainders r1 through r6 (the letters).

Placing the six letters into their corresponding pigeon holes, we find that

at least two of the ri must be equal. Suppose for instance that r2 and
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r5 are equal. Then a2 and a5 leave the same remainder on dividing

by 5, so when a2 − a5 is divided by 5, these two remainders cancel, so

a2 − a5 will be divisible by 5. (Described more precisely, a2 must be

of the form 5k + r2 for some integer k since it leaves a remainder of r2

when divided by 5, and a5 must similarly be of the form 5l+ r5 for some

integer l. Hence, a2 − a5 = 5(k − l) + (r2 − r5). Since r2 = r5, we

find a2 − a5 = 5(k − l), it is thus a multiple of 5!) Obviously, the same

idea applies to any two ri and rj that are equal: the difference of the

corresponding ai and aj will be divisible by 5.

Exercise 0.6.3

Show that from any set of 100 integers one can pick 15 integers such

that the difference of any two of these is divisible by 7.

Here are further exercises for you to work on. As always, keep the precepts

in the essay To the Student: How to Read a Mathematics Book (Page 2)

uppermost in your mind. Go beyond what is stated, search for patterns, look

for connections, probe for possible generalizations. . . .
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Further Exercises

Exercise 0.7

If n is any odd positive integer and x and y are any two integers, show

that xn + yn is divisible by x + y.

Exercise 0.8

1 = 1 = (1 · 2)/2

1 + 2 = 3 = (2 · 3)/2

1 + 2 + 3 = 6 = (3 · 4)/2

1 + 2 + 3 + 4 = 10 = (4 · 5)/2

Conjecture the general formula suggested by these equations and prove

your conjecture!
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Exercise 0.9

12 = 1 = (1 · 2 · 3)/6

12 + 22 = 5 = (2 · 3 · 5)/6

12 + 22 + 32 = 14 = (3 · 4 · 7)/6

12 + 22 + 32 + 42 = 30 = (4 · 5 · 9)/6

Conjecture the general formula suggested by these equations and prove

your conjecture!
For a discussion of

Exercise 0.10, see

.

Exercise 0.10

1 = 1

2 + 3 + 4 = 1 + 8

5 + 6 + 7 + 8 + 9 = 8 + 27

10 + 11 + 12 + 13 + 14 + 15 + 16 = 27 + 64

Conjecture the general formula suggested by these equations and prove

your conjecture! After you have tried this problem yourself, follow

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Proofs/
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the link on the side!

Exercise 0.11

Prove that 1 + 3 + 5 + · · · + (2n− 1) = n2, for n = 1, 2, 3, . . . .

Exercise 0.12

Prove that 2n < n!, for n = 4, 5, 6, . . . .

Exercise 0.13

For n = 1, 2, 3, . . . , prove that

1

1 · 2
+

1

2 · 3
+ · · · + 1

n · (n + 1)
=

n

n + 1

Exercise 0.14

The following exercise deals with the famous Fibonacci sequence. Let

a1 = 1, a2 = 1, for n ≥ 3, let an be given the formula an = an−1 +an−2.

(Thus, a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, etc.) Show the following:

1. a1 + a2 + · · · + an = an+2 − 1.

2. a1 + a3 + a5 + · · · + a2n−1 = a2n.
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3. a2 + a4 + a6 + · · · + a2n = a2n+1 − 1. For a discussion of

Exercise 0.15, see

.Exercise 0.15

Continuing with the Fibonacci sequence, show that

an =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
(The amazing thing is that that ugly mess of radical signs on the right

turns out to be an integer!) After you have tried this problem yourself,

follow the link on the side!

Note that it is

not true that

for every prime

p, 2p − 1 must

be prime. For

more on Mersenne

primes, including

the Great Internet

Mersenne Prime

Search, see see

Exercise 0.16

If a ≥ 2 and n ≥ 2 are integers such that an − 1 is prime, show that

a = 2 and n must be a prime. (Primes of the form 2p − 1, where p is a

prime, are known as Mersenne primes.)

For more on Fer-

mat primes, see

.

Exercise 0.17

If an + 1 is prime for some integers a ≥ and n ≥ 2, show that a must

be even and n must be a power of 2. (Primes of the form 22l are known

as Fermat primes.)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Proofs/SoftChalk_Proofs2.html
http://primes.utm.edu/mersenne/
http://primes.utm.edu/mersenne/
http://www.csun.edu/~asethura/papers/AtRiA_Article.pdf
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Exercise 0.18

Suppose that several copies of a regular polygon are arranged about a

common vertex such that there is no overlap, and together they fully

surround the vertex. Show that the only possibilities are six triangles,

or four squares, or three hexagons.
For a discussion of

Exercise 0.19, see

.

Exercise 0.19

Show that if six integers are picked at random from the set {1, . . . , 10},
then at least two of them must add up to exactly 11. After you have

tried this problem yourself, follow the link on the side!
For a discussion of

Exercise 0.20, see

.

Exercise 0.20

Show that if 25 points are selected at random from a hexagon of side

2l, then at least two of them must be within a distance l of each other.

After you have tried this problem yourself, follow the link on the side!
For a discussion of

Exercise 0.21, see

.

Exercise 0.21

Based on your answers to Exercise 0.8 and Exercise 0.9, guess at a

formula for 13 + 23 + · · ·+n3 in terms of n, and prove that your formula

is correct. After you have tried this problem yourself, follow the link

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Proofs/SoftChalk_Proofs3.html
http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Proofs/SoftChalk_Proofs4.html
http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Proofs/SoftChalk_Proofs5.html
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on the side!
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Chapter 1

Divisibility in the Integers

We will begin our study with a very concrete set of objects, the integers,

that is, the set {0, 1,−1, 2,−2, . . . }. This set is traditionally denoted Z and

is very familiar to us—in fact, we were introduced to this set so early in our

lives that we think of ourselves as having grown up with the integers. More-

over, we view ourselves as having completely absorbed the process of integer

division; we unhesitatingly say that 3 divides 99 and equally unhesitatingly

say that 5 does not divide 101.

As it turns out, this very familiar set of objects has an immense amount of

35
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structure to it. It turns out, for instance, that there are certain distinguished

integers (the primes) that serve as building blocks for all other integers. These

primes are rather beguiling objects; their existence has been known for over

two thousand years, yet there are still several unanswered questions about

them. They serve as building blocks in the following sense: every positive

integer greater than 1 can be expressed uniquely as a product of primes.

(Negative integers less than −1 also factor into a product of primes, except

that they have a minus sign in front of the product.)

The fact that nearly every integer breaks up uniquely into building blocks

is an amazing one; this is a property that holds in very few number systems,

and our goal in this chapter is to establish this fact. (In the exercises to

Chapter 2 we will see an example of a number system whose elements do not

factor uniquely into building blocks. Chapter 2 will also contain a discussion

of what a “number system” is—see Remark 2.8.)

We will begin by examining the notion of divisibility and defining divisors

and multiples. We will study the division algorithm and how it follows from

the Well-Ordering Principle. We will explore greatest common divisors and

the notion of relative primeness. We will then introduce primes and prove
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our factorization theorem. Finally, we will look at what is widely considered

as the ultimate illustration of the elegance of pure mathematics—Euclid’s

proof that there are infinitely many primes.

Some authors de-

fine N as the set

{1, 2, 3, . . . }, i.e.,

without the 0 that

we have included.

It is harmless to

use that defini-

tion, as long as

one is consistent.

We will stick to

our definition in

this text.

Let us start with something that seems very innocuous, but is actu-

ally rather profound. Write N for the set of nonnegative integers that is,

N = {0, 1, 2, 3, . . . }. (N stands for “natural numbers,” as the nonnegative

integers are sometimes referred to.) Let S be any nonempty subset of N. For

example, S could be the set {0, 5, 10, 15, . . . }, or the set {1, 4, 9, 16, . . . }, or

else the set {100, 1000}. The following is rather obvious: there is an element

in S that is smaller than every other element in S, that is, S has a smallest

or least element. This fact, namely that every nonempty subset of N has

a least element, turns out to be a crucial reason why the integers possess

all the other beautiful properties (such as a notion of divisibility, and the

existence of prime factorizations) that make them so interesting.

Compare the integers with another very familiar number system, the

rationals, that is, the set {a/b | a and b are integers, with b 6= 0}. (This set

is traditionally denoted by Q.) In contrast:
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Question 1.1

Can you think of a nonempty subset of the positive rationals that fails

to have a least element?

We will take this property of the integers as a fundamental axiom, that

is, we will merely accept it as given and not try to prove it from more

fundamental principles. Also, we will give it a name:

Well-Ordering Principle: Every nonempty subset of the nonnegative

integers has a least element.

Now let us look at divisibility. Why do we say that 2 divides 6? It is

because there is another integer, namely 3, such that the product 2 times 3

exactly gives us 6. On the other hand, why do we say that 2 does not divide

7? This is because no matter how hard we search, we will not be able to find

an integer b such that 2 times b equals 7. This idea will be the basis of our

definition:
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Definition 1.2

A (nonzero) integer d is said to divide an integer a (denoted d|a) if there

exists an integer b such that a = db. If d divides a, then d is referred to

as a divisor of a or a factor of a, and a is referred to as a multiple of

d.

Observe that this is a slightly more general definition than most of us

are used to—according to this definition, −2 divides 6 as well, since there

exists an integer, namely −3, such that −2 times −3 equals 6. Similarly, 2

divides −6, since 2 times −3 equals −6. More generally, if d divides a, then

all of the following are also true: d| − a, −d|a, −d| − a. (Take a minute to

prove this formally!) It is quite reasonable to include negative integers in our

concept of divisibility, but for convenience, we will often focus on the case

where the divisor is positive.

The following easy result will be very useful:

Lemma 1.3 is

used extensively

in problems in in-

teger divisibility!

Lemma 1.3. If d is a nonzero integer such that d|a and d|b for two inte-

gers a and b, then for any integers x and y, d|(xa+ yb). (In particular,

d|(a + b) and d|(a− b).)
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Proof. Since d|a, a = dm for some integer m. Similarly, b = dn for some

integer n. Hence xa + yb = xdm + ydn = d(xm + yn). Since we have

succeeded in writing xa + yb as d times the integer xm + yn, we find that

d|(xa + yb). As for the statement in the parentheses, taking x = 1 and

y = 1, we find that d|a + b, and taking x = 1 and y = −1, we find that

d|a− b. 2

Question 1.4

If a nonzero integer d divides both a and a+ b, must d divide b as well?

The following lemma holds the key to the division process. Its statement

is often referred to as the division algorithm. The Well-Ordering Principle

(Page 38) plays a central role in its proof.

The division al-

gorithm (Lemma

1.5) seems so

trivial, yet it is a

central theoretical

result. In fact,

the existence of

unique prime

factorization in

the integers (The-

orem 1.20) can

be traced back

to the division

algorithm.

Lemma 1.5. (Division Algorithm) Given integers a and b with b > 0,

there exist unique integers q and r, with 0 ≤ r < b such that a = bq + r.
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Remark 1.6

First, observe the range that r lies in. It is constrained to lie between

0 and b − 1 (with both 0 and b − 1 included as possible values for r).

Next, observe that the lemma does not just state that integers q and r

exist with 0 ≤ r < b and a = bq+r, it goes further—it states that these

integers q and r are unique. This means that if somehow one were to

have a = bq1 + r1 and a = bq2 + r2 for integers q1, r1, q2, and r2 with

0 ≤ r1 < b and 0 ≤ r2 < b, then q1 must equal q2 and r1 must equal r2.

The integer q is referred to as the quotient and the integer r is referred

to as the remainder.

Proof of Lemma 1.5. Let S be the set {a− bn | n ∈ Z}. Thus, S contains

the following integers: a (= a− b · 0), a− b, a + b, a− 2b, a + 2b, a− 3b,

a+ 3b, etc. Let S∗ be the set of all those elements in S that are nonnegative,

that is, S∗ = {a − bn | n ∈ Z, and a − bn ≥ 0}. It is not immediate

that S∗ is nonempty, but if we think a bit harder about this, it will be clear

that S∗ indeed has elements in it. For if a is nonnegative, then a ∈ S∗. If

a is negative, then a − ba is nonnegative (check! remember that b itself is



CHAPTER 1. DIVISIBILITY IN THE INTEGERS 42

positive, by hypothesis), so a − ba ∈ S∗. By the Well-Ordering Principle

(Page 38), since S∗ is a nonempty subset of N, S∗ has a least element; call

it r. (The notation r is meant to be suggestive; this element will be the “r”

guaranteed by the lemma.)

Since r is in S (actually in S∗ as well), r must be expressible as a − bq
for some integer q, since every element of S is expressible as a− bn for some

integer n. (The notation q is also meant to be suggestive, this integer will

be the “q” guaranteed by the lemma.) Since r = a− bq, we find a = bq+ r.

What we need to do now is to show that 0 ≤ r < b, and that q and r are

unique.

Observe that since r is in S∗ and since all elements of S∗ are nonnegative,

r must be nonnegative, that is 0 ≤ r. Now suppose r ≥ b. We will arrive

at a contradiction: Write r = b + x, where x ≥ 0 (why is x ≥ 0?). Writing

b + x for r in a = bq + r, we find a = bq + b + x, or a = b(q + 1) + x, or

x = a− b(q + 1). This form of x shows that x belongs to the set S (why?).

Since we have already seen that x ≥ 0, we find further that x ∈ S∗. But

more is true: since x = r−b and b > 0, x must be less than r (why?). Thus,

x is an element of S∗ that is smaller that r—a contradiction to the fact that
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r is the least element of S∗! Hence, our assumption that r ≥ b must have

been false, so r < b. Putting this together with the fact that 0 ≤ r, we find

that 0 ≤ r < b, as desired.

Now for the uniqueness of q and r. Suppose a = bq + r and as well,

a = bq′ + r′, for integers q, r, q′, and r′ with 0 ≤ r < b and 0 ≤ r′ < b.

Then b(q − q′) = r′ − r. Thus, r′ − r is a multiple of b. Now the fact that

0 ≤ r < b and 0 ≤ r′ < b shows that −b < r′−r < b. (Convince yourselves

of this!) The only multiple of b in the range (−b, b) (both endpoints of the

range excluded) is 0. Hence, r′ − r must equal 0, that is, r′ = r. It follows

that b(q − q′) = 0, and since b 6= 0, we find that q = q′.

2

Observe that to test whether a given (positive) integer d divides a given

integer a, it is enough to write a as dq + r (0 ≤ r < d) as in Lemma 1.5

and examine whether the remainder r is zero or not. For d|a if and only if

there exists an integer x such that a = dx. View this as a = dx+ 0. By the

uniqueness part of Lemma 1.5, we find that a = dx + 0 if and only if b = x

and r = 0.
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Now, given two nonzero integers a and b, it is natural to wonder whether

they have any divisors in common. Notice that 1 is automatically a common

divisor of a and b, no matter what a and b are. Recall that |a| denotes the

absolute value of a, and notice that every divisor d of a is less than or equal

to |a|. (Why? Notice, too, that |a| is a divisor of a.) Also, for every divisor

d of a, we must have d ≥ −|a|. (Why? Notice, too, that −|a| is a divisor

of a.) Similarly, every divisor d of b must be less than or equal to |b| and

greater than or equal to −|b| (and both |b| and | − b| are divisors of b). It

follows that every common divisor of a and b must be less than or equal to

the lesser of |a| and |b|, and must be greater than or equal to the greater of

−|a| and −|b|. Thus, there are only finitely many common divisors of a and

b, and they all lie in the range max(−|a|,−|b|) to min(|a|, |b|).
We will now focus on a very special common divisor of a and b.

Definition 1.7

Given two (nonzero) integers a and b, the greatest common divisor of

a and b (written as gcd(a, b)) is the largest of the common divisors of a

and b.
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Note that since there are only finitely many common divisors of a and b,

it makes sense to talk about the largest of the common divisors.

Question 1.8

By contrast, must an infinite set of integers necessarily have a largest

element? Must an infinite set of integers necessarily fail to have a largest

element? What would your answers to these two questions be if we

restricted our attention to an infinite set of positive integers? How about

if we restricted our attention to an infinite set of negative integers?

Notice that since 1 is already a common divisor, the greatest common

divisor of a and b must be at least as large as 1. We can conclude from this

that the greatest common divisor of two nonzero integers a and b must be

positive.

Question 1.9

If p and q are two positive integers and if q divides p, what must gcd(p, q)

be?

See the notes on Page 74 for a discussion on the restriction that both a

and b be nonzero in Definition 1.7 above.
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Let us derive an alternative formulation for the greatest common divisor

that will be very useful. Given two nonzero integers a and b, any integer

that can be expressed in the form xa+ yb for some integers x and y is called

a linear combination of a and b. (For example, a = 1 · a + 0 · b is a linear

combination of a and b; so are 3a − 5b, −6a + 10b, −b = 0 · a + (−1) · b,
etc.) Write P for the set of linear combinations of a and b that are positive.

(For instance, if a = 2 and b = 3, then −2 = (−1) · 2 + (0) · 3 would not

be in P as −2 is negative, but 7 = 2 · 2 + 3 would be in P as 7 is positive.)

Now here is something remarkable: the smallest element in P turns out to

be the greatest common divisor of a and b! We will prove this below.

This alternative

formulation of gcd

in Theorem 1.10

is very useful for

proving theorems!

Theorem 1.10. Given two nonzero integers a and b, let P be the set

{xa+ yb|x, y ∈ Z, xa+ yb > 0}. Let d be the least element in P . Then

d = gcd(a, b). Moreover, every element of P is divisible by d.

Proof. First observe that P is not empty. For if a > 0, then a ∈ P , and if

a < 0, then −a ∈ P . Thus, since P is a nonempty subset of N (actually, of

the positive integers as well), the Well-Ordering Principle (Page 38) guaran-
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tees that there is a least element d in P , as claimed in the statement of the

theorem.

To show that d = gcd(a, b), we need to show that d is a common divisor

of a and b, and that d is the largest of all the common divisors of a and b.

First, since d ∈ P , and since every element in P is a linear combination

of a and b, d itself can be written as a linear combination of a and b. Thus,

there exist integers x and y such that d = xa+ yb. (Note: These integers x

and y need not be unique. For instance, if a = 4 and b = 6, we can express

2 as both (−1) · 4 + 1 · 6 and (−4) · 4 + 3 · 6. However, this will not be a

problem; we will simply pick one pair x, y for which d = xa + yb and stick

to it.)

Let us show that d is a common divisor of a and b. Write a = dq + r for

integers d and r with 0 ≤ r < d (division algorithm). We need to show that

r = 0. Suppose to the contrary that r > 0. Write r = a− dq. Substituting

xa + yb for d, we find that r = (1 − xq)a + (−yq)b. Thus, r is a positive

linear combination of a and b that is less than d—a contradiction, since d is

the smallest positive linear combination of a and b. Hence r must be zero,

that is, d must divide a. Similarly, one can prove that d divides b as well, so
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that d is indeed a common divisor of a and b.

Now let us show that d is the largest of the common divisors of a and

b. This is the same as showing that if c is any common divisor of a and b,

then c must be no larger than d. So let c be any common divisor of a and b.

Then, by Lemma 1.3 and the fact that d = xa+ yb, we find that c|d. Thus,

c ≤ |d| (why?). But since d is positive, |d| is the same as d. Thus, c ≤ d, as

desired.

To prove the last statement of the theorem, note that we have already

proved that d|a and d|b. By Lemma 1.3, dmust divide all linear combinations

of a and b, and must hence divide every element of P .

We have thus proved our theorem. 2

In the course of proving Theorem 1.10 above, we have actually proved

something else as well, which we will state as a separate result:

Proposition 1.11. Every common divisor of two nonzero integers a and

b divides their greatest common divisor.

Proof. As remarked above, the ideas behind the proof of this corollary are

already contained in the proof of Theorem 1.10 above. We saw there that
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if c is any common divisor of a and b, then c must divide d, where d is the

minimum of the set P defined in the statement of the theorem. But this,

along with the other arguments in the proof of the theorem, showed that d

must be the greatest common divisor of a and b. Thus, to say that c divides

d is really to say that c divides the greatest common divisor of a and b, thus

proving the proposition. 2

Exercise 1.39 will yield yet another description of the greatest common

divisor.
Question 1.12

Given two nonzero integers a and b for which one can find integers x

and y such that xa + yb = 2, can you conclude from Theorem 1.10

that gcd(a, b) = 2? If not, why not? What, then, are the possible

values of gcd(a, b)? Now suppose there exist integers x′ and y′ such that

x′a + y′b = 1. Can you conclude that gcd(a, b) = 1? (See the notes

on Page 75 after you have thought about these questions for at least a

little bit yourselves!)

Given two nonzero integers a and b, we noted that 1 is a common divisor
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of a and b. In general, a and b could have other common divisors greater than

1, but in certain cases, it may turn out that the greatest common divisor of

a and b is precisely 1. We give a special name to this:

Definition 1.13

Two nonzero integers a and b are said to be relatively prime if

gcd(a, b) = 1.

We immediately have the following:

Corollary 1.14. Given two nonzero integers a and b, gcd(a, b) = 1 if and

only if there exist integers x and y such that xa + yb = 1.

Proof. You should be able to prove this yourselves! (See Question 1.12

above.) 2

The following lemma will be useful:

Lemma 1.15. Let a and b be positive integers, and let c be a third integer.

If a|bc and gcd(a, b) = 1, then a|c.
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Proof. Since gcd(a, b) = 1, Theorem 1.10 shows that there exist integers x

and y such that 1 = xa+ yb. Multiplying by c, we find that c = xac+ ybc.

Since a|a and a|bc, a must divide c by Lemma 1.3. 2

We are now ready to introduce the notion of a prime!

Definition 1.16

An integer p greater than 1 is said to be prime if its only divisors are

±1 and ±p. (An integer greater than 1 that is not prime is said to be

composite.)

The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29. The

hundredth prime is 541.

Primes are intriguing things to study. On the one hand, they should be

thought of as being simple, in the sense that their only positive divisors are 1

and themselves. (This is sometimes described by the statement “primes have

no nontrivial divisors.”) On the other hand, there is an immense number

of questions about them that are still unanswered, or at best, only partially

answered. For instance: is every even integer greater than 4 expressible as
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a sum of two primes? (This is known as “Goldbach’s conjecture.” The

answer is unknown.) Are there infinitely many twin primes? (The answer

to this is also unknown, but see the margin!.) Is there any pattern to the

occurence of the primes among the integers? Here, some partial answers

are known. The following is just a sample: There are arbitrarily large gaps

between consecutive primes, that is, given any n, it is possible to find two

consecutive primes that differ by at least n. (See Exercise 1.32.) It is known

that for any n > 1, there is always a prime between n and 2n. (It is unknown

whether there is a prime between n2 and (n+1)2, however!) It is known that

as n becomes very large, the number of primes less than n is approximately

n/ ln(n), in the sense that the ratio between the number of primes less than n

and n/ ln(n) approaches 1 as n becomes large. (This is the celebrated Prime

Number Theorem.) Also, it is known that given any arithmetic sequence

a, a + d, a + 2d, a + 3d, . . . , where a and d are nonzero integers with

gcd(a, d) = 1, infinitely many of the integers that appear in this sequence

are primes!

For fascinating re-

cent progress on

the twin primes

question, see this

article on Zhang

and twin primes.

Those of you who find this fascinating should delve deeper into number

theory, which is the branch of mathematics that deals with such questions.

https://www.quantamagazine.org/20131119-together-and-alone-closing-the-prime-gap/
https://www.quantamagazine.org/20131119-together-and-alone-closing-the-prime-gap/
https://www.quantamagazine.org/20131119-together-and-alone-closing-the-prime-gap/
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It is a wonderful subject with hordes of problems that will seriously challenge

your creative abilities! For now, we will content ourselves with proving the

unique prime factorization property and the infinitude of primes already

referred to at the beginning of this chapter.

The following lemmas will be needed:

Lemma 1.17. Let p be a prime and a an arbitrary integer. Then either

p|a or else gcd(p, a) = 1.

Proof. If p already divides a, we have nothing to prove, so let us assume

that p does not divide a. We need to prove that gcd(p, a) = 1. Write x

for gcd(p, a). By definition x divides p. Since the only positive divisors of p

are 1 and p, either x = 1 (which is want we want to show), or else x = p.

Suppose x = p. Then, as x divides a as well, we find p divides a. But we

have assumed that p does not divide a. Hence x = 1.

2

Lemma 1.18. Let p be a prime. If p|ab for two integers a and b, then

either p|a or else p|b.
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Proof. If p already divides a, we have nothing to prove, so let us assume that

p does not divide a. Then by Lemma 1.17, gcd(p, a) = 1. It now follows

from Lemma 1.15 that p|b. 2

The following generalization of Lemma 1.18 will be needed in the proof

of Theorem 1.20 below:

Exercise 1.19

Show using induction and Lemma 1.18 that if a prime p divides a product

of integers a1 · a2 · · · ak (k ≥ 2), then p must divide one of the ai’s.

We are ready to prove our factorization theorem!

Theorem 1.20. (Fundamental Theorem of Arithmetic) Every positive

integer greater than 1 can be factored into a product of primes. The

primes that occur in any two factorizations are the same, except perhaps

for the order in which they occur in the factorization.
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Remark 1.21

The statement of this theorem has two parts to it. The first sentence is

an existence statement—it asserts that for every positive integer greater

than 1, a prime factorization exists. The second sentence is a unique-

ness statement. It asserts that except for rearrangement, there can

only be one prime factorization. To understand this second assertion

a little better, consider the two factorizations of 12 as 12 = 3 × 2 × 2,

and 12 = 2 × 3 × 2. The orders in which the 2’s and the 3 appear

are different, but in both factorizations, 2 appears twice, and 3 appears

once. The uniqueness part of the theorem tells us that no matter how

12 is factored, we will at most be able to rearrange the order in which

the two 2’s and the 3 appear such as in the two factorizations above,

but every factorization must consist of exactly two 2’s and one 3.

Proof of Theorem 1.20. We will prove the existence part first. The proof is

very simple. Assume to the contrary that there exists an integer greater than

1 that does not admit prime factorization. Then, the set of positive integers

greater than 1 that do not admit prime factorization is nonempty, and hence,
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by the Well-Ordering Principle (Page 38), there must be a least positive

integer greater than 1, call it a, that does not admit prime factorization. Now

a cannot itself be prime, or else, “a = a” would be its prime factorization,

contradicting our assumption about a. Hence, a = bc for suitable positive

integers b and c, with 1 < b < a and 1 < c < a. But then, b and c must

both admit factorization into primes, since they are greater than 1 and less

than a, and a was the least positive integer greater than 1 without a prime

factorization. If b = p1 ·p2 · · · pk and c = q1 ·q2 · · · ql are prime factorizations

of b and c respectively, then a(= bc) = p1 · p2 · · · pk · q1 · q2 · · · ql yields a

prime factorization of a, contradicting our assumption about a. Hence, no

such integer a can exist, that is, every positive integer must factor into a

product of primes.

Let us move on to the uniqueness part of the theorem. The basic ideas

behind the proof of this portion of the theorem are quite simple as well. The

key is to recognize that if an integer a has two prime factorizations, then

some prime in the first factorization must equal some prime in the second

factorization. This will then allow us to cancel the two primes, one from each

factorization, and arrive at two factorizations of a smaller integer. The rest
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is just induction.

So assume to the contrary that there exists a positive integer greater than

1 with two different (i.e., other than for rearrangement) prime factorizations.

Then, exactly as in the proof of the existence part above, the Well-Ordering

Principle applied to the (nonempty) set of positive integers greater than

1 that admit two different prime factorizations shows that there must be a

least positive integer greater than 1, call it a, that admits two different prime

factorizations. Suppose that

a = pn11 · · · pnss = qm1
1 · · · q

mt
t ,

where the pi (i = 1, . . . , s) are distinct primes, and the qj (j = 1, . . . , t) are

distinct primes, and the ni and the mj are positive integers. (By “distinct

primes” we mean that p1, p2, . . . , ps are all different from one another, and

similarly, q1, q2, . . . , qt are all different from one another.) Since p1 divides a,

and since a = qm1
1 · · · q

mt
t , p1 must divide qm1

1 · · · q
mt
t . Now, by Exercise 1.19

above (which simply generalizes Lemma 1.18), we find that since p1 divides

the product qm1
1 · · · q

mt
t , it must divide one of the factors of this product,

that is, it must divide one of the qj. Relabeling the primes qj if necessary
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(remember, we do not consider a rearrangement of primes to be a different

factorization), we may assume that p1 divides q1. Since the only positive

divisors of q1 are 1 and q1, we find p1 = q1.

Since now p1 = q1, consider the integer a′ = a/p1 = a/q1. If a′ = 1, this

means that a = p1 = q1, and there is nothing to prove, the factorization of a

is already unique. So assume that a′ > 1. Then a′ is a positive integer greater

than 1 and less than a, so by our assumption about a, any prime factorization

of a′ must be unique (that is, except for rearrangement of factors). But then,

since a′ is obtained by dividing a by p1 (= q1), we find that a′ has the prime

factorizations

a′ = pn1−1
1 · · · pnss = qm1−1

1 · · · qmt
t

So, by the uniqueness of prime factorization of a′, we find that n1−1 = m1−1

(so n1 = m1), s = t, and after relabeling the primes if necessary, pi = qi,

and similarly, ni = mi, for i = 2, . . . , s(= t). This establishes that the two

prime factorizations of a we began with are indeed the same, except perhaps

for rearrangement.

2
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Remark 1.22

While Theorem 1.20 only talks about integers greater than 1, a similar

result holds for integers less than −1 as well: every integer less than −1

can be factored as −1 times a product of primes, and these primes are

unique, except perhaps for order. This is clear, since, if a is a negative

integer less than −1, then a = −1 · |a|, and of course, |a| > 1 and

therefore admits unique prime factorization.

The following result follows easily from studying prime factorizations and

will be useful in the exercises: Proposition 1.23

will prove very

useful in the

exercises, when

determining the

number of divisors

of an integer

(Exercise 1.38), or

determining the

gcd of two integers

(Exercise 1.39).

Proposition 1.23. Let a and b be integers greater than 1. Then b divides

a if and only if the prime factors of b are a subset of the prime factors

of a and if a prime p occurs in the factorization of b with exponent y

and in the factorization of a with exponent x, then y ≤ x.

Proof. Let us assume that b|a, so a = bc for some integer c. If c = 1,

then a = b, and there is nothing to prove, the assertion is obvious. So

suppose c > 1. Then c also has a factorization into primes, and multiplying
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together the prime factorizations of b and c, we get a factorization of bc into

a product of primes. On the other hand, bc is just a, and a has its own

prime factorization as well. By the uniqueness of prime factorizations, the

prime factorization of bc that we get from multiplying together the prime

factorizations of b and c must be the prime factorization of a. In particular,

the prime factors of b (and c) must be a subset of the prime factors of a. Now

suppose that a prime p occurs to the power x in the factorization of a, to the

power y in the factorization of b, and to the power z in the factorization of c.

Multiplying together the factorizations of b and c, we find that p occurs to

the power y+z in the factorization of bc. Since the factorization of bc is just

the factorization of a and since p occurs to the power x in the factorization

of a, we find that x = y + z. In particular, y ≤ x. This proves one half of

the proposition.

As for the converse, assume that b has the prime factorization b =

pn11 · · · pnss . Then, by the hypothesis, the primes p1, . . . , ps must all appear in

the prime factorization of a with exponents at least n1, . . . , ns (respectively).

Thus, the prime factorization of amust look like a = pm1
1 · · · pms

s p
ms+1
s+1 · · · p

mt
t ,

where mi ≥ ni for i = 1, . . . , s, and where ps+1, . . . , pt are other primes.
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Writing c for pm1−n1
1 · · · pms−ns

s p
ms+1
s+1 · · · p

mt
t and noting that mi − ni ≥ 0

for i = 1, . . . , s by hypotheses, we find that c is an integer, and of course,

clearly, a = (pn11 · · · pnss )c, i.e, a = bc. This proves the converse.

2

We have proved the Fundamental Theorem of Arithmetic, but there re-

mains the question of showing that there are infinitely many primes. The

proof that we provide is due to Euclid, and is justly celebrated for its beauty.

Theorem 1.24. (Euclid) There exist infinitely many prime numbers.

Proof. Assume to the contrary that there are only finitely many primes.

Label them p1, p2, . . . , pn. (Thus, we assume that there are n primes.)

Consider the integer a = p1p2 · · · pn + 1. Since a > 1, a admits a prime

factorization by Theorem 1.20. Let q be any prime factor of a. Since the set

{p1, p2, . . . , pn} contains all the primes, q must be in this set, so q must

equal, say, pi. But then, a = q(p1p2 · · · pi−1pi+1 · · · pn) + 1, so we get a

remainder of 1 when we divide a by q. In other words, q cannot divide a.

This is a contradiction. Hence there must be infinitely many primes! 2
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Question 1.25

What is wrong with the following proof of Theorem 1.24?—There are

infinitely many positive integers. Each of them factors into primes by

Theorem 1.20. Hence there must be infinitely many primes.
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1.1 Further Exercises

Exercise 1.26

In this exercise, we will formally prove the validity of various quick tests

for divisibility that we learn in high school!

1. Prove that an integer is divisible by 2 if and only if the digit in the

units place is divisible by 2. (Hint: Look at a couple of examples:

58 = 5 · 10 + 8, while 57 = 5 · 10 + 7. What does Lemma 1.3

suggest in the context of these examples?)

2. Prove that an integer (with two or more digits) is divisible by 4

if and only if the integer represented by the tens digit and the

units digit is divisible by 4. (To give you an example, the “integer

represented by the tens digit and the units digit” of 1024 is 24,

and the assertion is that 1024 is divisible by 4 if and only if 24 is
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divisible by 4—which it is!)

3. Prove that an integer (with three or more digits) is divisible by 8

if and only if the integer represented by the hundreds digit and the

tens digit and the units digit is divisible by 8.

4. Prove that an integer is divisible by 3 if and only if the sum of its

digits is divisible by 3. (For instance, the sum of the digits of 1024

is 1 + 0 + 2 + 4 = 7, and the assertion is that 1024 is divisible

by 3 if and only if 7 is divisible by 3—and therefore, since 7 is

not divisible by 3, we can conclude that 1024 is not divisible by

3 either! Here is a hint in the context of this example: 1024 =

1·1000+0·100+2·10+4 = 1 ·(999+1)+0 ·(99+1)+2 ·(9+1)+4.

What can you say about the terms containing 9, 99, and 999 as

far as divisibility by 3 is concerned? Then, what does Lemma 1.3

suggest?)

5. Prove that an integer is divisible by 9 if and only if the sum of its

digits is divisible by 9.
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6. Prove that an integer is divisible by 11 if and only if the difference

between the sum of the digits in the units place, the hundreds

place, the ten thousands place, . . . (the places corresponding to

the even powers of 10) and the sum of the digits in the tens place,

the thousands place, the hundred thousands place, . . . (the places

corresponding to the odd powers of 10) is divisible by 11. (Hint:

10 = 11 − 1, 100 = 99 + 1, 1000 = 1001 − 1, 10000 = 9999 + 1,

etc. What can you say about the integers 11, 99, 1001, 9999, etc.

as far as divisibility by 11 is concerned?)
For details of

Exercise 1.27,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 1.27

Given nonzero integers a and b, with b > 0, write a = bq + r (division

algorithm). Show that gcd(a, b) = gcd(b, r).

(This exercise forms the basis for the Euclidean algorithm for finding

the greatest common divisor of two nonzero integers. For instance, how

do we find the greatest common divisor of, say, 48 and 30 using this

algorithm? We divide 48 by 30 and find a remainder of 18, then we divide

30 by 18 and find a remainder of 12, then we divide 18 by 12 and find

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Integers/
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a remainder of 6, and finally, we divide 12 by 6 and find a remainder of

0. Since 6 divides 12 evenly, we claim that gcd(48, 30) = 6. What is the

justification for this claim? Well, applying the statement of this exercise

to the first division, we find that gcd(48, 30) = gcd(30, 18). Applying the

statement to the second division, we find that gcd(30, 18) = gcd(18, 12).

Applying the statement to the third division, we find that gcd(18, 12) =

gcd(12, 6). Since the fourth division shows that 6 divides 12 evenly,

gcd(12, 6) = 6. Working our way backwards, we obtain gcd(48, 30) =

gcd(30, 18) = gcd(18, 12) = gcd(12, 6) = 6.)

Exercise 1.28

Given nonzero integers a and b, let h = a/gcd(a, b) and k = b/gcd(a, b).

Show that gcd(h, k) = 1.

Exercise 1.29

Show that if a and b are nonzero integers with gcd(a, b) = 1, and if c

is an arbitrary integer, then a|c and b|c together imply ab|c. Give a

counterexample to show that this result is false if gcd(a, b) 6= 1. (Hint:
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Just as in the proof of Lemma 1.15, use the fact that gcd(a, b) = 1 to

write 1 = xa+ yb for suitable integers x and y, and then multiply both

sides by c. Now stare hard at your equation!)

Exercise 1.30

The Fibonacci Sequence, 1, 1, 2, 3, 5, 8, 13, · · · is defined as follows: If

ai stands for the ith term of this sequence, then a1 = 1, a2 = 1, and for

n ≥ 3, an is given by the formula an = an−1 + an−2. Prove that for all

n ≥ 2, gcd(an, an−1) = 1.

Exercise 1.31

Given an integer n ≥ 1, recall that n! is the product 1 ·2 ·3 · · · (n−1) ·n.

Show that the integers (n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + (n+ 1)

are all composite.

Exercise 1.32

Use Exercise 1.31 to prove that given any positive integer n, one can

always find consecutive primes p and q such that q − p ≥ n.
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Exercise 1.33

If m and n are odd integers, show that 8 divides m2 − n2.

Exercise 1.34

Show that 3 divides n3 − n for any integer n. (Hint: Factor n3 − n as

n(n2 − 1) = n(n − 1)(n + 1). Write n as 3q + r, where r is one of 0,

1, or 2, and examine, for each value of r, the divisibility of each of these

factors by 3. This result is a special case of Fermat’s Little Theorem ,

which you will encounter as Theorem 4.50 in Chapter 4 ahead.)

Exercise 1.35

Here is another instance of Fermat’s Little Theorem : show that 5 divides

n5−n for any integer n. (Hint: As in the previous exercise, factor n5−n
appropriately, and write n = 5q + r for 0 ≤ r < 5.)

Exercise 1.36

. Show that 7 divides n7 − n for any integer n.
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Exercise 1.37

Use the Well-Ordering Principle to prove the following statement, known

as the Principle of Induction: Let P (n), n = 1, 2, . . . be a family of

statements. Assume that P (1) is true, and whenever P (k) is true for

some k ≥ 1, then P (k + 1) is also true. Then P (n) is true for all

n = 1, 2, . . . . (Hint: Assume that P (n) is not true for all n = 1, 2, . . . .

Then the set S of positive integers n such that P (n) is false is nonempty,

and by the well-ordering principle, has a least element m. Study P (m)

as well as P (n) for n near m.)
For details of

Exercise 1.38,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 1.38

Use Proposition 1.23 to show that the number of positive divisors of

n = pn11 · · · p
nk
k (the pi are the distinct prime factors of n) is (n1 +

1)(n2 + 1) · · · (nk + 1).

Exercise 1.39

Letm and n be positive integers. By allowing the exponents in the prime

factorizations of m and n to equal 0 if necessary, we may assume that

m = pm1
1 pm2

2 · · · p
mk
k and n = pn11 p

n2
2 · · · p

nk
k , where for i = 1, · · · , k,

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Integers/SoftChalk_Integers2.html
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pi is prime, mi ≥ 0, and ni ≥ 0. (For instance, we can rewrite the

factorizations 84 = 22 · 3 · 7 and 375 = 3 · 53 as 84 = 22 · 3 · 50 · 7

and 375 = 20 · 3 · 53 · 70.) For each i, let di = min(mi, ni). Prove that

gcd(m,n) = pd11 p
d2
2 · · · p

dk
k .

Exercise 1.40

Given two (nonzero) integers a and b, the least common multiple of

a and b (written as lcm(a, b)) is defined to be the smallest of all the

positive common multiples of a and b.

1. Show that this definition makes sense, that is, show that the set

of positive common multiples of a and b has a smallest element.

2. Retaining the notation of Exercise 1.39 above, let li = max(mi, ni)

(i = 1, . . . , k). Show that lcm(m,n) = pl11 p
l2
2 · · · p

lk
k .

3. Use Exercise 1.39 and Part 2 above to show that lcm(a, b) =

ab/gcd(a, b).

4. Conclude that if if gcd(a, b) = 1, then lcm(a, b) = ab.
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Exercise 1.41

Let a = pn, where p is a prime and n is a positive integer. Prove that

the number of integers x such that 1 ≤ x ≤ a and gcd(x, a) = 1 is

pn − pn−1.

(More generally, if a is any integer greater than 1, one can ask for the

number of integers x such that 1 ≤ x ≤ a and gcd(x, a) = 1. This

number is denoted by φ(a), and is referred to as Euler’s φ-function.

It turns out that if a has the prime factorization pm1
1 pm2

2 · · · p
mk
k , then

φ(a) = φ(pm1
1 ) · φ(pm2

2 ) · · · · · φ(p
mk
k )! Delightful as this statement is,

we will not delve deeper into it in this book, but you are encouraged to

read about it in any introductory textbook on number theory.)

Exercise 1.42

The series 1 + 1/2 + 1/3 + · · · is known as the harmonic series. This

exercise concerns the partial sums (see below) of this series.

1. Fix an integer n ≥ 1, and let Sn denote the set {1, 2, . . . , n} Let

2t be the highest power of 2 that appears in Sn. Show that 2t does

not divide any element of Sn other than itself.



CHAPTER 1. DIVISIBILITY IN THE INTEGERS 72

2. For any integer n ≥ 1, the nth partial sum of the harmonic series

is the sum of the first n terms of the series, that is, it is the number

1 + 1/2 + 1/3 + · · · 1/n. Show that if n ≥ 2, the nth partial sum

is not an integer as follows:

(a) Clearing denominators, show that the nth partial sum may

be written as a/b, where b = n! and a = (2 · 3 · · ·n) +

(2 · 4 · · ·n) + (2 · 3 · 5 · · ·n) + · · · + (2 · 3 · · ·n− 1).

(b) Let Sn and 2t be as in part 1 above. Also, let 2m be the

highest power of 2 that divides n!. Show that m ≥ t ≥ 1

and that m ≥ m− t + 1 ≥ 1.

(c) Conclude from part 2b above that 2m−t+1 divides b.

(d) Use part 1 to show that 2m−t+1 divides all the summands in

the expression in part 2a above for a except the term (2 ·
3 · · · 2t − 1 · 2t + 1 · · ·n).

(e) Conclude that 2m−t+1 does not divide a.

(f) Conclude that the nth partial sum is not an integer.
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Exercise 1.43

Fix an integer n ≥ 1, and let Sn denote the set {1, 3, 5, . . . , 2n − 1}.
Let 3t be the highest power of 3 that appears in Sn. Show that 3t does

not divide any element of Sn other than itself. Can you use this result

to show that the nth partial sums (n ≥ 2) of a series analogous to the

harmonic series (see Exercise 1.42 above) are not integers?
For details of

Exercise 1.44,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 1.44

Prove using the unique prime factorization theorem that
√

2 is not a

rational number. Using essentially the same ideas, show that
√
p is not

a rational number for any prime p. (Hint: Suppose that
√

2 = a/b for

some two integers a and b with b 6= 0. Rewrite this as a2 = 2b2. What

can you say about the exponent of 2 in the prime factorizations of a2

and 2b2?)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Integers/SoftChalk_Integers3.html
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Notes

Remarks on Definition 1.7 The alert reader may wonder why we have

restricted both integers a and b to be nonzero in Definition 1.7 above. Let us

explore this question further: Suppose first that a and b are both zero. Note

that every nonzero integer divides 0, since given any nonzero integer n, we

certainly have the relation n · 0 = 0. Thus, if a and b are both zero, we find

that every nonzero integer is a common divisor of a and b, and thus, there

is no greatest common divisor at all. The concept of the greatest common

divisor therefore has no meaning in this situation. Next, let us assume just

one of a and b is nonzero. For concreteness, let us assume a 6= 0 and b = 0.

Then, as we have seen in the discussions preceding Defintion 1.7, |a| is a

divisor of a, and is the largest of the divisors of a. Also, since every nonzero

integer divides 0 and we have assumed b = 0, we find |a| divides b. It follows

that |a| is a common divisor of a and b, and since |a| is the largest among

the divisors of a, it has to be the greatest of the common divisors of a and

b. We find therefore that if exactly one of a and b, say a, is nonzero, then

the concept of gcd(a, b) has meaning, and the gcd in this case equals |a|.
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However, this situation may be viewed as somewhat less interesting, since

every integer anyway divides b. The more interesting case, therefore, is when

both a and b are nonzero, and we have chosen to focus on that situation in

Definition 1.7.

Remarks on Theorem 1.10 and Exercise 1.12. It is very crucial that

d be the least positive linear combination of a and b for you to be able

to conclude that gcd(a, b) = d. For instance, if you only know that there

exist integers x and y such that xa + yb = 2, you cannot conclude that

gcd(a, b) = 2—for all you know, there may exist two other integers x′ and

y′ such that x′a + y′b = 1!

Notice though that if you know that there exist integers x′ and y′ such

that x′a+ y′b = 1, you can conclude that gcd(a, b) = 1. For 1 has to be the

least positive linear combination of a and b, since there is no positive integer

smaller than 1.

Remarks on the definition of the greatest common divisor. We have

defined the greatest common divisor of two nonzero integers a and b to be
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the largest of their common divisors (Definition 1.7), and we have noted

that gcd(a, b) must be positive. On the other hand, Corollary 1.11 showed

that every common divisor of a and b must divide gcd(a, b). Putting these

together, we find that gcd(a, b) has the following specific properties:

1. gcd(a, b) is a positive integer.

2. gcd(a, b) is a common divisor of a and b.

3. Every common divisor of a and b must divide gcd(a, b).

You will find that many textbooks have turned these properties around and

have used these properites to define the greatest common divisor! Thus,

these textbooks define the greatest common divisor of a and b to be that

integer d which has the following properties:

1. d is a positive integer.

2. d is a common divisor of a and b.

3. Every common divisor of a and b must divide d.



CHAPTER 1. DIVISIBILITY IN THE INTEGERS 77

Of course, it is not immediately clear that such an integer d must exist, nor

is it clear that it must be unique, and these books then give a proof of the

existence and uniqueness of such a d. Furthermore, it is not immediately

clear that the integer d yielded by this definition is the same as the greatest

common divisor as we have defined it (although it will be clear if one takes

a moment to think about it). The reason why many books prefer to define

the greatest common divisor as above is that this definition applies (with a

tiny modification) to other number systems where the concept of a “largest”

common divisor may not exist.

In the case of the integers, however, we prefer our Definition 1.7, since the

largest of the common divisors of a and b is exactly what we would intuitively

expect gcd(a, b) to be!
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2.1 Rings: Definition and Examples

Abstract algebra begins with the observation that several sets that occur

naturally in mathematics, such as the set of integers, the set of rationals, the

set of 2 × 2 matrices with entries in the reals, the set of functions from the

reals to the reals, all come equipped with certain operations that allow one

to combine any two elements of the set and come up with a third element.

These operations go by different names, such as addition, multiplication, or

composition (you would have seen the notion of composing two functions in

calculus). Abstract algebra studies mathematics from the point of view of

these operations, asking, for instance, what properties of a given mathemat-

ical set can be deduced just from the existence of a given operation on the

set with a given list of properties. We will be dealing with some of the more



CHAPTER 2. RINGS AND FIELDS 81

rudimentary aspects of this approach to mathematics in this book.

However, do not let the abstract nature of the subject fool you into think-

ing that mathematics no longer deals with concrete objects! Abstraction

grows only from extensive studies of the concrete, it is merely a device (al-

beit an extremely effective one) for codifying phenomena that simultaneously

occur in several concrete mathematical sets. In particular, to understand an

abstract concept well, you must work with the specific examples from which

the abstract concept grew (remember the advice on active learning).

Let us look at Z, focusing on the operations of addition and multiplica-

tion.

For a more

detailed discus-

sion of sets and

functions, see

Appendix 4.5.

Given a set S, recall that a binary operation on S is a process that

takes an ordered pair of elements from S and gives us a third member of the

set. It is helpful to think of this in more abstract terms—a binary operation

on S is just a function f : S × S → S, that is, a rule that assigns to each

ordered pair (a, b), a third element f (a, b). Given an arbitrary set S, it is

quite easy to define binary operations on it, but it is much harder to define

binary operations that satisfy additional properties.
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Question 2.1

How many different binary operations can be defined on the set {0, 1}?
Now select some of these binary operations and check whether they

are associative or commutative. How many binary operations can be

constructed on a set T that has n elements?
For a discussion

of Question 2.1,

see the following

(but only after you

have tried to an-

swer it yourself!):

What will be crucial to us is that addition and multiplication are special

binary operations on Z that satisfy certain extra properties.

First, why are addition and multiplication binary operations? The pro-

cess of adding two integers is of course familiar to us, but suppose we view

addition abstractly as a rule that assigns to each ordered pair of integers

(m,n) the integer m+n. (For instance, addition assigns to the ordered pair

(2, 3) the integer 5, to the ordered pair (3,−4) the integer −1, to the ordered

pair (1, 0) the integer 1, etc.) It is clear then that addition is indeed a binary

operation—it takes an ordered pair of integers, namely (m,n), and gives us

a third uniquely determined integer, namely m+n. Similarly, multiplication

too is a binary operation—it is a rule that assigns to every ordered pair of

integers (m,n) the uniquely determined integer m · n.

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/
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What are the properties of these binary operations? Let us consider

addition first. It is customary to write (Z,+) to emphasize the fact that we

are considering Z not just as a set of objects, but as a set with the binary

operation of addition. (We will temporarily ignore the fact that Z has a

second binary operation, namely multiplication, defined on it.) The first

property that (Z,+) has is that + is associative. That is, for all integers a,

b, and c, (a + b) + c = a + (b + c). The second property that (Z,+) has is

the existence of an identity element with respect to +. This is the integer

0—it satisfies the condition a + 0 = 0 + a = a all integers a. The third

property of (Z,+) is the existence of inverses with respect to +. For every

integer a, there is an integer b (depending on a) such that a+ b = b+a = 0.

(It is clear what this integer b is, it is just the integer −a.)

What these observations show is that the integers form a group with

respect to addition. We will study groups in detail in Chapter 4 ahead, but

let us introduce the concept here. It turns out that the situation we have

encountered above (namely, a set equipped with a binary operation with

certain properties) arises in several different areas of mathematics. Precisely

because the same situation appears in so many different contexts, it has been
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given a name and has been studied extensively as a subject in its own right.

Definition 2.2

A group is a set S with a binary operation “∗” : S × S → S such that

1. ∗ is associative, i.e., a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, and c in S,

2. S has an identity element with respect to ∗, i.e., an element “id”

such that a ∗ id = id ∗ a = a for all a in S, and

3. every element of S has an inverse with respect to ∗, i.e., for every

element a in S there exists an element “a−1” such that a ∗ a−1 =

a−1 ∗ a = id.

To emphasize that there are two ingredients in this definition—the set

S and the operation ∗ with these special properties—the group is some-

times written as (S, ∗), and S is often referred to as a group with

respect to the operation ∗.

The reason that the integers form a group with respect to addition is that

if we take the set “S” of this definition to be Z, and if we take the binary
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operation “∗” to be +, then the three conditions of the definition are met.

There is a vast and beautiful theory about groups, the beginnings of which

we will pursue in Chapter 4 ahead.

Observe that there is one more property of addition that we have not

listed yet, namely commutativity . This is the property that for all integers

a and b, a + b = b + a. In the language of group theory, this makes (Z,+)

an abelian group:

Definition 2.3

An abelian group is one in which the function “∗” in Definition 2.2

above satisfies the additional condition a ∗ b = b ∗ a for all a and b in S.

Commutativity of addition is a crucial property of the integers; the only

reason we delayed introducing it was to allow us first to introduce the notion

of a group.

Now let us consider multiplication. As with addition, we write (Z, ·)
to emphasize the fact that we are considering Z as a set with the binary

operation of multiplication, temporarily ignoring the operation addition. As

with addition, we find that multiplication is associative, that is, for all
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integers a, b, and c, (a · b) · c = a · (b · c). Also, Z has an identity with

respect to multiplication. This is the integer 1; it satisfies a · 1 = 1 · a = a

for all integers a. For a discussion

of Question 2.4,

see the following

(but only after you

have tried to an-

swer it yourself!):

Question 2.4

Is (Z, ·) a group? In other words, do the integers form a group with

respect to multiplication? To answer this question, you would check

whether the three group axioms above hold for (Z, ·). What is the

inverse with respect to multiplication of 1? What is the inverse of 2?

What is the inverse of 0?

There are two more properties of multiplication of integers we wish to

consider. The first is that multiplication is commutative, that is, a · b =

b · a for all integers a and b. The second, which is not a property of just

multiplication alone, but rather a property that connects multiplication and

addition together, is the distributivity of multiplication over addition,

that is, for all integers a, b, and c, a · (b+ c) = a · b+ a · c, and (a+ b) · c =

a · c+ b · c. (Notice that since multiplication of integers is commutative, the

second relation in the previous sentence follows from the first!)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings2.html
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There are other properties of these operations of course (for instance

a · b = 0 implies that either a = 0 or b = 0), but we will study these

later. Let us meanwhile reflect on the properties that we have considered

so far. Studying them closely, one gets the sense that these properties are

somehow rather “natural.” For instance, if one were to think of the integers

as (intellectual) counting tools, then it is clear that addition must necessarily

be commutative, since commutativity of addition corresponds to the fact that

if you have a certain number of objects in one pile and a certain number in

another, then the total number of objects can be obtained either by counting

all the objects in the first pile and then all the objects in the second pile, or

by counting all the objects in the second pile and then all the objects in the

first pile.

This sense of these properties being “natural” is further reinforced when

we consider other “number systems” that we encounter in mathematics. For

instance, consider the set of all polynomials in one variable whose coefficients

are real numbers, a set with which you are already very familiar. (The

real numbers are traditionally denoted by R, and the set of all polynomials

in one variable whose coefficients are real numbers is traditionally denoted
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by R[x].) This set, too, is more than just a collection of objects. Just

as with the integers, R[x] has two binary operations, also called addition

and multiplication. Recall that given two polynomials g(x) =
n∑
i=0

gix
i and

h(x) =
m∑
j=0

hix
i, we add g and h by adding together the coefficients of the

same powers of x, and we multiply g and h by multiplying each monomial

gix
i of g by each monomial hjx

j of h and adding the results together. (For

instance, (1 + x + x2) + (x +
√

3x3) is 1 + 2x + x2 +
√

3x3, and (1 + x +

x2) · (x +
√

3x3) is x + x2 + (1 +
√

3)x3 +
√

3x4 +
√

3x5.) Furthermore, it

is our experience that these binary operations on R[x] satisfy the very same

properties above that the corresponding operations on Z satisfied.

It turns out that these properties of addition and multiplication are shared

not just by Z and R[x], but by a whole host of “number systems” in math-

ematics. Because of the importance of such sets with two binary operations

with these special properties, there is a special term for them—they are called

rings.
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Definition 2.5

A ring is a set R with two binary operations + and · such that

1. a + (b + c) = (a + b) + c for all a, b, c in R.

2. There exists an element in R, denoted “0”, such that a + 0 =

0 + a = a for all a in R.

3. For each a in R there exists an element in R, denoted “−a”, such

that a + (−a) = (−a) + a = 0.

4. a + b = b + a for all elements a, b in R.

5. a · (b · c) = (a · b) · c for all elements a, b, c in R.

6. There exists an element inR, denoted “1”, such that a·1 = 1·a = a

for all a in R.

7. a · (b+ c) = a · b+a · c and (a+ b) · c = a · c+ b · c for all elements

a, b, c in R.
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Remark 2.6

The binary operation + is usually referred to as addition and the binary

operation · is usually referred to as multiplication, in keeping with the

terminology for the integers and other familiar rings. As is the usual

practice in high school algebra, one often suppresses the multiplication

symbol, that is, one often writes ab for a · b.

Remark 2.7

Just as we did earlier with the integers, if we temporarily ignore the

operation · on R and write (R,+) to indicate that we are focusing on

just the operation +, then the first four conditions in the definition of

the ring R show that (R,+) is an abelian group.

Remark 2.8

We have used the term “number system” at several places in the book

without really being explicit about what a number system is. We did

not have the language before this point to make our meaning precise,

but what we had intended to convey loosely by this term is the concept

of a set with two binary operations with properties much like those of
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the integers. But now that we have the language, let us be precise: a

number system is just a ring as defined above!

It must be borne in mind however that “number system” is a nonstan-

dard term: it is not used very widely, and when used at all, different

authors mean different things by the term! So it is better to stick to

“rings,” which is standard.

Observe that we left out one important property of the integers in our

definition of a ring, namely the commutativity of multiplication. And corre-

spondingly, we have included both left distributivity (a·(b+c) = a·b+a·c)
and right distributivity ((a + b) · c = a · c + b · c) of multiplication over

addition. While this may seem strange at first, think about the set of 2× 2

matrices with entries in R. Convince yourselves that this is a ring with

respect to the usual definitions of matrix addition and multiplication—see

Example 2.16 ahead. Yet, even in this extremely familiar number system,

multiplication is not commutative; for instance, 1 0

0 0

 ·
 0 1

0 0

 6=
 0 1

0 0

 ·
 1 0

0 0

 .



CHAPTER 2. RINGS AND FIELDS 92

Rings in which multiplication is not commutative are fairly common in math-

ematics, and hence requiring commutativity of multiplication in the definition

of a ring would be too restrictive. On the other hand, there is no denying

that a significant proportion of the rings that we come across indeed have

multiplication that is commutative. Thus, it is reasonable to single them out

as special cases of rings, and we have the following:

Definition 2.9

A commutative ring is a ring R in which a · b = b · a for all a and b in

R.

(Rings in which the multiplication is not commutative are referred to as

noncommutative rings.)

The following are various examples of rings. (Once again, recall the advice

in the preliminary chapter To the Student, page 2, on reading actively.)

Example 2.10

The set of rational numbers, Q, with the usual operations of addition

and multiplication forms a ring. We know how to add and multiply two
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rational numbers very well, and we know that all the ring axioms hold

for the rationals. (One can take a more advanced perspective and prove

that the ring axioms hold for the rationals, starting from the fact that

they hold for the integers. Although sound, such an approach is unduly

technical for a first course.) Q is, in fact, a commutative ring.

Question 2.10.1

Q has one crucial property (with respect to multiplication) that Z
does not have. Can you discover what that might be? (See the

remarks on page 228 in the notes, but only after you have thought

about this question on your own!)

Example 2.11

In a like manner, both the reals, R, and the complexes, usually denoted

C, are rings under the usual operations of addition and multiplication.

Again, we will not try to prove that the ring axioms hold; we will just

invoke our intimate knowledge of R and C to recognize that they are
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rings.

Example 2.12

LetQ[
√

2] denote the set of all real numbers of the form a+b
√

2, where a

and b are arbitrary rational numbers. For instance, this includes numbers

like 1/2 + 3
√

2, −1/7 + (1/5)
√

2, etc. You know from your experience

with real numbers how to add and multiply two elements a + b
√

2 and

c + d
√

2 of this set. Under these operations, this set indeed forms a

ring–let us see why:
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Question 2.12.1

Here is the first point you need to check: under this method of

addition and multiplication, do the sum and product of any two ele-

ments of this set also lie in this set? (Remember, a binary operation

should take an ordered pair of elements to another element in the

same set. If, say, the usual product of some two elements a + b
√

2

and c + d
√

2 of this set does not belong to this set, then our usual

product will not be a valid binary operation on this set, and hence

we cannot claim that this set is a ring!)

Question 2.12.2

Why should associativity of addition and multiplication and dis-

tributivity of multiplication over addition all follow from the fact

that this set is contained in R?

Question 2.12.3

Are all other ring axioms satisfied? Check!
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Question 2.12.4

You know that
√

2 is not a rational number (see Chapter 1, Exercise

1.44). Why does it follow that if a and b are rational numbers, then

a + b
√

2 = 0 if and only if both a and b are zero?

See the notes on page 228 (but as always, after you have played with

this example yourselves!). Also, see the notes on page 236 (in particular,

Example 2.138 on page 240) for an explanation of the notation Q[
√

2].

Example 2.13

Now let us generalize Example 2.12 above. Let m be any rational num-

ber. Note that if m is negative,
√
m will not be a real number but a

complex (non-real) number. Let Q[
√
m] denote the set of all complex

numbers of the form a + b
√
m, where a and b are arbitrary rational

numbers. (Of course, if m ≥ 0, then Q[
√
m] will actually be contained

in the reals.)
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Question 2.13.1

What familiar set of numbers does Q[
√
m] reduce to if m is the

square of a rational number? (Hint: If m = r2 for some rational

number r, then the set of numbers {a + b
√
m | a, b ∈ Q} is just

the set {a + br | a, b ∈ Q}, which is clearly contained in Q. Is it

equal to Q?)

Question 2.13.2

More generally, compare the sets Q[
√
m] and Q[

√
m′] when m and

m′ satisfy the relation m = q2m′ for some rational number q. Are

these the same sets?

Question 2.13.3

Under the usual addition and multiplication of complex numbers,

does Q[
√
m] form a ring? (Follow the same steps as in Example

2.12 above.)
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For a detailed

analysis of Ques-

tion 2.13.4, see the

following (make

sure have you

tried to answer

it yourself first!):

Question 2.13.4

Is it true that if a and b are rational numbers, then a + b
√
m = 0

if and only if a = b = 0? (As always, if you claim something is not

true, give a counterexample!)

Example 2.14

As a specific example of Example 2.13, take m = −1. We get the ring

Q[ı], which is the set of all complex numbers of the form a + bı, where

a and b are arbitrary rational numbers and ı stands for
√
−1

Exercise 2.14.1

Show that if a and b are real numbers, then a + bı = 0 if and only

if both a and b are zero. (See the notes on page 229 for a clue.)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings3.html
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Example 2.15

Consider the set of rational numbers q that have the property that when

q is written in the reduced form a/b with a, b integers and gcd(a, b) = 1

the denominator b is odd. This set is usually denoted by Z(2), and

contains elements like 1/3, −5/7, 6/19, etc., but does not contain 1/4

or −5/62. For a discussion

of Question 2.15.1,

see the following:
Question 2.15.1

Does Z(2) contain 2/6?

Notice that every element of Z(2) is just a fraction (albeit of a particular

kind). We know how to add and multiply two fractions together, so we

can use this knowledge to add and multiply any two elements of Z(2).

Here is the punch line: Z(2) forms a ring under the usual operation of

addition and multiplication of fractions! Strange as this ring may seem

at first, it plays an important role in number theory.

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings4.html
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Question 2.15.2

Check that if you add (or multiply) two fractions in Z(2) you get a

fraction that is not an arbitrary rational number but one that also

lives in Z(2). What role does the fact that the denominators are odd

play in ensuring this? (The role of the odd denominators is rather

crucial; make sure that you understand it!)

Question 2.15.3

Why do associativity and distributivity follow from the fact that

Z(2) ⊆ Q?

Question 2.15.4

Do the other ring axioms hold? Check!

Question 2.15.5

Can you generalize this construction to other subsets of Q where

the denominators have analogous properties?
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(See the notes on page 230 for some comments.)

Example 2.16

The set of n × n matrices with entries in R (Mn(R)), where n is a

positive integer, forms a ring with respect to the usual operations of

matrix addition and multiplication. For almost all values of n, matrix

multiplication is not commutative.

Question 2.16.1

What is the exception?

Checking associativity of addition and multiplication and the distribu-

tivity of multiplication over addition is tedious, but you should check at

least one of them so as to be familiar with the process.

For a detailed

analysis of Exer-

cise 2.16.2 see the

following (make

sure have you

tried to solve it

yourself first!):

Exercise 2.16.2

For example, prove that for any three matrices A, B, and C, (A +

B) + C = A + (B + C).

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings5.html
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What is important is that you get a feel for how associativity and dis-

tributivity in Mn(R) derives from the fact that associativity and dis-

tributivity hold for R.

Question 2.16.3

What about the ring axioms other than associativity and distribu-

tivity: do they hold?

Question 2.16.4

What are the additive and multiplicative identities?

Question 2.16.5

Let ei,j denote the matrix with 1 in the (i, j)-th slot and 0 every-

where else. Study the case of 2× 2 matrices and guess at a formula

for the product ei,j · ek,l. (You need not try to prove formally that

your formula is correct, but after you have made your guess, substi-

tute various values for i, j, k, and l and test your guess.)
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Question 2.16.6

Would the ring axioms still be satisfied if we only considered the set

of n× n matrices whose entries came from Q? From Z?

Question 2.16.7

Now suppose R is any ring. Let us consider the set Mn(R) of

n×n matrices with entries in R with the usual definitions of matrix

addition and multiplication. Is Mn(R) with these operations a ring?

What if R is not commutative? Does this affect whether Mn(R) is

a ring or not?

(See the notes on page 231 for some hints.)

Example 2.17

R[x], the set of polynomials in one variable with coefficients from R,

forms a ring with respect to the usual operations of polynomial addition

and multiplication. (We have considered this before.) Here, x denotes
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the variable. Of course, one could use any letter to represent the variable.

For instance, one could refer to the variable as t, in which case the set of

polynomials with coefficients in R would be denoted by R[t]. Sometimes,

to emphasize our choice of notation for the variable, we refer to R[x] as

the set of polynomials in the variable x with coefficients in R, and we

refer to R[t] as the set of polynomials in the variable t with coefficients

in R. Both R[x] and R[t], of course, refer to the same set of objects.

Likewise, we often write f (x) (or f (t)) for a polynomial, rather than

just “f ,” to emphasize that the variable is x (or t).

If f (x) = a0 + a1x + a2x
2 + · · · is a nonzero polynomial in R[x],

the degree of f (x) is the largest value of n for which an 6= 0, anx
n is

known as the highest term, and an is known as the highest coefficient.

Thus, the polynomials of degree 0 are precisely the nonzero constants.

Polynomials of degree 1 are called linear, polynomials of degree 2 are

called quadratic, polynomials of degree 3 are called cubic, and so on.

Note that we have not defined the degree of the zero polynomial.

This is on purpose—it will be convenient for the formulation of certain
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theorems if the zero polynomial does not have a degree!

It is worth recalling an elementary property of polynomials that we will

use frequently (in fact, in a more formal treatment of polynomials, this

fact is built into the definitions of polynomials): two polynomials are

equal if and only if their coefficients are equal. That is,
∑
fix

i =
∑
gix

i

if and only if fi = gi (i = 0, 1, . . . ). In particular, a polynomial
∑
fix

i

equals 0 if and only if each fi = 0.

Exercise 2.17.1

Now just as with Example 2.16, prove that if f , g, and h are any

three polynomials in R[x], then (f + g) + h = f + (g + h). Your

proof should invoke the fact that associativity holds in R.

Example 2.18

Instead of polynomials with coefficients from R, we can consider polyno-

mials in the variable x with coefficients from an arbitrary ring R, with

the usual definition of addition and multiplication of polynomials. We

get a ring, denoted R[x]. Thus, if we were to consider polynomials in
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the variable x whose coefficients are all integers, we get the ring Z[x].

Question 2.18.1

As always, convince yourself that for a general ring R, the set of

polynomials R[x] forms a ring. For arbitrary R, is R[x] commuta-

tive?

(See the notes on page 232 for some hints and more remarks.)

Example 2.19

Generalizing Example 2.17, the set R[x, y] of polynomials in two vari-

ables x and y, forms a ring. A polynomial in x and y is of the form∑
i,j fi,jx

iyj. (For example, consider the polynomial 4 + 2x + 3y +

x2y + 5xy3–here, f0,0 is the coefficient of x0y0, i.e., the coefficient of 1,

so f0,0 = 4. Similarly, f1,3 is the coefficient of x1y3, so it equals 5. On

the other hand, f1,1 is zero, since there is no xy term.) Two polynomials∑
i,j fi,jx

iyj and
∑

i,j gi,jx
iyj are equal if and only if for each pair (i, j),

fi,j = gi,j.
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In the same manner, we can consider R[x1, . . . , xn], the set of polyno-

mials in n variables x1, . . . , xn with coefficients in R. These too form

a ring. More generally, if R is any ring we may consider R[x1, . . . , xn],

the set of polynomials in n variables x1, . . . , xn with coefficients in R.

Once again, we get a ring.

Example 2.20

Here is a ring with only two elements! Divide the integers into two sets,

the even integers and the odd integers. Let [0]2 denote the set of even

integers, and let [1]2 denote the set of odd integers. (Notice that [0]2

and [1]2 are precisely the equivalence classes of Z under the equivalence

relation defined by a ∼ b iff a − b is even.) Denote by Z/2Z the set

{[0]2, [1]2}. Each element of {[0]2, [1]2} is itself a set containing an infinite

number of integers, but we will ignore this fact. Instead, we will view all

the even integers together as one “number” of Z/2Z, and we will view

all the odd integers together as another “number” of Z/2Z. How should

we add and multiply these new numbers? Recall that if we add two even

integers we get an even integer, if we add an even and an odd integer
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we get an odd integer, and if we add two odd integers we get an even

integer. This suggests the following addition rules in Z/2Z:

Z/2Z

“+” [0]2 [1]2

[0]2 [0]2 [1]2

[1]2 [1]2 [0]2

(There is an obvious way to interpret this table: if you want to know

what “a” + “b” is, you go to the cell corresponding to row a and column

b.) Similarly, we know that the product of two even integers is even, the

product of an even integer and an odd integer is even, and the product

of two odd integers is odd. This gives us the following multiplication

rules:
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Z/2Z

“·” [0]2 [1]2

[0]2 [0]2 [0]2

[1]2 [0]2 [1]2

Later in this chapter (see Example 2.80 and the discussions preceding

that example), we will interpret the ring Z/2Z differently: as a quotient

ring of Z. This interpretation, in particular, will prove that Z/2Z is

indeed a ring under the given operations. Just accept for now the fact

that we get a ring, and play with the it to develop a feel for it.

Question 2.20.1

How would you get a ring with three elements in it? With four?
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Example 2.21

Here is the answer to the previous two questions! We have observed that

[0]2 and [1]2 are just the equivalence classes of Z under the equivalence

relation a ∼ b iff a− b is even. Analogously, let us consider the equiva-

lence classes of Z under the equivalence relation aRb iff a− b is divisible

by 3. Since a− b is divisible by 3 exactly when a and b each leaves the

same remainder when divided by 3, there are three equivalence classes:

(i) [0]3, the set of all those integers that yield a remainder of 0 when

you divide them by 3. In other words, [0]3 consists of all multiples of

3, that is, all integers of the form 3k, k ∈ Z. (ii) [1]3 for the set of all

those integers that yield a remainder of 1, so [1]3 consists of all integers

of the form 3k + 1, k ∈ Z. (iii) [2]3 for the set of all those integers that

yield a remainder of 2, so [2]3 consists of all integers of the form 3k + 2,

k ∈ Z. Write Z/3Z for the set {[0]3, [1]3, [2]3}. Just as in the case of

Z/2Z, every element of this set is itself a set consisting of an infinite

number of integers, but we will ignore this fact. How would you add

two elements of this set? In Z/2Z, we defined addition using observa-
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tions like “an odd integer plus an odd integer gives you an even integer.”

The corresponding observations here are “an integer of the form 3k + 1

plus another integer of the form 3k + 1 gives you an integer of the form

3k + 2,” “an integer of the form 3k + 1 plus another integer of the form

3k + 2 gives you an integer of the form 3k,” “an integer of the form

3k + 2 plus another integer of the form 3k + 2 gives you an integer of

the form 3k + 1,” etc. We thus get the following addition table:

Z/3Z

“+” [0]3 [1]3 [2]3

[0]3 [0]3 [1]3 [2]3

[1]3 [1]3 [2]3 [0]3

[2]3 [2]3 [0]3 [1]3
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Exercise 2.21.1

Similarly, study how the remainders work out when we multiply two

integers. (For instance, we find that “an integer of the form 3k + 2

times an integer of the form 3k+ 2 gives you an integer of the form

3k + 1,” etc.) Derive the following multiplication table:

Z/3Z

“·” [0]3 [1]3 [2]3

[0]3 [0]3 [0]3 [0]3

[1]3 [0]3 [1]3 [2]3

[2]3 [0]3 [2]3 [1]3

This process can easily be generalized to yield a ring with n elements

(Z/nZ) for any n ≥ 2.

Exercise 2.21.2

Construct the addition and multiplication tables for the ring Z/4Z.
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Example 2.22

Suppose R and S are two rings. (For example, take R = Z/2Z, and take

S = Z/3Z.) Consider the Cartesian product T = R × S, which is the

set of ordered pairs (r, s) with r ∈ R and s ∈ S. Define addition in T by

(r, s)+(r′, s′) = (r+r′, s+s′). Here, “r+r′” refers to the addition of two

elements of R according to the defintion of addition in R, and similarly,

“s + s′” refers to the addition of two elements of S according to the

definition of addition in S. For instance, in Z/2Z× Z/3Z, ([0]2, [1]3) +

([1]2, [2]3) = ([1]2, [0]3). Similarly, define multiplication in T by (r, s) ·
(r′, s′) = (r · r′, s · s′). Once again, “r · r′” refers to the multiplication

of two elements of R according to the definition of multiplication in R,

and “s · s′” refers to the multiplication of two elements of S according

to the definition of multiplication in S. Thus, in Z/2Z × Z/3Z again,

([0]2, [1]3) · ([1]2, [2]3) = ([0]2, [2]3).

Question 2.22.1

Do these definitions of addition and mulitplication make T a ring?

Check!
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Definition 2.22.2

Given two rings R and S, the ring T constructed above is known

as the direct product of R and S.

Question 2.22.3

What are the identity elements with respect to addition and multi-

plication?

Question 2.22.4

Now take R = S = Z. Can you find pairs of nonzero elements a

and b in the ring T = Z×Z such that a · b = 0? (Note that Z itself

does not contain pairs of such elements.) If R and S are arbitrary

rings, can you find a pair of nonzero elements a and b in T = R×S
such that a · b = 0?

(See the notes on page 234 for hints.)
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Example 2.23

The direct product of the matrix rings Mn(R) and Mm(R) naturally sits

inside the matrix ring Mm+n(R), as the set of block diagonal matrices A 0n×m

0m×n B

 ,

where A is an arbitrary n× n matrix, B is an arbitrary m×m matrix,

and the off-diagonal matrices are zero matrices of the indicated size.

Watch the follow-

ing to see a

concrete instance

of the ring in

Example 2.23 and

for an explanation

of why this ring

is just a direct

product. This

example also

yields an instance

of a ring homo-

morphism (in fact

isomorphism) that

you will see ahead

(Section 2.6), as

also an instance of

a subring (Section

2.2).

Remark 2.24

The examples above should have convinced you that our definition of a

ring (Definition 2.5 above) is rather natural, and that it very effectively

models several number systems that arise in mathematics. Here is fur-

ther evidence that our axioms are the “correct” ones. Notice that in all

the rings that we have come across, the following properties hold:

1. The additive identity is unique, that is, there is precisely one el-

ement 0 in the ring that has the property that a + 0 = a for all

elements a in the ring.

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings6.html
http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings6.html
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2. The multiplicative identity is unique, that is, there is precisely one

element 1 in the ring that has the property that a · 1 = 1 · a = a

for all elements a in the ring.

3. a + b = a + c implies b = c for any elements a, b, and c in the

ring.

4. For every element a in the ring, there is precisely one element −a
that satisfies the condition that a + (−a) = 0.

5. For every element a in the ring, −(−a) is just a.

6. a · 0 = 0 · a = 0 for all elements a.

7. (−1) · a = a · (−1) = −a for all elements a.

8. More generally, a · (−b) = (−a) · b = −(ab) for all elements a and

b.

9. (−1) · (−1) = 1.
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10. More generally, (−a) · (−b) = ab for all elements a and b.

Now these properties all seem extremely natural, and we would certainly

like them to hold in all rings. (More strongly, a ring in which any of

these properties fail would appear very pathological to us!) Now, if our

ring axioms were the “correct” ones, then the properties above would be

deducible from the ring axioms themselves, thereby showing that they

hold in all rings. As it turns out, this is indeed true: they are deducible

from the axioms, and therefore, they do hold in every ring R. Follow this link

to see the proofs

of some of these

assertions in Re-

mark 2.24 above:

Although we will not verify this in the text, it is good practice for you

to verify that at least some of these properties above follow from the

axioms, so we have included the verification as Exercise 2.111 in the

exercises at the end of this chapter (see also the remarks on page 234

and the comment on the side).

Property 3 above is known as additive cancellation. It is actually a

consequence of the fact that if R is any ring, then (R,+) is a group: in

any group (G, ∗), if a∗b = a∗c for elements a, b, and c in G then b = c

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings7.html
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(see Exercise 3.5 in Chapter 4 ahead). In much the same way, properties

1, 4, and 5 are really consequences of the fact that these properties hold

for any group. (See Exercises 3.5, 3.5, and 3.5 in Chapter 4.)

In fact, after you do Exercise 2.112 at the end of this chapter, you

will realize that property 2 above is also a property that comes from a

particular group structure on a particular subset of R!

Notice that there is one property that is very similar to additive cancel-

lation, namely multiplicative cancellation: a · b = a · c implies b = c,

which we have not listed above. The reason for its absence is very simple:

multiplicative cancellation cannot be deduced from the ring axioms. In

turn, the reason that it cannot be deduced from the axioms is because

multiplicative cancellation does not hold in all rings!
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Question 2.25

Can you think of an example of a ring R and elements a, b, and c in R

such that ab = ac yet b 6= c?
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2.2 Subrings

In Examples 2.12, 2.13, 2.14, and 2.15 above, we came across the following

phenomenon: A ring R and a subset S of R that had the following two

properties: For any s1 and s2 in S, s1 + s2 was in S and s1s2 was in S. In

Example 2.12, the ring R was R, and the subset S was the set of all real

numbers of the form a + b
√

2 with a and b rational numbers. In Example

2.14, R was C and S was the set of all complex numbers of the form a + bi

with a and b rational numbers. In Example 2.15, R was Q, and S was the

set of all reduced fractions with odd denominator. Moreover, in all three

examples, we endowed S with binary operations in the following way: Given

s1 and s2 in S, we viewed them as elements of R, and formed the sum

s1 + s2 (the sum being defined according to the definition of addition in R).

Next, we observed that s1 + s2 was actually in S (this is one of the two

properties alluded to above). Similarly, we observed that s1s2 (the product
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being formed according to the definition of multiplication in R) was also in

S. These two facts hence gave us two binary operation on S. We then found

that with respect to these binary operations, S was not just an arbitrary

subset of R, it was actually a ring in its own right.

The crucial reason (although not the only reason) why the set S in all

our examples was itself a ring was that S had the properties described at the

beginning of the previous paragraph. We give these properties a name.

Definition 2.26

Given an arbitrary nonempty subset S of a ring R, we say that S is

closed under addition if for any s1 and s2 in S, s1 + s2 is also in S.

Similarly, we say that S is closed under multiplication if for any s1

and s2 in S, s1s2 is also in S.

As we have observed, if a subset S of a ring R is closed under addition,

then the addition operation onR, when restricted to ordered pairs of elements

of S, yields a binary operation on S (which we also call addition), and we

say that the addition on S is induced by the addition on R. Similarly, when

S is closed under multiplication, we get a binary operation on S (also called
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multiplication) that we say is induced by the multiplication on R.

Now suppose that S is a subset of a ring R that is closed with respect

to addition and multiplication, and just as in our examples above, suppose

that with respect to the induced operations, S is itself a ring. We will give

a special name to this situation:

Definition 2.27

Let S be a subset of a ring R that is closed with respect to addition and

multiplication. Suppose that 1 ∈ S. Suppose further that with respect

to these addition and multiplication operations on S that are induced

from those on R, S is itself a ring. We say that S is a subring of R. We

also describe R as a ring extension of S, and refer to R and S jointly

as the ring extension R/S.

Examples 2.12, 2.13, 2.14, and 2.15 above are therefore all instances of

subrings: Q[
√

2] is a subring of R, Q[ı] is a subring of C, and Z(2) is a subring

of Q. (See the notes on page 235 for a remark on Definition 2.27 above.)
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Question 2.28

Consider the subset S of Z consisting of the positive even integers, that

is, the set {2n|n ∈ Z and n > 0}. Check that S is closed with respect

to both addition and multiplication. Does this make S a subring of Z?

Next, consider the set T of all nonnegative integers. Check that T is also

closed with respect to addition and multiplication. Clearly, T contains

1. Does this make T a subring of Z?

Here is a quick exercise, which is really a special case of Exercise 3.5 in

Chapter 4 ahead:

For details of

Exercise 2.29,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 2.29

Let S be a subring of the ring R. Thus, by definition (S,+) is an abelian

group. Let 0S denote the identity element of this group, and write 0R

for the usual “0” of R. Show that 0S = 0R. (See also Exercise 3.54 in

Chapter 3 ahead.)

Before we proceed to look at further examples of subrings, let us first

consider a criterion that will help us decide whether a given subset of a ring

is actually a subring.

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings8.html
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Lemma 2.30. Let S be a subset of a ring R which has the following

properties:

1. S is closed under addition,

2. S is closed under multiplication,

3. 1 is in S, and

4. For all a ∈ S, −a is also in S.

Then S is a subring of R.

Proof. As discussed above, since S is closed with respect to addition and

multiplication, the addition and multiplication operations on R induce addi-

tion and multiplication operations on S. Now consider addition. For any a,

b, and c in S, we may view a, b, and c as elements of R, and since addition

is associative in R, we find (a + b) + c = a + (b + c). Viewing a, b, and

c back as elements of S in this equation, we find that the induced addition

operation on S is associative. Similarly, since addition is commutative in R,

the induced addition on S is commutative. Now we are given that 1 ∈ S,
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so property (4) shows that −1 is also in S. From the fact that S is closed

under addition, we find that 1 + (−1) is also in S, so 0 is in S. The relation

s + 0 = s holds for all s ∈ S, since it holds more generally for any s ∈ R.

Thus, S has an additive identity, namely 0. For every s ∈ S, we are given

that −s is also in S, so every element of S has an additive inverse. As for

multiplication, given a, b, and c in S, we may view these as elements of R,

and since multiplication in R is associative, we find that (ab)c = a(bc). As

before, viewing a, b, and c back as elements of S in this equation, we find that

the induced multiplication operation on S is associative. Since s·1 = 1·s = s

for all s ∈ S (as this is true more generally for all s ∈ R), and since 1 ∈ S,

we find that S has a multiplicative identity, namely 1. Finally, exactly as

in the arguments for associativity above, the relations a(b + c) = ab + ac

and (a + b)c = ac + bc hold for all a, b, and c in S because they hold in R,

so distributivity is satisfied. S is hence a ring in its own right with respect

to the induced operations of addition and multiplication and it contains 1.

Thus, S is a subring of R. 2
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The following are further examples of subrings. Play with these examples

to gain familiarity with them. Check that they are indeed examples of

subrings of the given rings by applying Lemma 2.30.

Example 2.31

The set of all real numbers of the form a + b
√

2 where a and b are

integers is a subring of Q[
√

2]. Why? It is denoted by Z[
√

2].

Example 2.32

The set of all complex numbers of the form a + bi where a and b are

integers is a subring of Q[ı]. It is denoted by Z[ı]. (It is often called the

ring of Gaussian integers.)

Example 2.33

Let Z[1/2] denote the set of all rational numbers that are such that when

written in the reduced form a/b with gcd(a, b) = 1, the denominator b

is a power of 2. (Contrast this set with Z(2).) This is a subring of Q.



CHAPTER 2. RINGS AND FIELDS 127

Question 2.33.1

What are the rational numbers that this ring has in common with

Z(2)?

(See the notes on page 236 for clues.)

Example 2.34

Let Q[
√

2,
√

3] denote the set of all real numbers of the form a+ b
√

2 +

c
√

3 + d
√

6, where a, b, c, and d are all rational numbers. This is a

subring of the reals. (See the notes on page 242, in particular see Example

2.143 there, for an explanation of this notation. See also Exercise 2.115

ahead.)

Question 2.34.1:

Can
√

2
√

3 =
√

6

be in this set?

See Exercise 2.115

ahead. Now is a

good time to try

that exercise if

you haven’t done

so already!

Question 2.34.1

Is the set of all real numbers of the form a + b
√

2 + c
√

3 where a,

b, and c are rationals a subring of the reals?
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Example 2.35

If S is a subring of a ring R, then S[x] is a subring of R[x].

Exercise 2.35.1

Prove this assertion!

In particular, this shows that Q[x] is a subring of R[x], which in turn is

a subring of C[x].

Example 2.36

Similarly, If S is a subring of a ring R, then Mn(S) is a subring of

Mn(R).

Example 2.37

Let Un(R) denote the upper triangular matrices, that is, the subset of

Mn(R) consisting of all matrices whose entries below the main diagonal

are all zero. Thus, Un(R) is the set of all (ai,j) in Mn(R) with ai,j = 0

for i > j. (You may have seen the notation “(ai,j)” before: it denotes

the matrix whose entry in the ith row and jth column is the element
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ai,j.) Then Un(R) is a subring of Mn(R).

Question 2.37.1

Why?

Question 2.37.2

For what values of n will Un(R) be the same as Mn(R)?

Question 2.37.3

Suppose we considered the set of strictly upper triangular matri-

ces, namely the set of all (ai,j) in Mn(R) with ai,j = 0 for i ≤ j.

Would we still get a subring of Mn(R)?

Example 2.38

Here is another subring of Mn(R). For each real number r, let diag(r)

denote the matrix in which each diagonal entry is just r and in which
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the off-diagonal entries are all zero. The set of matrices in Mn(R) of the

form diag(r) (as r ranges through R) is then a subring.

Question 2.38.1

What observations can you make about the function from R to

Mn(R) that sends r to diag(r)?

(See Example 2.103 ahead.)
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2.3 Integral Domains and Fields

In passing from the concrete example of the integers to the abstract def-

inition of a ring, observe that we have introduced some phenomena that at

first seem pathological. The first, which we have already pointed out explic-

itly and is already present in M2(R), is noncommutativity of multiplication.

The second, which is also present in M2(R), and examples of which you have

seen as far back as in the preliminary chapter To the Student, page 2, is the

existence of zero-divisors.

Definition 2.39

A zero-divisor in a ring R is a nonzero element a for which there exists

a nonzero element b such that either a · b = 0 or b · a = 0.

Just as noncommutativity of multiplication, on closer observation, turns

out to be quite a natural phemomenon after all, the existence of zero-divisors
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is really not very pathological either. It merely seems so because most of

our experience has been restricted to various rings that appear as subrings

of the complex numbers.

Besides matrix rings (try to discover lots of zero-divisors in M2(R) for

yourselves), zero-divisors occur in several rings that arise naturally in mathe-

matics, including many commutative ones. For instance, the direct product

of two rings always contains zero-divisors (see Example 2.22 above). Also,

(see Exercise 2.21.2), Z/4Z contains zero-divisors: [2]4 · [2]4 = [0]4! In fact,

as long as n is not prime, you should be able to discover zero-divisors in any

of the rings Z/nZ (see 2.57 ahead). (It can be proved, however, that Z/nZ
cannot have zero-divisors if n is prime, see 2.58 ahead.)

On the other hand, there is no doubt that the absence of zero-divisors in

a ring indeed makes the ring relatively easy to work with. If, in addition,

such a ring is also commutative, it becomes exceptionally nice to work with.

With this in mind, we make the following definition:
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Definition 2.40

An integral domain is a commutative ring with no zero-divisors.

(Alternatively, an integral domain is a commutative ring R with the

property that whenever a · b = 0 for two elements a and b in R, then either

a must be 0 or else b must be 0.)

Z, Q, R, and C are all obvious examples of integral domains. (Again, we

are simply invoking our knowledge of these rings when we make this claim.)

Question 2.41

Is R[x] an integral domain? More generally, if R is an arbitrary ring,

can you determine necessary and sufficient conditions on R that will

guarantee that R[x] has no zero-divisors?

(See the notes on page 232 for a definition of R[x], and for some discus-

sions that may help you answer this question.)

Notice that any subring S of an integeral domain R must itself be an

integral domain. (If ab = 0 holds in S for some nonzero elements a and b,

then viewing a and b as elements of R, we would find ab = 0 in R, which is

a contradiction, since R is an integral domain.) In particular, any subring
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of C is an integral domain.

Question 2.42

Now suppose S is a subring of R and suppose that S (note!) is an

integral domain. Must R also be an integral domain? (Hint: Look at

Example 2.38 above for inspiration!)

Integral domains have one nice property: one can always cancel elements

from both sides of an equation, i.e., multiplicative cancellation holds! More

precisely, we have the following:

Lemma 2.43. (Multiplicative Cancellation in Integral Domains:) Let R

be an integral domain, and let a be a nonzero element of R. If ab = ac

for two elements b and c in R, then b = c.

Proof. Write ab = ac as a(b−c) = 0. Since a 6= 0 and since R is an integral

domain, b− c = 0, or b = c! 2

Now, integral domains are definitely very nice rings, but one can go out

on a limb and require that rings be even nicer! We can require that we be
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able to divide any element a by any nonzero element b. This would certainly

make the ring behave much more like Q or R.

To understand division better, let us look at the process of dividing two

integers a little closer. To divide 3 by 5 is really to multiply together 3 and

1/5 (just as to subtract, say, 6 from 9 is really to add together 9 and −6).

The reason this cannot be done within the context of the integers is that

1/5 is not an integer. (After all, if 1/5 were an integer, then the product

of 3 and 1/5 would also be an integer.) Now let us look at 1/5 a different

way. 1/5 has the property that 1/5 · 5 = 5 · 1/5 = 1. In other words,

1/5 is the inverse of 5 with respect to multiplication (just as −6 is the in-

verse of 6 with respect to addition). First, let us pause to give a name to this:

Definition 2.44

If R is an arbitrary ring, a nonzero element a is said to be invertible or

to have a multiplicative inverse if there exists an element b ∈ R such

that ab = ba = 1. In such a situation, b is known as the multiplicative

inverse of a, and a is known as the multiplicative inverse of b.

Invertible elements of a ring R are also known as units of R.
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(Notice that for an arbitrary ring, it is not enough in the definition of

invertibility to insist that ab = 1, we also need ba to equal 1. It is certainly

possible to have two elements a and b in a ring R such that ab = 1 but

ba 6= 1: see Exercise 3.103 in Chapter 3 ahead.)

Question 2.45

What are the units of Z?

Putting all this together, the reason that we cannot divide within the

context of the integers is that given an arbitrary (nonzero integer) m, it need

not be invertible. With this in mind, we have the following definition:

Definition 2.46

A field is an integral domain in which every nonzero element a is in-

vertible. The multiplicative inverse of a nonzero element a is usually

denoted either by “1/a” or by “a−1.”

(For a comment on this definition, see the notes on page 243.)
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Here is a quick exercise:

Exercise 2.46.1

Let R be a commutative ring. Suppose that every nonzero element in R

is invertible. Prove that R cannot have zero-divisors, and hence, R must

a field. Give an example of a commutative ring to show that, conversely,

if R is commutative and has no zero-divisors, then all nonzero elements

need not be invertible.

We will often use the letter F to denote a field. The set of nonzero

elements of a field F is often denoted by F ∗.

Question 2.47

If F is a field, is F ∗ a group with respect to multiplication?

(See also Exercise 2.112 at the end of the chapter.)

Remark 2.48

Notice that 0 can never have a multiplicative inverse, since a · 0 = 0 for

any a. (See Remark 2.24.) We describe this by saying that division by
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0 is not defined.

Perhaps the most familiar example of a field is Q. We have already seen

that it is a ring (Example 2.10) The multiplicative inverse of the nonzero

rational number m/n is, of course, n/m. Here are more examples:

Example 2.49

The reals, R.

Example 2.50

Q[
√

2].

Exercise 2.50:

see the following

(but only after

you have tried

the problem

yourself!):

Question 2.50.1

Q[
√

2] is a subring of R, and hence an integral domain. Explicitly

exhibit the multiplicative inverse of the nonzero number a+ b
√

2 as

c + d
√

2 for suitable rational numbers c and d. (Think in terms of

“rationalizing” denominators.)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings9.html
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Question 2.50.2

Is Z[
√

2] a field?

Example 2.51

The complex numbers, C.

Question 2.51.1

What is the inverse of the nonzero number a+ ıb? (Give the inverse

as c+ ıd for suitable real numbers c and d: think in terms of “real-

izing” denominators.)
Exericse 2.52:

modify the argu-

ments for Exercise

2.50 above.

Example 2.52

Q[ı].

Question 2.52.1

Why is Q[ı] a field?
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Question 2.52.2

Is Z[ı] a field?

Example 2.53

Here is a new example: the set of rational functions with coefficients

from the reals, R(x). (Note the parentheses around the x.) This is

the set of all quotients of polynomials with coefficients from the reals,

that is, the set

{
f (x)

g(x)

}
, where f (x) and g(x) are elements of R[x], and

g(x) 6= 0. (Of course, we take f (x)/g(x) = f ′(x)/g′(x) if f (x)g′(x) =

g(x)f ′(x).) Addition and multiplication in R(x) are similar to addition

and multiplication in Q—

f1(x)

g1(x)
+
f2(x)

g2(x)
=
f1(x) · g2(x) + f2(x) · g1(x)

g1(x) · g2(x)
,

and
f1(x)

g1(x)
· f2(x)

g2(x)
=
f1(x) · f2(x)

g1(x) · g2(x)
.

The multiplicative inverse of the nonzero element
f (x)

g(x)
is just

g(x)

f (x)
.
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Example 2.54

More generally, if F is any field, we may consider the set of rational

functions with coefficients from F , denoted F (x). This is analogous to

R(x): it is the set

{
f (x)

g(x)

}
, where f (x) and g(x) are now elements of

F [x] instead of R[x], and g(x) 6= 0. (As with R(x), we take f (x)/g(x) =

f ′(x)/g′(x) if f (x)g′(x) = g(x)f ′(x).) Addition and multiplication are

defined just as in R(x), and we can check that we get a field.

Example 2.55

The ring Z/2Z is a field! This is easy to see from the multiplication

table for Z/2Z (see Example 2.20): since the only nonzero element is

[1]2, and since [1]2 · [1]2 = [1]2 6= [0]2, it is clear that Z/2Z is an integral

domain. But we can read one more fact from the relation [1]2 · [1]2 = [1]2:

the only nonzero element in Z/2Z is actually invertible! Thus, Z/2Z is

indeed a field.
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Question 2.55.1

How many elements does the ring M2(Z/2Z) have? Which of these

elements are invertible?

(It would be helpful to recall from more elementary courses that

a matrix with entries in, say the real numbers, is invertible if and

only if its determinant is nonzero. You may accept for now that this

same result holds for matrices with entries in any field.)

Example 2.56

The ring Z/3Z is also a field!
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Question 2.56.1

Study the multiplication table in Z/3Z in Example 2.21. There are

no zeros in the table other than in the first row and in the first

column (which correspond to multiplication by zero). Why does

this show that there are no zero-divisors in this ring? Now notice

that every row and every column (other than the first) has [1]3 in

it. Why does this show that every nonzero element is invertible?

(After this example and the previous example of Z/2Z, you may find

Exercise 2.124 at the end of the chapter illuminating.)

Example 2.57

It would be tempting to jump to the conclusion that Z/mZ is a field

for all m ≥ 2. However, we have already seen on page 132 that Z/4Z
has a zero-divisor. This shows that Z/4Z is not an integral domain, and

hence most definitely not a field.
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Question 2.57.1

Study the observation on page 132 that shows that Z/4Z is not

an integral domain. How should you generalize this observation

to prove that for any composite integer m ≥ 4, Z/mZ is not an

integral domain?

Example 2.58

However, Examples 2.55 and 2.56 do generalize suitably: it turns out

that for any prime p, the ring Z/pZ is a field (with p elements). Recall

from the discussions in Examples 2.20 and 2.21 that the elements of

Z/pZ are equivalence classes of integers under the relation a ∼ b if and

only if a−b is divisible by p. The equivalence class [a]p of an integer a is

thus the set of integers of the form a± p, a± 2p, a± 3p, . . . . Addition

and multiplication in Z/pZ are defined by the rules

1. [a]p + [b]p = [a + b]p

2. [a]p · [b]p = [a · b]p
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For details of

Exercise 2.58.1,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 2.58.1

Show that addition and multiplication are well-defined, that is, if

a ∼ a′ and b ∼ b′, then a + b ∼ a′ + b′ and a · b ∼ a′ · b′.

Exercise 2.58.2

Show that the zero in this ring is [0]p, and the 1 in this ring is

[1]p. (In particular, [a]p is nonzero in Z/pZ precisely when a is not

divisible by p.)

Exercise 2.58.3

Now let [a]p be a nonzero element in Z/pZ. Show that [a]p is

invertible. (Hint: Invoking the fact that a and p are relatively

prime, we find that there must exist integers x and y such that

xa + yp = 1. So?)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings10.html
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Exercise 2.58.4

Now conclude using Exercise 2.46.1 and Exercise 2.58.3 above that

Z/pZ is a field.
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We end this section with the concept of a subfield. The idea is very simple

(compare with Definition 2.27 above):

Definition 2.59

A subset F of a field K is called a subfield of K if F is a subring of

K and is itself a field. In this situation, we also describe K as a field

extension of F , and refer to F and K jointly as the field extension

K/F .

The difference between being a subring of K and a subfield of K is as

follows: Suppose R is a subring of K. Given a nonzero element a in R,

its multiplicative inverse 1/a certainly exists in K (why?). However, 1/a

may not live inside R. If 1/a happens to live inside R, we say that a

has a multiplicative inverse in R itself. Now, if every nonzero a in R has

a multiplicative inverse in R itself, then by Definition 2.46 (why is R an

integral domain?), R is a field. Therefore, by Definition 2.59 above, R is

then a subfield of K.
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Thus, Q is a subfield of R, but Z is only a subring of R; it is not a subfield

of R. Similarly, R is a subfield of C. (Is R a subring of C?) Q[
√

2] is a

subfield of C. In fact, more is true—Q is a subfield of Q[
√

2], which in turn

is a subfield of R, which in turn is a subfield of C.

Question 2.60

By contrast, is Q[i] a subfield of R? Of C?

Question 2.61

Is Z[i] a subfield of R? Of C?

(See Exercise 2.125 at the end of the chapter for a situation in which we

can conclude that a subring of a field must actually be a subfield.)
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2.4 Ideals

Consider the ring Z, and consider the subset of even integers, denoted

(suggestively) 2Z. The set 2Z is closed under addition (the sum of two even

integers is again an even integer), and in fact, (2Z,+) is even an abelian

group (this is because (i) 0 is an even integer and hence in 2Z, (ii) for any

even integer a, −a is also an even integer and hence in 2Z, (iii) and of course,

addition of integers, restricted to 2Z is both an associative and commutative

operation). Moreover, the set 2Z has one extra property that will be of in-

terest: for any integer a ∈ 2Z and for any arbitrary integer m, am is also an

even integer and hence in 2Z. Subsets such as these play a crucial role in the

structure of rings, and are given a special name: they are referred to as ideals.
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Definition 2.62

LetR be a ring. A subset I ofR is called an ideal ofR if I is closed under

the addition operation of R and under this induced binary operation

(I,+) is an abelian group, and if for any i ∈ I and arbitrary r ∈ R,

both ri ∈ I and ir ∈ I . An ideal I is called proper if I 6= R.

Remark 2.63

Of course, if R is commutative, as in the example of Z and 2Z above,

ri ∈ I if and only if ir ∈ I , but in an arbitrary ring, one must specify

in the definition that both ri and ir be in I .

Remark 2.64

Notice in the definition of ideals above that if ir ∈ I for all r ∈ R, then

in particular, taking r to come from I , we find that I must be closed

under multiplication as well, that is, for any i and j in I , ij must also

be in I . Once we find that ideals are closed under multiplication, the

associative and distributive laws will then be inherited from R, so ideals

seem like they should be the same as subrings. However, they differ

from subrings in one crucial aspect—ideals do not have to contain the
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multiplicative identity 1. (Recall the definition of subrings, and see the

example of 2Z above–it certainly does not contain 1.)

Exercise 2.64.1

Show that if I is an ideal of a ring R, then 1 ∈ I implies I = R.

Here is an alternative characterization of ideals:

Lemma 2.65. Let I be a subset of a ring R. Then I is an ideal of R if

and only if

1. I is nonempty,

2. I is closed under addition, and

3. for all i ∈ I and r ∈ R, both ir and ri are in I.

Proof. If I is an ideal of R, then by definition, I is closed under addition,

and for all i ∈ I and r ∈ R, both ir and ri are in I . Moreover, by definition

of being an ideal, (I,+) is an abelian group, so it has at least one element

(the identity element). This shows that I is nonempty.
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Now assume that I is nonempty, closed under addition, and for all i ∈ I
and r ∈ R, both ir and ri are in I . Since I is nonempty, there exists at

least one element in I , call it a. Then, by the hypotheses, a · 0 = 0 must

be in I . Also, for any i ∈ I , i · (−1) = −i ∈ I . Since commutativity and

associativity of addition in I follows from that in R, we find that indeed

(I,+) is an abelian group. 2

Exercise 2.65.1

If I is an ideal of R, then by definition, (I,+) is an abelian group.

Consequently, it has an identity element, call it 0I , that satisfies the

property that i + 0I = 0I + i = i for all i ∈ I . On the other hand, the

element “0” in R is the identity element for the group (R,+). Prove

that the element 0I must be the same as the element 0.

(See Exercise 2.29 of this chapter for some clues if you need. Both

this exercise and Exercise 2.29 of this chapter are just special cases of

Exercise 3.5 in Chapter 4 ahead.)

The significance of ideals will become clear when we study quotient rings

and ring homomorphisms a little ahead, but first let us consider several
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examples of ideals in rings:

Example 2.66

Convince yourselves that if R is any ring, then both R and the set {0}
are both ideals of R. The ideal {0} is often referred to informally as the

zero ideal.

Example 2.67

Just as with the set 2Z, we may consider, for any integer m, the set of

all multiples of m, denoted mZ.

Exercise 2.67.1

Prove that mZ is an ideal of Z.

Question 2.67.2

What does mZ look like when m = 1?

Question 2.67.3

What does mZ look like when m = 0?
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Example 2.68

In the ring R[x], let 〈x〉 denote the set of all polynomials that are a

multiple of x, i.e. the set {xg(x) | g(x) ∈ R[x]}.

Exercise 2.68.1

Prove that 〈x〉 is an ideal of R[x].

Exercise 2.68.2

More generally, let f (x) be an arbitrary polynomial, and let 〈f (x)〉
denote the set of all polynomials that are a multiple of f (x), i.e. the

set {f (x)g(x) | g(x) ∈ R[x]}. Show that 〈f (x)〉 is an ideal of R[x].

Example 2.69

In the ring R[x, y], let 〈x, y〉 denote the set of all polynomials that can

be expressed as xf (x, y) + yg(x, y) for suitable polynomials f (x, y) and

g(x, y). For example, the polynomial x + 2y + x2y + xy3 is in 〈x, y〉
because it can be rewritten as x(1 + xy) + y(2 + xy2). (Note that this
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rewrite is not unique–it can also be written as x(1 + xy + y3) + 2y–but

this will not be an issue.) Exercises 2.69.1

and 2.69.2 are

just special cases

of Example 2.74

ahead. See the

hints to Exercises

2.74.1 and 2.74.2

there.

Exercise 2.69.1

Show that 〈x, y〉 is an ideal of R[x, y].

Exercise 2.69.2

More generally, given two arbitrary polynomials p(x, y) and q(x, y),

let 〈p(x, y), q(x, y)〉 denote the set of all polynomials that can be

expressed as p(x, y)f (x, y) + q(x, y)g(x, y) for suitable polynomi-

als f (x, y) and g(x, y). Show that 〈p(x, y), q(x, y)〉 is an ideal of

R[x, y].

Example 2.70

Fix an integer n ≥ 1. In the ring Mn(Z) (see Exercise 2.16.6), the

subset Mn(2Z) consisting of all matrices all of whose entries are even, is
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an ideal.

Exercise 2.70.1

Prove this.

Question 2.70.2

Given an arbitrary integer m, is the subset Mn(mZ) consisting of all

matrices all of whose entries are a multiple of m an ideal of Mn(Z)?

Example 2.71

Let R be an arbitrary ring, and let I be an ideal of R. Fix an integer

n ≥ 1. In Mn(R), let Mn(I) denote the subset of all matrices all of

whose entries come from I .

Exercise 2.71.1

Prove that Mn(I) is an ideal of Mn(R).
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Example 2.72

In the ring Z(2), denote by 〈2〉(2) the set of all fractions of the (reduced)

form a/b where b is odd and a is even.

Question 2.72.1

Study Example 2.15 carefully. Is 〈2〉(2) a proper subset of Z(2)?

Exercise 2.72.2

Prove that 〈2〉(2) is an ideal of Z(2).

For details of

Exercise 2.72,

see the following

(but only after

you have tried

the problem

yourself!):

Example 2.73

Let R and S be rings, and let I1 be an ideal of R and I2 an ideal of S.

Let I1 × I2 denote the set {(a, b) | a ∈ I1, b ∈ I2}.

Exercise 2.73.1

Prove that I1 × I2 is an ideal of R× S.

(See Exercise 2.126 ahead.)

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings11.html
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Example 2.74

For simplicity, we will restrict ourselves in this example to commu-

tative rings. First, just to point out terminology that we have already

introduced in Example 2.68, by a multiple of r in a general commuta-

tive ring R, we mean the set {ra | a ∈ R}. (This obviously generalizes

the notion of multiple that we use in Z.) In Examples 2.67 and 2.68, we

considered the set of all multiples of a given element of our ring (mul-

tiples of m in the case of Z, multiples of f (x) in the case of R[x]), and

observed that these formed an ideal. In Example 2.69, we considered

something more general: the set 〈p(x, y), q(x, y)〉 is the set of sums of

multiples of p(x, y) and q(x, y). This process can be generalized even

further. If a1, . . . , an are elements of a commutative ring R, we de-

note by 〈a1, . . . , an〉 the set of all elements of R that are expressible

as a1r1 + · · · + anrn for suitable elements r1, . . . , rn in R. Thus, the

elements of 〈a1, . . . , an〉 are sums of multiples of the ai. (As in Example

2.69, the ri may not be uniquely determined, but this will not be an

issue.)
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For details of Ex-

ercises 2.74.1 and

2.74.2, see the fol-

lowing (but only

after you have

tried the problem

yourself!):

Exercise 2.74.1

Show that 〈a1, . . . , an〉 is an ideal of R.

The ideal 〈a1, . . . , an〉 is known as the ideal generated by a1, . . . , an.

An ideal generated by a single element is known as a principal ideal.

Thus, the ideal 2Z is a principal ideal in Z. (Of course, the ideal 2Z
could just as easily have been denoted by 〈2〉.) See Exercise 2.127 ahead.

Exercise 2.74.2

Show that 〈a1, . . . , an〉 is the smallest ideal containing a1, . . . , an,

in the sense that if J is any ideal of R that contains a1, . . . , an,

then 〈a1, . . . , an〉 ⊆ J .

Question 2.74.3

Convince yourselves that 〈1〉 = R and 〈0〉 is just the zero ideal {0}.
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Exercise 2.74.4

Suppose that R is a field, and let a be a nonzero element of R. Show

that 〈a〉 = R. (Hint: play with the fact that a−1 exists in R and

that 〈a〉 is an ideal.)

Exercise 2.74.5

Conclude that the only ideals in a field F are the set {0} and F .



CHAPTER 2. RINGS AND FIELDS 161

2.5 Quotient Rings

We now come to a fundamental method of constructing a new ring from

a given ring and an ideal in the ring, namely, the quotient ring construction.

Let R be a ring (not necessarily commutative) and let I be an ideal in R.

We define a relation ∼ on R by declaring a ∼ b if and only if a − b ∈ I .

It is immediate that ∼ is an equivalence relation:(i) certainly, for any a,

a− a = 0 ∈ I ; (ii) if a ∼ b, then by definition a− b ∈ I , but since I is an

ideal, −1(a − b) = b − a ∈ I , so b ∼ a as well; (iii) finally, if a ∼ b and

b ∼ c, then by definition, a− b ∈ I and b− c ∈ I , so again because I is an

ideal, (a− b) + (b− c) = a− c ∈ I , so a ∼ c as well.

Let us denote the equivalence class of an element a as [a]. (Recall what

this means: it is the set of all elements in R that are related to a under this

equivalence relation.) Let us also denote by a + I the set of all elements of

the ring of the form a + i as i varies in I . The set denoted a + I is called
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the coset of I with respect to a. We have the following:

Lemma 2.75. The equivalence class [a] is precisely the coset a + I.

Proof. Take b ∈ [a]. Then b ∼ a, so by definition, b−a ∈ I . Thus, b−a = i

for some i ∈ I , or written differently, b = a+ i. Thus, b ∈ a+ I , and since b

was arbitrary, we find [a] ⊆ a + I . Conversely, take any element b ∈ a + I .

Then by definition of the set a+I , we find b = a+ i for some i ∈ I . But this

just means b− a ∈ I , that is b ∼ a. Thus, b ∈ [a] and since b was arbitrary,

we find a + I ⊆ [a]. This proves that the two sets are equal.

2

Let us writeR/I (“Rmod I”) for the set of equivalence classes ofR under

the relation ∼ above. Thanks to Lemma 2.75 we know that the equivalence

class of r ∈ R is the same as the coset r + I , so we will use the notation [r]

and r + I interchangeably for the equivalence class of r. The key observa-

tion we make is that the set R/I can be endowed with two binary operations

+ (addition) and · (multiplication) by the following rather natural definitions:
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Definition 2.76

[a] + [b] = [a + b] and [a] · [b] = [a · b] for all [a] and [b] in R/I . (In

coset notation, this would read (a + I) + (b + I) = (a + b) + I , and

(a+ I)(b+ I) = ab+ I .) As always, if the context is clear, we will often

omit the “·” sign and write [a][b] for [a] · [b].

Actually, we have

already consid-

ered the issue of

operations being

well-defined ear-

lier: see Exercise

2.58.1 and the

hints there!

Before proceeding any further, we need to settle the issue of whether

these definitions make sense, in other words, whether these operations are

well-defined. Observe that the definition of addition, for instance, depends

on which representative we use for the equivalence classes. Now recall that

if a′ ∼ a, then [a] = [a′]. Similarly, if b′ ∼ b, then [b] = [b′]. If we use a

and b as representatives for the equivalence classes to which they belong, our

definition of the sum of the two classes is the class to which a + b belongs.

However, if we use a′ and b′ as representatives for the classes [a] and [b], our

definition says that the sum of the two classes is the class to which a′ + b′

belongs. Can we be certain that the class to which a+ b belongs is the same

as the class to which a′ + b′ belongs? If yes, then we can be certain that our

definition of addition is independent of which representative we use for the
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equivalence class. We have the following:

Lemma 2.77. The operations of addition and multiplication on R/I de-

scribed above in Definition 2.76 are indeed well-defined. Moreover, the

addition operation is commutative.

Proof. As in the paragraph above, suppose that a′ ∼ a and b′ ∼ b. Then,

by definition, a′−a = i for some i ∈ I , and b′−b = j for some j ∈ I . Thus,

a′ + b′ = (a+ i) + (b+ j) = (a+ b) + (i+ j). Since I is an ideal and hence

closed under addition, i+ j is also in I . Thus, we find that (a′+ b′)− (a+ b)

is in I , that is, a′+ b′ is related to a+ b. Put differently, this just means that

[a′ + b′] = [a + b], so indeed, addition is well-defined.

As for multiplication, note that a′b′ = (a+ i)(b+ j) = ab+ aj + ib+ ij.

Since I is an ideal, j ∈ I implies that aj ∈ I and ij ∈ I , and again since

I is an ideal, i ∈ I implies that ib ∈ I . Thus, aj + ib + ij ∈ I as well (as

I is closed under addition). It follows that a′b′ − ab ∈ I , or put differently,

[a′b′] = [ab]. This shows that multiplication is well-defined.

Finally, note that [a] + [b] = [a+ b] = [b+ a] (the last equality is because

a + b = b + a in the ring R), and of course, [b + a] = [b] + [a]. Hence,
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[a] + [b] = [b] + [a]. 2

Remark 2.78

The proof above illustrates why we require in the definition of ideals

that they be closed under addition and that ir ∈ I and ri ∈ I for all

i in I and all r ∈ R (see Lemma 2.65). It was this that allowed us

to say that addition and multiplication are well-defined: we needed to

know above that i + j ∈ I in the proof that addition is well-defined,

and that aj ∈ I and ib ∈ I and ij ∈ I and then aj + ib + ij ∈ I

in the proof that multiplication is well-defined, and for this, we invoked

the corresponding properties of ideals.

Having proved that the operations + and · on R/I are well-defined, let

us proceed to prove that all ring axioms hold in R/I :

Theorem 2.79. (R/I,+, ·) is a ring.

Proof. We proceed to check all axioms one by one:

1. Associativity of +: Given elements [a], [b], and [c] in R/I , we need

to check that ([a] + [b]) + [c] = [a] + ([b] + [c]). Now ([a] + [b]) + [c] =
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[a+b]+[c] by definition of [a]+[b], and similarly [a+b]+[c] = [(a+b)+c].

But by the associativity of addition in R, (a + b) + c = a + (b + c).

Hence, [(a+b)+c] = [a+(b+c)]. But applying the definition of addition

of two elements of R/I in reverse, [a+(b+c)] is just [a]+ [b+c], which

is then [a] + ([b] + [c]). Thus, + is associative in R/I .

2. Existence of identity element for +: The element [0] is the additive

identity, since for any element [a], [a]+[0] = [a+0] = [a], and [0]+[a] =

[0 + a] = [a].

3. Existence of inverses under +: For any element [a], the element [−a]

is the inverse of [a] under +, since [a] + [−a] = [a + (−a)] = [0], and

similarly, [−a] + [a] = [−a + a] = [0].

4. Commutativity of +: This was already observed in Lemma 2.77 above.

5. Associativity of ·: This proof is similar to the proof of associativity of

+ above.

6. Existence of identity for ·: The element [1] acts as the “1” of R/I
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since for any element [a], [a] · [1] = [a · 1] = [a], and similarly, [1] · [a] =

[1 · a] = [a].

7. Distributivity of · over +: For any elements [a], [b], and [c] in R/I ,

we have [a] · ([b] + [c]) = [a] · [b + c] = [a · (b + c)] = [a · b + a · c]
(this last equality is because of the distributive property in R). And

of course, [a · b + a · c] = [a · b] + [a · c] = [a] · [b] + [a] · [c]. Putting

it together, we find [a] · ([b] + [c]) = [a] · [b] + [a] · [c]. The proof that

([a] + [b]) · [c] = [a] · [c] + [b] · [c] is similar.

2

Definition 2.80

(R/I,+, ·) is called the quotient ring of R by the ideal I .

How should one visualize R/I? Here is one intuitive way. Note that the

zero of R/I is the element [0], which is just the coset 0+I (see Lemma 2.75).

But the coset 0 + I is the set of all elements of R of the form 0 + i for some

i ∈ I , and of course, the set of all such elements is just I . Thus, we may



CHAPTER 2. RINGS AND FIELDS 168

view the quotient construction as something that takes the ring R and simply

converts all elements in I to zero—more colloquially, the construction “kills”

all elements in I , or “divides out” all elements in I . This last description

explains the term “quotient ring,” and pushing the analogy one step further,

R/I can then be thought of as the set of all “remainders” after dividing out

by I , endowed with the natural “quotient” binary operations of Definition

2.76.
Example 2.81

As our first example, take R to be R[x], and I to be 〈x〉 (Example

2.68). What does R/I “look like” here? Any polynomial in R[x] is

of the form a0 + a1x + a2x
2 + · · · + anx

n for some n ≥ 0 and some

ai ∈ R. The monomials a1x, a2x
2, . . . , anx

n are all in I since each of

these is a multiple of x. If we “set these to zero”, we are left with simply

a0 which is a real number. Thus, R[x]/〈x〉 is just the set of constant

terms (the coefficients of x0) as we range through all the polynomials

in R[x]. But the set of constant terms is precisely the set of all real

numbers, since every constant term is just a real number, and every

real number shows up as the constant term of some polynomial. Thus,
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R[x]/〈x〉 “equals” R. But this equality is more than just an equality

of sets: it is an equality that preserves the ring structure. (We will

make the notion of “preserving ring structure” more precise in the next

section—see Example 2.101; Example 2.93 is also relevant.)

Example 2.82

Here is another example that would help us understand how to visualize

R/I . Consider R[x] again, but this time take I to be 〈x2 + 1〉 (Example

2.68, Exercise 2.68.2). Notice that x2 is in the same equivalence class as

−1, since x2 − (−1) = x2 + 1 is clearly in I . What this means is in the

quotient ring R[x]/〈x2 +1〉, we may represent the coset x2 +I by −1+I .

(Another way of thinking about this is to note that x2 may be written

as (x2 + 1) + (−1). If we “kill off” the first summand x2 + 1, which is in

I , we arrive at the representative −1 + I for x2 + I .) But there is more.

As we have seen while proving the well-definedness of multiplication in

R/I (Lemma 2.77 above), if x2 ∼ −1, then x2 · x2 ∼ (−1) · (−1).

Thus, x4 ∼ 1, so we may replace x4 + I by 1 + I . Proceeding, we

find x6 + I is the same as −1 + I , x8 + I is the same as 1 + I , etc.
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Moreover, x3 + I = (x + I)(x2 + I) = (x + I)(−1 + I) = (−x + I),

etc. The coset of any monomial xn is thus either ±1 + I or ±x+ I . For

instance, while considering the equivalence class of a polynomial such as

2− 5x+ 3x2 + 2x3− 2x4 + x5, which is (2 + I)− (5 + I)(x+ I) + (3 +

I)(x2 +I)+(2+I)(x3 +I)− (2+I)(x4 +I)+(x5 +I), we may make the

replacements above to find that it is the same as (2+I)−(5+I)(x+I)+

(3+I)(−1+I)+(2+I)(−x+I)−(2+I)(1+I)+(x+I). Multiplying out,

we find this is the same as (2−5x−3−2x−2 +x) + I , which simplifies

to (−3−6x)+I or (−3+I)−6(x+I). Temporarily writing x for x+I ,

we loosely think of (−3 − 6x) + I as the element “−3 − 6x subject to

the relation x2 + 1 = 0”, or what is the same thing, “x2 = −1.” But if

x2 = −1, then x behaves like our familiar complex number ı! Thus, we

appear to have obtained the complex number −3−6ı as the equivalence

class of 2−5x+3x2 +2x3−2x4 +x5 mod 〈x2 +1〉. Indeed this is true: it

turns out that the ring R[x]/〈x2 +1〉 is “the same as” the set of complex

numbers. We will make all this precise and justify these heuristics in the

next section (where this example will appear in Exercise 2.109).
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Let us revisit a couple of quotient rings that we have already considered.

Example 2.83

The ring Z/2Z is really just the quotient ring of Z by the ideal 2Z.

Recall that [0]2 and [1]2 are precisely the equivalence classes of Z under

the equivalence relation a ∼ b iff a− b is even (see 2.20). Since the even

integers constitute the ideal 2Z, this is precisely the sort of equivalence

relation we have considered in this section.

Question 2.83.1

Write down the addition and multiplication tables for the ring op-

erations on Z/2Z that we have introduced in Definition 2.76 of this

section. Can you see that these are precisely the ring operations we

defined early on in Example 2.20?

Example 2.84

In a similar manner, the ring Z/3Z of Example 2.21 is the quotient ring

of Z by the ideal 3Z.
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Question 2.84.1

Do you see this?

More generally, one can consider the ideal mZ for m ≥ 4 and construct

the ring Z/nZ with operations as in Definition 2.76.

Exercise 2.84.2

Redo Exercise 2.21.2 in this new light.
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2.6 Ring Homomorphisms and Isomorphisms

The process of forming the quotient ring of a ring R by an ideal I is

worth studying from an alternative perspective. Intuitively speaking, the

ring operations in R/I are “essentially the same” as the operations in R

except that the elements of R have all been divided out by I . What do we

mean by this? Let us take addition: Suppose we have two elements r + I

and s + I in R/I , and we wish to know how to add them. By the very

definition of addition in R/I , to add r + I and s + I in R/I is the same

as adding r and s first in the ring R and then “pushing the answer down”

to R/I to obtain the coset (r + s) + I . It is in this sense that adding in

R/I is “essentially the same” as adding in R. We can view this in terms

of the function f : R → R/I that “pushes” r ∈ R “down” to r + I .

Since r + I = f (r), s + I = f (s), and (r + s) + I = f (r + s), we find

f (r) + f (s) = f (r + s). The function f that sends r to r + I , along with
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the property f (r) + f (s) = f (r + s) for all r and s in R, precisely captures

the notion that addition in R/I and R are “essentially the same.”

Similarly, the definition of multiplication in R/I : (r+ I)(s+ I) = rs+ I

gives the feeling that multiplication in R/I is “the same” as the multiplica-

tion in R except for dividing out by I : once again this intuition is captured

by the function f above along with the property f (r)f (s) = f (rs) for all r

and s in R.

We will turn this situation around. Suppose one has a function f from

one ring R to another ring S which has the two properties described above

(along with one another: f (1R) = 1S, where 1R and 1S are the multiplicative

identities in R and S respectively). In the paragraphs above, the map f :

R → R/I was surjective, but let us be more general, and not assume that

our map f from R to S is surjective. It will turn out that the image of f

will, all the same, be a subring of S (see Lemma 2.100 ahead). In such a

situation too, it will turn out, the ring operations in the ring R and in the

image of f (a subring of S) will “essentially be the same” except perhaps for

dividing out by some ideal. We will give this a name:



CHAPTER 2. RINGS AND FIELDS 175

Definition 2.85

Let R and S be two rings, and let f : R → S be a function. Suppose

that f has the following properties:

1. f (a) + f (b) = f (a + b) for all a, b, in R,

2. f (a)f (b) = f (ab) for all a, b, in R,

3. f (1R) = 1S.

Then f is said to be a ring homomorphism from R to S.

Remark 2.86

There are some features of this definition that are worth noting:

1. In the equation f (a)+f (b) = f (a+b), note that the operation on

the left side represents addition in the ring S, while the operation

on the right side represents addition in the ring R. Loosely, we say

that any function f : R → S satisfying f (a) + f (b) = f (a + b)

“preserves addition.”

2. Similarly for the equation f (a)f (b) = f (ab): the operation on
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the left side represents multiplication in S, while the operation on

the right side represents multiplication in R. Loosely, we say that

any function f : R → S satisfying f (a)f (b) = f (ab) “preserves

multiplication.”

3. By the very definition of a function, f is defined on all of R. The

image of R under f , however, need not be all of S (i.e, f need not

be surjective). We will see examples of this ahead (see Example

2.94 and Example 2.95 for instance). However, the image of R

under f is not an arbitrary subset of S. The definition of a ring

homomorphism ensures that the image of R under f is actually a

subring of S (see Lemma 2.100 later in this section).

4. In fact, the stipulation f (1R) = 1S in the definition of a ring

homomorphism is made precisely to ensure that the image of f is

a subring of S.

5. Writing 0R and 0S for the additive identities of R and S respec-

tively, note that it is not necessary to stipulate that f (0R) = 0S
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since this property holds automatically, as we will prove in Lemma

2.87 below.

Lemma 2.87. Let f : R→ S be a ring homomorphism. Then f (0R) = 0S.

Proof. We start with the fact that f (0R) = f (0R + 0R) = f (0R) + f (0R),

where the first equality is because 0R = 0R + 0R, and the second equality

is because f (a + b) = f (a) + f (b) for all a and b in R. We now have an

equality in S: f (0R) = f (0R) + f (0R). Since f (0R) = 0S + f (0R), we find

0S + f (0R) = f (0R) + f (0R). By additive cancellation (see Remark 2.24) we

find 0S = f (0R), thereby proving the lemma.

2

There is an immediate corollary to this that will be useful (see Corollary

4.68 in Chapter 4):

Corollary 2.88. Let f : R → S be a ring homomorphism. Then, for all

a ∈ R, f (−a) = −f (a). In particular, f (−1R) = −1S.

Proof. Note that 0R = a + (−a). Hence, f (0R) = f (a + (−a)) = f (a) +

f (−a). Since f (0R) = 0S by Lemma 2.87, we find 0S = f (a)+f (−a) (and by
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commutativity of addition in S, 0S = f (−a) + f (a) as well). It follows that

f (−a) = −f (a). In particular, taking a = 1R and noting that f (1R) = 1S

by definition of a ring homomorphism, the last line of the corollary follows.

2

Before proceeding to examples of ring homomorphisms, let us consider

one remaining issue: the concept of a ring homomorphism was introduced to

capture the notion of operations on two rings being “the same” except for

dividing out by some ideal. What is the natural candidate for this ideal? To

divide out by an ideal in R is to make it zero in S (recall our discussion after

Definition 2.80 on how to view R/I). This leads naturally to the following:

Definition 2.89

Given a ring homomorphism f : R → S, the kernel of f is the set

{r ∈ R | f (r) = 0S}. It is denoted ker(f ).

(Thus, the kernel of f is the set of all elements of R that get mapped to

0S under f .)
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After these discussions, the following statement should come as no sur-

prise:

Proposition 2.90. The kernel of a ring homomorphism f : R→ S is an

ideal of R.

Proof. Given a and b in ker(f ), note that f (a+b) = f (a)+f (b) = 0S+0S =

0S, so a+b is also in the kernel of f . Hence ker(f ) is closed under the addition

operation on R. We first wish to show that (ker(f ),+) is an abelian group.

Both associativity and commutativity of + follow from the fact that these

properties hold for the addition operation on all of R, so we only need to

show that 0R is in ker(f ) and that for all a ∈ ker(f ), −a is also in ker(f ).

The fact that 0R ∈ ker(f ) is just a restatement of Lemma 2.87. Now, for

any a ∈ ker(f ), f (a) = 0S by definition of the kernel. By Corollary 2.88,

f (−a) = −f (a), so f (−a) = −0S = 0S. This shows that −a is in ker(f )

as well. Thus, (ker(f ),+) is indeed an abelian group.

Next, note that for any r ∈ R and a ∈ ker(f ), f (ra) = f (r)f (a) =

f (r) · 0S = 0S (for the last equality, recall the properties in Remark 2.24),

and similarly, f (ar) = f (a)f (r) = 0S · f (r) = 0S, so both ra and ar are
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also in ker(f ). This proves that ker(f ) is indeed an ideal of R.

2

Here are some examples of ring homomorphisms:

Example 2.91

Let us revisit the example that started this discussion on ring homo-

morphisms: a ring R, an ideal I in R, the quotient ring R/I , and the

function f : R → R/I that sends r to its equivalence class modulo I ,

i.e., [r], or what is the same thing, r+I . We have already observed in our

discussion above that f (r+ s) = f (r) + f (s) and f (rs) = f (r)f (s)—in

fact, it is these properties of f that led us to the definition of a ring

homomorphism. It is immediate that the third property of Definition

2.85 also holds: By Theorem 2.79, the multiplicative identity in R/I is

1 + I , and indeed, f (1) = 1 + I . Thus, f (1R) = 1R/I as desired. What

is the kernel of f? We expect it be I , since our entire discussion of

kernels was modeled on how, in this very example, we are “dividing out

by I”. Let us formally verify this: the kernel of f is all r ∈ R such that
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f (r) = 0R/I . Now, by Theorem 2.79, the zero in R/I is 0 + I . Thus,

f (r) = 0 if and only if r+I = 0 +I , i.e., if and only if r+I = I . Now if

r+ I = I , this means in particular that r (= r+ 0), which is an element

of r + I , must be in I . Conversely, if r ∈ I , then it is easy to see (prove

it!) that the set r + I must equal I . Putting this together, we find that

the kernel of f is precisely I .

Example 2.92

As a special case of Example 2.91, we have, for any m ≥ 2, a ring

homomorphism from Z to Z/mZ defined by f (a) = a + mZ, whose

kernel if precisely the ideal mZ (see Example 2.84).

Example 2.93

Consider the function f : R[x]→ R that sends x to 0 and more generally,

a polynomial p(x) to p(0). (Thus, given a polynomial p(x) = a0 +a1x+

a2x
2 + · · · akxk, f simply “sets x to zero”, so f sends p(x) to a0.)

Exercise 2.93.1

Prove that f is a ring homomorphism from R[x] to R.
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Exercise 2.93.2

Prove that the kernel of f is precisely the ideal 〈x〉.

See the discussion on page 168. We will have more to say on this example

ahead (see Example 2.101 and Theorem 2.107). See also Example 2.98

ahead for a generalization.

Example 2.94

Consider Z as a subset of Q. The function f : Z→ Q that sends n ∈ Z
to the fraction n/1 is a ring homomorphism.

Exercise 2.94.1

Prove this.

Exercise 2.94.2

Prove that the kernel of f is the zero ideal in Z.

Note that the image of f is just the integers, and in particular, f is not

surjective.
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Example 2.95

More generally, if R is a subring of S, the function f : R → S that

sends r to r is a ring homomorphism. The image of f is just R, so if R

is a proper subset of S, then f will not be surjective.

Example 2.96

Consider the function f : Q[x] → Q[
√

2] that sends x to
√

2 and more

generally p(x) to p(
√

2). (Thus, given a polynomial p(x) = a0 + a1x +

a2x
2 + · · · akxk, f simply “sets x to

√
2”, so f sends p(x) to the element

a0 + a1

√
2 + a2(

√
2)2 + · · · ak(

√
2)k. Of course, this horrible expression

simplifies into one of the form a+b
√

2, by using the fact that (
√

2)2 = 2,

(
√

2)3 = 2
√

2, etc.)

Exercise 2.96.1

Prove that f is a ring homomorphism.

Exercise 2.96.2

Prove that f is surjective.

(Hint: Given rationals a and b what is the image of a + bx?)
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Let us determine the kernel of this homomorphism. Since x2 goes to 2,

x2− 2 is certainly in the kernel. Since the kernel is an ideal of Q[x], the

set of multiples of x2− 2 (which is the principal ideal denoted 〈x2− 2〉,
see Example 2.74), will also be in the kernel. We will show that there

are no other elements in the kernel, that is, ker(f ) = 〈x2 − 2〉. To this

end, let us invoke polynomial long division that is taught in high school

(and which we will revisit in Exercise 2.128 at the end of this chapter).

So, suppose we are given an arbitrary polynomial p(x) that is in ker(f ).

We wish to show that p(x) is a multiple of x2 − 2. Dividing p(x) by

x2 − 2 using long division, we can write p(x) = q(x)(x2 − 2) + r(x) for

some quotient polynomial q(x) and some remainder r(x) that is at most

of degree 1. We wish to show that r(x) is actually zero. Since r(x) is at

most of degree 1, we may write it as a+ bx for some a and b in Q. Since

f is a ring homomorphism, f (p(x)) = f (q(x))f (x2− 2) + a+ b
√

2, and

since p(x) goes to zero under f , we find p(
√

2) = 0 = q(
√

2)·0+a+b
√

2.

Thus, we find a + b
√

2 = 0. But we have seen in Exercise 2.12.4 that

this is impossible unless a = b = 0. Thus, r(x) must be zero, thereby
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showing that ker(f ) = 〈x2 − 2〉.

Question 2.96.3

After all, x goes to
√

2 under f , so why is x−
√

2 not in the kernel

of f?

Example 2.97

Here is an example similar in spirit to Example 2.96 above.

Exercise 2.97.1

Show that the function f : Q[x]→ Q[ı] that sends x to i and more

generally p(x) to p(i) is a surjective ring homomorphism, whose

kernel is the ideal 〈x2 + 1〉.

Example 2.98

After seeing in Examples 2.96 and 2.97 above how long division can be

used to determine kernels of homomorphisms from Q[x] to other rings,

the following should be easy:
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Exercise 2.98.1

Let F be any field, and let a ∈ F be arbitrary. Show that the

function f : F [x] → F that sends x to a and more generally p(x)

to p(a) is a surjective ring homomorphism whose kernel is the ideal

generated by 〈x− a〉.
Notice that this example generalizes 2.93 above. The process of

sending x to a is also known as evaluation at a, and hence this

homomorphism is also known as the Evaluation Homomorphism.
For details of

Exercise 2.98.1,

see the following

(but only after

you have tried

the problem

yourself!):

We now come to a very special family of ring homomorphisms, namely,

ring isomorphisms. While ring homomorphisms capture the notion that

somehow the addition and multiplication in two rings are “essentially the

same” except perhaps for “dividing out” by some ideal, isomorphisms cap-

ture a stronger notion: that multiplication in two rings are “essentially the

same” without even having to divide out by any ideal.

First, we need a couple of lemmas:

Lemma 2.99. Let f : R → S be a ring homomorphism. Then f is an

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings13.html
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injective function if and only if ker(f ) = {0R} (the zero ideal in R).

Proof. Suppose f is injective. Suppose that r ∈ ker(f ), so f (r) = 0S. By

Lemma 2.87, f (0R) = 0S. Since both r and 0R map to the same element

in S and since f is injective, we find r = 0. Thus, the kernel of f consists

of just the element 0Rl. Conversely, suppose that ker(f ) = 〈0R〉. Suppose

that f (r1) = f (r2) for r1, r2 in R. Since f is a ring homomorphism, we find

f (r1− r2) = f (r1) +f (−r2) = f (r1)−f (r2) = 0S (the last but one equality

is because of Corollary 2.88). Thus, r1 − r2 ∈ ker(f ). But ker(f ) is the

zero ideal, so r1 − r2 = 0, i.e., r1 = r2. Hence, f is injective.

2

Lemma 2.100. Let f : R→ S be a ring homomorphism. Write f (R) for

the image of R under f . Then f (R) is a subring of S.

Proof. We will apply Lemma 2.30 to f (R). Given arbitrary s1 and s2, in

f (R), note that by definition of being in the image of R, s1 = f (r1) and s2 =

f (r2) for some elements r1 and r2 in R (these elements are not necessarily

uniquely determined in R). Then s1 + s2 = f (r1) + f (r2) = f (r1 + r2) (the
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last equality is because f is a ring homomorphism), thus showing that s1 +s2

is also in the image of R. Hence f (R) is closed under addition. Similarly,

s1s2 = f (r1)f (r2) = f (r1r2), so f (R) is also closed under multiplication.

By definition, f (1R) = 1S, so 1S ∈ f (R). Finally, we need to show that

−s1 ∈ f (R) (recall that s1 is an arbitrary element of f (R)). But this is easy:

thanks to Corollary 2.88, f (−r1) = −f (r1) = −s1, so indeed −s1 ∈ f (R).

Hence, f (R) is a subring of S.

2

We now quantify our observation (see the discussion on page 168) that

somehow, the rings R/〈x〉 and R are “equal.” Let us revisit this example

again in a new light:

Example 2.101. Let us define f̃ : R[x]/〈x〉 → R by f̃ (p(x) + 〈x〉) = p(0).

Let us explain this: the equivalence class of a polynomial p(x) under the

equivalence relation that defines the ringR/I is the coset p(x)+I (see Lemma

2.75). Our function sends the equivalence class of p(x) to the constant term

of p(x). We first need to check that this function is well-defined: we have

defined f̃ in terms of one representative of an equivalence class, what if we had
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used another representative? So, suppose p(x)+ 〈x〉 = q(x)+ 〈x〉, then if we

had used q(x), we would have defined f̃ (p(x) + 〈x〉) = f̃ (q(x) + 〈x〉) = q(0).

Earlier, we had defined f̃ (p(x) + 〈x〉) to be p(0): are these definitions the

same? In other words, is p(0) = q(0)? The answer is yes! For, the fact

that p(x) + 〈x〉 = q(x) + 〈x〉 means that p(x) − q(x) ∈ 〈x〉 (why?), or

alternatively, p(x) − q(x) is a multiple of x. Hence, the constant term of

p(x)− q(x), which is p(0)− q(0), must be zero, i.e., p(0) = q(0). It follows

that f̃ is indeed well-defined.

Now that we know f̃ is well-defined, it is easy to check that f̃ is a ring

homomorphism (do it!). What is the kernel of f̃? It consists of all equivalence

classes p(x) + 〈x〉 such that the constant term p(0) is zero. But to say that

p(0) is zero is to say that p(x) is divisible by x (why?), or in other words, that

p(x) is already in 〈x〉. Thus, the kernel of f̃ consists of just the equivalence

class 〈x〉—but this is the zero element in the ring R[x]/〈x〉. Thus, the

kernel of f̃ is just the zero ideal, so by Lemma 2.99, f̃ is injective. Moreover,

f̃ is clearly surjective, since every real number r arises as the constant term

of some polynomial in R[x] (for example, the polynomial r+0x+0x2 + · · · ).
The function f̃ quantifies why R[x]/〈x〉 and R are really “equal to each
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other.” There are two ingredients to this: the function f̃ , being injective and

surjective, provides a one-to-one correspondence between R[x]/〈x〉 and R as

sets, and the fact that f̃ is a ring homomorphism tells us that the addition

and multiplication in R is “essentially the same” as that in R[x]/〈x〉. More-

over, since f̃ has kernel zero, we do not even have to divide out by any ideal

in R[x]/〈x〉 to realize this “sameness” of ring operations. Thus, R/〈x〉 and

R are really the same rings, even though they look different. We say that

R[x]/〈x〉 is isomorphic to R via the map f̃ .

Definition 2.102

Let f : R → S be a ring homomorphism. If f is both injective and

surjective, then f is said to be an isomorphism between R and S. Two

rings R and S are said to be isomorphic (written R ∼= S) if there is

some function f : R→ S that is an isomorphism between R and S.

Let us look at some examples of ring isomorphisms:
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Example 2.103

Let us revisit Example 2.38. Denote the function that sends r ∈ R to

diag(r) by f .

Exercise 2.103.1

Check that f is bijective as a function from R to the subring of

Mn(R) consisting of matrices of the form diag(r).

Exercise 2.103.2

Also, check that f (r + s) = f (r) + f (s), and f (rs) = f (r)f (s).

Moreover f (1) is clearly the identity matrix. Thus, the function f is

indeed a ring homomorphism from R to the subring of Mn(R) consisting

of matrices of the form diag(r) that is both injective and surjective, or

described alternatively, f is an isomorphism between these two rings.

Intuitively, these two rings are “the same,” even though one appears as

a set of ordinary numbers, while the other appears in the form of special

matrices.
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Example 2.104

Define a function f̃ from the quotient ringQ[x]/〈x2−2〉 toQ[
√

2] by the

rule f̃ (p(x)+〈x2−2〉) = p(
√

2). We will prove that f̃ is an isomorphism

between Q[x]/〈x2 − 2〉 and Q[
√

2].

Exercise 2.104.1

Show that f̃ is well defined. (Hint: If p(x)+〈x2−2〉 = q(x)+〈x2−
2〉, then p(x)− q(x) ∈ 〈x2 − 2〉, so p(x)− q(x) = g(x)(x2 − 2) for

some polynomial g(x) ∈ Q[x]. What happens if you set x =
√

2 in

this?)

Exercise 2.104.2

Show that f̃ is a ring homomorphism.

Exercise 2.104.3

Show that f̃ is surjective.
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Exercise 2.104.4

Show that f̃ is injective. (Hint: Recall that we have proved in

Example 2.96 that p(
√

2) is zero precisely when p(x) is divisible by

x2 − 2.)

Thus, f̃ provides an isomorphism between Q[x]/〈x2 − 2〉 and Q[
√

2].

Intuitively, the two rings are “the same,” even though one appears as a

quotient ring of polynomials, while the other appears as a subring of the

reals.

Example 2.105

The following examples show that well-known fields can show up as

subrings of matrices!
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Exercise 2.105.1

Let S denote the subset of M2(Q) consisting of all matrices of the

form  a 2b

b a


where a and b are arbitrary rational numbers.

1. Show that S is a subring of M2(Q).

2. Prove that the map f : Q[
√

2] → S that sends a + b
√

2 to

the matrix above is an isomorphism between Q[
√

2] and S.
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Exercise 2.105.2

Let S denote the subset of M2(R) consisting of all matrices of the

form  a −b
b a


where a and b are arbitrary real numbers.

1. Show that S is a subring of M2(R).

2. Prove that the map f : C→ S that sends a+ ıb to the matrix

above is an isomorphism between C and S.

The two examples in the exercises above are referred to as the regular

representation ofQ[
√

2] inM2(Q) andC inM2(R) (respectively). More

generally, let K/F be any field extension (see Definition 2.59). Then K

can be considered as a vector space over F (we will study this in Example

3.7 in Chapter 3 ahead). When the dimension of K over F is finite, say

n, then one can always find a subring of Mn(F ) that is isomorphic to
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K: this is considered in Exercise 3.105 in Chapter 3.

Example 2.106

It is not necessary that the rings R and S in the definition of a ring

isomorphism be different rings. A ring isomorphism f : R → R is to

be thought of as a one-to-one onto map from R to R that preserves the

ring structure. (Such a map is also known as an automorphism of R.)

Here are some examples:

Exercise 2.106.1

Prove that the map f : Q[
√

2] → Q[
√

2] that sends a + b
√

2 (for

a, b, in the rationals) to a− b
√

2 is a ring isomorphism. What are

the elements of Q[
√

2] on which f acts as the identity map?
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Exercise 2.106.2

Let F be a field, and let a be a nonzero element of F . Let b be an

arbitrary element of F . Prove that the map f : F [x] → F [x] that

sends x to ax+ b and more generally, a polynomial p0 +p1x+ · · ·+
pnx

n to the polynomial p0 + p1(ax + b) + · · · + pn(ax + b)n is an

automorphism of F [x].

Exercise 2.106.3

Prove that the complex conjugation map f : C → C that sends

a+ ıb (given real number a and b) to the complex number a− ıb is

an automorphism of C. Determine the set of complex numbers on

which f acts as the identity map.

We now come to a fundamental result that connects homomorphisms and

isomorphisms. To motivate this, compare Examples 2.93 and 2.101. In the

first example, we defined a function f : R[x] → R that sends p(x) to p(0)

and observed that it was a ring homomorphism whose image was all of R
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and whose kernel was the ideal 〈x〉, while in the second example, we defined

a function f̃ : R[x]/〈x〉 → R by f̃ (p(x) + 〈x〉) = p(0), and observed that

it was well-defined and that it gave us an isomorphism between R[x]/〈x〉
and R. Observe the close connection between how the functions f and

f̃ are defined in the two examples, and observe that the ring R[x]/〈x〉 is

obtained by modding R[x] by the kernel of f . Now as another instance,

compare Examples 2.96 and 2.104. Here too, in the first example, we defined

a function f : Q[x] → Q[
√

2] that sends p(x) to p(
√

2), and we observed

that it was a surjective ring homomorphism whose kernel was 〈x2 − 2〉. In

the second example, we defined a function f̃ : Q[x]/〈x2 − 2〉 → Q[
√

2] by

f̃ (p(x) + 〈x2− 2〉) = p(
√

2), and observed that it was well-defined and that

it gave us an isomorphism between Q[x]/〈x2 − 2〉 and Q[
√

2]. Once again,

observe the close connection between how the functions f and f̃ are defined

in the two examples, and observe that the ring Q[x]/〈x2− 2〉 is obtained by

modding out Q[x] by the kernel of f .

These connections in the two pairs of examples above are not accidental,

and are merely instances of a more general phenomenon, captured by the

following:
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Theorem 2.107. (Fundamental Theorem of Homomorphisms of Rings.)

Let f : R → S be a homomorphism of rings, and write f (R) for the

image of R under f . Then the function f̃ : R/ker(f ) → f (R) defined

by f̃ (r + ker(f )) = f (r) is well-defined, and provides an isomorphism

between R/ker(f ) and f (R).

Proof. The idea of the proof is already contained in the two sets of examples

2.93 and 2.101, and 2.96 and 2.104 discussed above.

We check that f̃ is well-defined. Suppose r+ker(f ) = s+ker(f ). Then

r − s ∈ ker(f ), so f (r − s) = f (r) − f (s) = 0, so f (r) = f (s). Thus,

f̃ (r + ker(f )) = f̃ (s + ker(f )), i.e., f̃ is well-defined.

Now let us go through the three ingredients in Definition 2.85 and check

that f̃ is a ring homomorphism. We have f̃ ((r + ker(f )) + (s + ker(f ))) =

f̃ ((r + s) + ker(f )) = f (r + s) = f (r) + f (s) = f̃ (r + ker(f )) + f̃ (s +

ker(f )).

Exercise 2.107.1

Justify all the equalities above.
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Similarly, f̃ ((r + ker(f )) · (s + ker(f ))) = f̃ ((r · s) + ker(f )) = f (r ·
s) = f (r) · f (s) = f̃ (r + ker(f )) · f̃ (s + ker(f )).

Exercise 2.107.2

Again, justify all the equalities above.

Finally, f̃ (1R + ker(f )) = f (1R) = 1S.

Question 2.107.3

Why?

Hence f̃ is a ring homomorphism.

We check that f̃ is surjective as a function from R/ker(f ) to f (R). Note

that any element of f (R) is, by definition, of the form f (r) for some r ∈ R.

But then, by the way we have defined f̃ , we find f (r) = f̃ (r + ker(f )), so

indeed f̃ is surjective.

Finally, we check that f̃ is injective. Note that f̃ (r+ker(f )) = f (r) = 0

means that r ∈ ker(f ). But this means that r + ker(f ) = ker(f ) (why?),

so r + ker(f ) is the zero element of R/ker(f ). Thus f̃ is injective.
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Putting this together, we find that f̃ provides an isomorphism between

R/ker(f ) and f (R).

2

Here are examples of applications of this theorem, all built from examples

of ring homomorphisms that we have already seen.

Example 2.108

We have the isomorphism (see Example 2.97) Q[x]/〈x2 + 1〉 ∼= Q[ı].

Example 2.109

By the same token, we find R[x]/〈x2 + 1〉 ∼= C.

Exercise 2.109.1

Mimic Example 2.97 and construct a homomorphism from R[x] to

C that sends p(x) to p(i) and prove that it is surjective with kernel

〈x2 + 1〉. Then apply Theorem 2.107 to establish the claim that

R[x]/〈x2 + 1〉 ∼= C.
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Example 2.110

Example 2.98 along with Theorem 2.107 above establishes that for any

field F and any a ∈ F , F [x]/〈x− a〉 ∼= F .
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2.7 Further Exercises

Exercise 2.111

Starting from the ring axioms, prove that the properties stated in Re-

mark 2.24 hold for any ring R.

(See the notes on page 234 for some hints.)

Exercise 2.112

This generalizes Exercise 2.47: If R is a ring, let R∗ denote the set of

invertible elements of R. Prove that R∗ forms a group with respect to

multiplication.

Exercise 2.113

This exercise determines the units of the ring Z[ı]:

1. Define a function N : Z[ı] → Z by N(a + bı) = a2 + b2. Show
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that N(xy) = N(x)N(y) for all x and y in Z[ı].

2. If x is invertible in Z[ı], show that N(x) must equal 1.

3. Conclude that the only units of Z[ı] are ±1 and ±ı.

Exercise 2.114

Consider the ring Q[
√
m] of Example 2.12. Now assume for this exercise

that m is not a perfect square. Show that a+ b
√
m = 0 (for a and b in

Q) if and only if a = b = 0. Show that Q[
√
m] is a field.

For details of

Exercise 2.115,

see the following

(but only after

you have tried

the problem

yourself!):

Exercise 2.115

The following concerns the ring Q[
√

2,
√

3] of Example 2.34, and is

designed to show that if a, b, c, and d are rational numbers, then a +

b
√

2 + c
√

3 + d
√

6 = 0 if and only if a, b, c, and d are all zero.

1. Show that
√

3/2 is not rational. (This is similar to showing that
√
p is not rational for any prime p.

2. Show that
√

3 6∈ Q[
√

2]. (Hint: Assume that
√

3 ∈ Q[
√

2]. Then

there must exist rational numbers x and y such that
√

3 = x+y
√

2.

http://www.csun.edu/~asethura/GIAA_V_2/GIAA_Video_Links/SoftChalk_Rings/SoftChalk_Rings14.html
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Square both sides and arrive at a contradiction. You will need to

invoke a fact aboutQ[
√

2] that you were asked to prove in Example

2.12, as well as the results of Chapter 1, Exercise 1.44, and part 1

above.)

3. Now assume that a + b
√

2 + c
√

3 + d
√

6 = 0 for some choice of

rational numbers a, b, c, and d. Write this as (a+ b
√

2) +
√

3(c+

d
√

2) = 0. Prove that c + d
√

2 must be zero. (Hint: Argue that

otherwise we can write
√

3 = −a + b
√

2

c + d
√

2
. Why is this last equality

a contradiction?)

4. Conclude that this forces a = b = c = d = 0.

5. Observe that if a = b = c = d = 0 then a+b
√

2+c
√

3+d
√

6 = 0

trivially. This proves the assertion stated at the beginning.

Exercise 2.116

We will prove in this exercise that Q[
√

2,
√

3] is actually a field.

1. You know that if a and b are rational numbers, then (a + b
√

2) ·
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(a−b
√

2) is also rational. (Why?) Similarly, if c and d are rational

numbers, then (c + d
√

3) · (c − d
√

3) is also rational. Now show

the following: if a, b, c, and d are all rational numbers, then the

product of the four terms

(a + b
√

2 + c
√

3 + d
√

6) · (a + b
√

2− c
√

3− d
√

6) ·
(a− b

√
2 + c

√
3− d

√
6) · (a− b

√
2− c

√
3 + d

√
6)

is also rational. (This just involves multiplying out all the terms

above—do it! However, you can save yourselves a lot of work by

multiplying the first two terms together using the formula (x +

y)(x − y) = x2 − y2, and then multiplying the remaining two

terms together, and looking out for patterns.)

2. Now show using part (1) above that Q[
√

2,
√

3] is a field. (Hint:

Given a nonzero element a+b
√

2+c
√

3+d
√

6 in Q[
√

2,
√

3], first

note that by Exercise 2.115 above, none of (a+b
√

2−c
√

3−d
√

6),

(a− b
√

2 + c
√

3−d
√

6) or (a− b
√

2− c
√

3 +d
√

6) can be zero—

why? Now, in the case of Q[
√

2], one finds the inverse of x+ y
√

2
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by multiplying both the numerator and the denominator of the

fraction 1
x+y
√

2
by x− y

√
2 and taking advantage of the fact that

(x+ y
√

2)(x− y
√

2) is rational. What ideas do you get from part

(1) above?)

Exercise 2.117

Let R be an integral domain. Show that an element in R[x] is invertible,

if and only if it is the constant polynomial r(= r + 0x + 0x2 + · · · ) for

some invertible element r ∈ R. In particular, if R is a field, then a

polynomial in R[x] is invertible if and only if it is a nonzero element

of R. (See the notes on Page 232 for a discussion on polynomials with

coefficients from an arbitrary ring.)

By contrast, show that the (nonconstant) polynomial 1 + [2]4x in the

polynomial ring Z/4Z[x] is invertible, by explicitly finding the inverse

of 1 + [2]4x. Repeat the exercise by finding the inverse of 1 + [2]8x in the

polynomial ring Z/8Z[x]. (Hint: Think in terms of the usual Binomial

Series for 1/(1 + t) from your Calculus courses. Do not worry about

convergence issues. Instead, think about what information would you
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glean from this series if, due to some miracle, tn = 0 for some positive

integer n?)

Exercise 2.118

We will revisit some familiar identities from high school in the context

of rings! Let R be a ring:

1. Show that a2− b2 = (a− b)(a+ b) for all a and b in R if and only

if R is commutative.

2. Show that (a+ b)2 = a2 + 2ab+ b2 for all a and b in R if and only

if R is commutative.

3. More generally, if R is a commutative ring, prove that the Bino-

mial Theorem holds in R: for all a and b in R and for all positive

integers n,

(a + b)n =

(
n

0

)
an +

(
n

1

)
an−1b +(

n

2

)
an−2b2 + · · · +

(
n

n− 1

)
abn−1 +

(
n

n

)
bn
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Exercise 2.119

An element a in a ring is said to be nilpotent if an = 0 for some positive

integer n.

1. Show that if a is nilpotent, then 1− a and 1 + a are both invert-

ible. (Hint: Just as in Exercise 2.117 above, think in terms of the

Binomial Series for 1/(1 − t) and 1/(1 + t). Do not worry about

convergence, but ask yourself what you can learn from the series

if tn = 0 for some positive integer n.)

2. Let R be a commutative ring. Show that the set of all nilpotent

elements in R forms an ideal in R. (Hint: Suppose that an = 0

and bm = 0. What can you say about (a + b)n+m−1, given your

knowledge of the Binomial Theorem for commutative rings from

Exercise 2.118 above?



CHAPTER 2. RINGS AND FIELDS 210

Exercise 2.120

Let S denote the set of all functions f : R → R. Given f and g in S,

define two binary operations “+” and “·” on S by the rules

(f + g)(x) = f (x) + g(x)

(f · g)(x) = f (x)g(x)

(These are referred to, respectively, as the pointwise addition and mul-

tiplication of functions.)

1. Convince yourselves that (S,+, ·) is a ring. What is the “0” of S?

What is the “1” of S?

2. Show that S is not an integral domain. (Hint: Play with functions

like f (x) = x + |x| or g(x) = x− |x|.)

3. More generally, show that every nonzero f ∈ S is either a unit or

a zero-divisor by showing:

(a) f is a unit if and only if f (x) 6= 0 for all x ∈ R.
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(b) f is a zero-divisor if and only if f (x) = 0 for at least one

x ∈ R.

4. Let s : R → S be the function that sends the real number r to

the function sr defined by sr(x) = r for all x ∈ R. Show that s

is an injective ring homomorphism from R to S The image of s in

R is therefore a subring of R that is isomorphic to R. It is known

as the set of constant functions.

Exercise 2.121

Let R be a ring.

Definition 2.121.1

The center of R, written Z(R), is defined to be the set {r ∈
R | rx = xr for all x ∈ R}.

1. Show that Z(R) is a subring of R.

2. If R is commutative, what is Z(R)?

3. Determine Z(M2(Z)). (Hint: Invoke the fact that a matrix in the
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center must commute with the four matrices ei,j, where ei,j is as

defined in Exercise 2.16.5.)

Exercise 2.122

Let R be a ring.

1. If I and J are ideals of R, show that I ∩ J is an ideal of R. (Is

I ∪ J an ideal of R?)

2. If S and T are subrings of R, show that S ∩ T is a subring of R.

(Is S ∪ T a subring of R?)

3. If R is a field, and if S and T are subfields of R, show that S ∩ T
is a subfield of R.

Exercise 2.123

Here is an example of a ring in which elements do not factor uniquely

into a product of primes! Consider the subring of C generated by Z and
√
−5, namely, Z[

√
−5]. By arguments nearly identical to those that you

must have used in Exercise 2.114 above, every element in this ring can
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be written uniquely as a+b
√
−5 for suitable integers a and b. We define

a function N from Z[
√
−5] to Z as follows: N(a + b

√
−5) = a2 + 5b2.

(Notice that a2 + 5b2 is just (a + b
√
−5) · (a− b

√
−5).)

1. Show that N is multiplicative, that is, N(xy) = N(x)N(y) for

any two elements x and y of Z[
√
−5].

2. Show that if x in Z[
√
−5] is such that N(x) = 1, then x must be

±1.

3. Use part 1 and Question 2.45 to show that if x is a unit in Z[
√
−5],

then N(x) must be 1.

4. Use parts 2 and 3 above to show that if x is a unit in Z[
√
−5],

then x can only be ±1.

5. If R is a commutative ring, an irreducible in R is a nonzero ele-

ment x such that if x = bc for two elements b and c, then either

b or c must be a unit. (It turns out that this is the correct gener-

alization of the concept of primes that is needed to study unique
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factorization in arbitrary rings.) Also, just as in Z, we say an ele-

ment b in an arbitrary commutative ring R divides an element a

(or is a divisor of a) if there exists an element c in R such that

a = bc. Using part 4, show that if x is an irreducible element in

Z[
√
−5], then the only divisors of x are ±1 and ±x. (Thus, at

least in Z[
√
−5], it is clear that irreducible elements are just like

primes.)

6. Show that if x in Z[
√
−5] is such that N(x) is a prime integer,

then x must be irreducible.

7. Show that there is no element x in Z[
√
−5] with N(x) = 2. Sim-

ilarly, show that there is no element x with N(x) = 3.

8. Show that 2 is irreducible in Z[
√
−5]. (Hint: Suppose 2 = xy.

Then 4 = N(2) = N(x)N(y), as N is multiplicative. Study the

various factorizations of 4 and use the previous parts.)

9. Similarly, show that 3 is irreducible in Z[
√
−5].
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10. Study the various factors of N(1 +
√
−5) and of N(1−

√
−5) and

show that both 1 +
√
−5 and 1−

√
−5 are irreducible.

11. Two irreducibles x and y in a commutative ring R are said to

be associates if x = yu for some unit u. Part 4 shows that in

the ring Z[
√
−5], two elements x and y are associates if and only

if x = ±y. Now use the fact that every element in Z[
√
−5] is

uniquely expressible as a + b
√
−5 to show that neither 2 nor 3 is

an associate of either 1 +
√
−5 or 1−

√
−5.

12. A commutative ring R is said to possess unique prime factorization

if every element a ∈ R that is not a unit factors into a product

of irreducibles, and if a = x1x2 · · · xs and a = y1y2 · · · yt are

two factorizations of a into irreducibles, then s must equal t, and

after relabeling if necessary, each xi must be an associate of the

corresponding yi. (Again, it turns out that this is the correct

generalization of the concept of unique prime factorization in the

integers to arbitrary commutative rings.) Prove that Z[
√
−5] does
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not possess unique prime factorization by considering two different

factorizations of 6 into irreducibles. (Hint: Look at parts 8, 9, 10,

and 11.)

Exercise 2.124

Prove that any finite integral domain must be a field. (Hint: Write R

for the integral domain. Given a nonzero a ∈ R, you need to show that

a is invertible. What can you say about the function fa : R → R that

sends any r to ar? Is it injective? Is it surjective? So?)

Exercise 2.125

LetK be a field, and letR be a subring ofK. Assume that every element

of K satisfies a monic polynomial with coefficients in R: this means

that given any k in K, there exists a positive integer n and elements

r0, r1, . . . , rn−1 in R such that kn+ rn−1k
n−1 + · · ·+ r1k+ r0 = 0. (The

term monic refers to the fact that the coefficient of kn in the relation

above is 1.) Show that R must also be a field.
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(Hint: Since R is already an integral domain, you only need to show that

every nonzero element of R is invertible. Given a nonzero r ∈ R, note

that r is invertible as an element of K since K is a field. In particular,

r−1 exists in K. Use the hypothesis to show that r−1 actually lives in

R.)

Exercise 2.126

Let R and S be two rings. This exercise studies ideals in the direct

product R and S. Let I be an ideal of R× S.

1. Let I1 = {a ∈ R} such that (a, b) ∈ I for some b ∈ S. Show that

I1 is an ideal of R.

2. Similarly define I2 to be the set {b ∈ S} such that (a, b) ∈ I for

some a ∈ R. Show that I2 is an ideal of S.

3. Recall from Example 2.73 the meaning of I1 × I2. Show that

I = I1 × I2. (Hint: (a, b) = (1R, 0S)(a, b) + (0R, 1S)(a, b).)
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We saw in Example 2.73 that if I1 and I2 are ideals of R and S respec-

tively, then I1 × I2 is an ideal of R × S. This exercise therefore shows

the converse: every ideal of R × S is of the form I1 × I2 where I1 and

I2 are ideals of R and S respectively.

Exercise 2.127

We will prove in this exercise that every ideal in Z is principal (see

Example 2.74). Let I be an ideal of Z. If I consists of just the element

0, then I = 〈0〉 and is already principal. So, assume in what follows

that I is a nonzero ideal.

1. Show that I contains at least one positive integer.

2. Let d be the least positive integer in I (Well-Ordering Principle).

Given an arbitrary i ∈ I , write i = dq + r for some 0 ≤ r ≤ d by

the division algorithm. Show that r ∈ I .

3. Conclude that r must be zero.

4. Conclude that I = 〈d〉.
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An integral domain in which every ideal is principal is called a principal

ideal domain. This exercise therefore establishes that Z is a principal

ideal domain.

Exercise 2.128

The purpose of this exercise is to prove the following result, which is

known as the division algorithm for polynomials: Let F be a field, and

let f (x) and g(x) be two polynomials in F [x] with g(x) 6= 0. Then, there

exist unique polynomials q(x) and r(x), such that f (x) = g(x)q(x) +

r(x) with either r(x) = 0 or else deg(r(x)) < deg(g(x)).

Note the similarity of this result with Lemma 1.5 of Chapter 1. This

result, of course, simply codes the output of the familiar process of

dividing f (x) by g(x) using long division, and in fact, the long division

process can be turned around to furnish a proof of this result. However,

we will prove this result instead in a manner analogous to how we proved

Lemma 1.5 of Chapter 1, to underscore certain similarities between the

integers and polynomials. (You will notice that the core of this proof,

however, invokes a crucial ingredient of the long division process in Part
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5a below!)

1. First prove the uniqueness of q(x) and r(x) as follows: Suppose

that f (x) = g(x)q(x)+r(x) and as well, f (x) = g(x)q′(x)+r′(x),

for polynomials q(x), r(x), q′(x), and r′(x) with either r(x) =

0 or deg(r(x)) < deg(g(x)), and similarly, either r′(x) = 0 or

deg(r′(x)) < deg(g(x)). Rewrite this as g(x)(q(x) − q′(x)) =

r′(x)− r(x). Show that if r′(x)− r(x) 6= 0 then the degree of the

right side must be less than the degree of the left side, and hence

conclude that r(x) = r′(x) and q(x) = q′(x). This establishes the

uniqueness of q(x) and r(x).

2. Now for the existence of q(x) and r(x). First, let S∗ denote the

set {f (x)− g(x)h(x) | h(x) ∈ F [x]}. Show that S∗ is nonempty.

3. If S∗ contains 0, show that we have proved the existence of q(x)

and r(x) with the required properties.

4. So assume from now on that S∗ does not contain 0. Show that
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among the elements of S∗ there must be an element of least degree.

5. Let r(x) denote an element of least degree in S∗, and let q(x) ∈
F [x] be that polynomial such that f (x)− g(x)q(x) = r(x). First

show that deg(r(x)) < deg(g(x)) as follows:

(a) Assume to the contrary that deg(r(x)) ≥ deg(g(x)). Let

m = deg(r(x)) and n = deg(g(x)), so m ≥ n. Let rm

and gn (respectively) be the highest coefficients of r(x) and

g(x) (so, by definition of highest coefficient, rm and gn are

nonzero). Show that r(x)− (rm/gn)xm−ng(x) has degree less

than r(x).

(b) Now show that the element f (x)−g(x)(q(x)+(rm/gn)xm−n)

is an element of S∗ that has degree less than that of r(x).

Conclude that deg(r(x)) < deg(g(x)).

6. Conclude that we have proved the existence of q(x) and r(x) with

the required properties in the case where S∗ does not contain 0,

and have hence proved our result in all cases.
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Exercise 2.129

We saw in Exercise 2.127 that Z is a principal ideal domain. The key to

that proof was the division algorithm in the integers. Now that we have

established a corresponding division algorithm in the ring F [x], where

F is any field (see Exercise 2.128), we will use it to show that F [x] is

also a principal ideal domain.

Accordingly, let I be an ideal of F [x]. If I consists of just the element

0, then I = 〈0〉 and is already principal. Similarly, if I = R, then

I = 〈1〉 (see Exercise 2.74.3) so I is principal in this case as well. So,

assume in what follows that I is a nonzero proper ideal of R (“proper”

simply means that I 6= R). In particular, I cannot contain any constant

polynomials other than 0, since, if some nonzero a ∈ F is in I , then

a · a−1 = 1 is also in I , contradicting what we have assumed about I .

Let f (x) be a polynomial in I whose degree is least among all (nonzero)

polynomials in I . (Such a polynomial exists by the Well-Ordering Prin-

ciple.) Note that f (x) must have positive degree by our assumption

about I . Let g(x) be an arbitrary polynomial in I . Apply the division
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algorithm and, using similar ideas as in Exercise 2.128, prove that g(x)

must a multiple of f (x). Conclude that I = 〈f (x)〉.

Exercise 2.130

By contrast with the situation in Exercise 2.129 above, Z[x] is not a

principal ideal domain! Prove this. (Hint: Show that the ideal 〈2, x〉 of

Z[x] cannot be generated by a single polynomial f (x) with coefficients

in Z.)

Exercise 2.131

Let R be a ring, and let I and J be two ideals of R. The sum of I and

J , denoted I + J , is the set {i + j | i ∈ I and j ∈ J} (i.e., it consists

of all elements of R that are expressible as a sum of an element from I

and an element from J). Show that I + J is an ideal of R.

Exercise 2.132

Let R be a ring, and for simplicity, assume throughout this exercise that

R is commutative. A proper ideal I is said to be maximal if for any

other proper ideal J , I ⊆ J implies that I = J .
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1. Show that if I is maximal then for any other ideal J , J  I implies

I + J = R. (Hint: Assume that I is maximal and J is another

ideal with J  I . Pick an element j ∈ J − I . Show that the set

K = {i+ rj | i ∈ I and r ∈ R} is an ideal of R. Now invoke the

fact I ⊆ K.)

2. Show that the converse is true as well: if I is a proper ideal such

that for any other ideal J , J  I implies I + J = R, then I is

maximal. (Hint: Assume that I has this property, and let J be

a proper ideal with I ⊆ J . If I 6= J , then clearly J  I . The

hypothesis then says I +J = R. But what else can you say about

I + J that then gives a contradiction?)

(Thus either property could be used to define maximal ideals.)

3. Show that a proper ideal I is maximal if and only if R/I is a field.

(Hint: Assume that I is maximal. Pick a nonzero element [x] in

R/I . Since [x] is nonzero, x 6∈ I . Study the set K = {i+ rx | i ∈
I and r ∈ R}, which you showed in part (1) to be an ideal of R.
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By maximality of I show that there must be some i ∈ I and r ∈ R
such that i + rx = 1. What does this relation read in R/I? Now

invoke Exercise 2.46.1. A similar argument should also establish

that if R/I is a field, then I must be maximal.)

It is instructive to note that maximal ideals always exist—see Theorem

B.6 in Appendix 4.5.

Exercise 2.133

Let R be a commutative ring. A proper ideal I of R is said to be prime

if whenever ab ∈ I for a and b in R, then either a or b must be in I .

1. Show that I is a prime ideal if and only if R/I is an integral

domain. (Hint: This is just a matter of translating the definition

of a prime ideal over to the ring R/I : for instance, assume that

I is prime. If we have a relation [a][b] = 0R/I in R/I , then this

means that ab ∈ I in R.)

2. Show that every maximal ideal is necessarily prime.
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3. Show that if p is a prime integer, then the ideal 〈p〉 in Z/pZ is a

prime ideal.

4. Let F be a field, and let p(x) be an irreducible polynomial in F [x].

(This means that whenever p(x) = q(x)r(x) for two polynomials

in F [x], then either q(x) or r(x) must be a constant polynomial.)

Show that the ideal 〈p(x))〉 is a prime ideal in F [x].

Exercise 2.134

Let R be any ring containing the rationals. Prove that the only ring

homomorphism f : Q→ R is the identity map that sends any rational

number to itself. (Hint: given that f (1) must be 1, what can you say

about f (2), f (3), etc.? Next, what can you say about f (1/2), f (1/3),

etc.? So now, what can you say about f (m/n) for arbitrary integers m

and n with n 6= 0?

Exercise 2.135

Prove that the following are all ring isomorphisms from Q[
√

2,
√

3] to

itself. Here, a, b, c, and d are, as usual, rational numbers.
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1. The map that sends a+b
√

2+c
√

3+d
√

6 to a−b
√

2+c
√

3−d
√

6.

2. The map that sends a+b
√

2+c
√

3+d
√

6 to a+b
√

2−c
√

3−d
√

6.

3. The map that sends a+b
√

2+c
√

3+d
√

6 to a−b
√

2−c
√

3+d
√

6.

(Of course, the identity map that sends a + b
√

2 + c
√

3 + d
√

6 to a +

b
√

2 + c
√

3 + d
√

6 is also a ring isomorphism. It can be shown that

these four are all the ring isomorphism from Q[
√

2,
√

3] to itself.)
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Notes

Remarks on Example 2.10 Every nonzero element in Q has a multiplica-

tive inverse, that is, given any q ∈ Q with q 6= 0, we can find a rational

number q′ such that qq′ = 1. The same cannot be said for the integers:

not every nonzero integer has a multiplicative inverse within the integers.

For example, there is no integer a such that 2a = 1, so 2 does not have a

multiplicative inverse.

Remarks on Example 2.12 The sum and product of any two elements

a + b
√

2 and c + d
√

2 of Q[
√

2] are (respectively) (a + c) + (b + d)
√

2 and

(ac + 2bd) + (ad + bc)
√

2. Since a + c, b + d, ac + 2bd and ad + bc are all

rational numbers, the sum and product also lie in Q[
√

2]. Thus, the standard

method of adding and multiplying two real numbers of the form x+y
√

2 with

x and y in Q indeed gives us binary operations on Q[
√

2]. (In the language
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of the next section, Q[
√

2] is closed under addition and multiplication.) Now

suppose you were trying to prove that, say, addition in Q[
√

2] is associative,

that is, for any u, v, and w in Q[
√

2], (u + v) + w = u + (v + w). Notice

that in addition to being in Q[
√

2], u, v, and w are also real numbers. Since

associativity holds in the reals, we find upon viewing u, v, and w as real

numbers that (u + v) + w = u + (v + w). Now viewing u, v, and w in this

equation back again as elements of Q[
√

2] , we find that associativity holds

in Q[
√

2]! This same argument holds for associativity of multiplication and

distributivity of multiplication over addition. To prove that a + b
√

2 = 0 iff

a = 0 and b = 0, proceed as follows: If b is not zero, a + b
√

2 = 0 yields
√

2 = −a/b. Since −a/b is a rational number, this contradicts Chapter 1,

Exercise 1.44, so b must be zero. But if b = 0, a + b
√

2 = 0 reads a = 0, so

we find that both a and b are zero.

Remarks on Example 2.14 Assume that a + ıb = 0. If b is not zero, we

can write ı = a/b, and squaring both sides, we find −1 = a2/b2. The right

hand side is positive, since both a2 and b2 are positive (they are squares).

But the left hand side is negative. Because of this contradiction, b must be
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zero. As before, we find that a is also zero.

Remarks on Examples 2.15 Given two elements a and b in Z(2), write a

as x/y where gcd(x, y) = 1 and y is odd. (Why can you do this?) Write b

as u/v where gcd(u, v) = 1 and v is odd. Then a+ b = (xv + yu)/yv. This

fraction may not be reduced, but notice that yv, being a product of two odd

integers, is odd. After you cancel all common factors from (xv + yu) and

yv, the resultant fraction will still have an odd denominator (why?). Hence

a + b will be in Z(2). In a similar way, show that ab (gotten by the usual

multiplication of two rational numbers) will also be in Z(2). Now that you

have two binary operations on Z(2), you can check that the ring axioms hold.

As with previous examples, associativity and distributivity follow from the

fact that they hold for the rationals. Notice that the fact that the product

of two odd integers is odd was essential in showing that both a + b and

ab lie in Z(2). How could we generalize this? Rewrite this property in the

contrapositive form, yv is even implies either y or v is even, that is, 2|yv
implies 2|y or 2|v. If we could find another integer n that has the property

that n|yv implies n|y or n|v, we could use the same arguments to show that
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Z(n) is also a ring. (Assuming you found such an integer n, how would you

define Z(n)?) Can you think of other integers that have this property? (Hint:

You have come across such integers in the previous chapter.)

Remarks on Example 2.16 For n = 1, Mn(R) is just R, so it is com-

mutative. For all other n, Mn(R) is noncommutative. Given A in Mn(R),

write A as (ai,j). (Recall what this notation means: you are referring to the

(i, j)-th entry as “ai,j.”) Similarly, write B as (bi,j) and C as (ci,j). Con-

sider (A+B) +C. What is the (i, j)-th entry of this resultant matrix? It is

(ai,j+bi,j)+ci,j. On the other hand, what is the (i, j)-th entry ofA+(B+C)?

It is ai,j + (bi,j + ci,j). Are the two (i, j)-th entries equal on both sides? Yes!

Why? Because ai,j, bi,j, and ci,j are just real numbers, and since addition

is associative in R, (ai,j + bi,j) + ci,j = ai,j + (bi,j + ci,j)! Since this is true

for every pair (i, j), we find that (A + B) + C = A + (B + C). (Notice

how the associativity of addition in Mn(R) depends on the associativity of

addition in R.) In a similar manner, try to prove the distributive property

of multiplication over addition for Mn(R); your proof should invoke the fact

that distributivity holds in R. Actually, if R is any ring, Mn(R) is also a
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ring. It is noncommutative if n ≥ 2. When n = 1, Mn(R) is just R, so for

n = 1, Mn(R) is commutative if and only if R is commutative.

Remarks on Example 2.17 For any ring R, we can consider the set of

polynomials with coefficients in R with the usual definition of addition and

multiplication of polynomials. This will be a ring, with additive identity the

constant polynomial 0 and multiplicative identity the constant polynomial

1. If R is commutative, R[x] will also be commutative. (Why? Play with

two general polynomials f =
∑n

i=0 fix
i and g =

∑m
j=0 gjx

j and study fg

and gf .) If R is not commutative, R[x] will also not be commutative. To

see this last assertion, suppose a and b in R are such that ab 6= ba. Then

viewing a and b as constant polynomials in R[x], we find that we get two

different products of the “polynomials” a and b depending on the order in

which we multiply them!

Here is something strange that can happen with polynomials with coef-

ficients in an arbitrary ring R. First, the degree and highest coefficient of

polynomials in R[x] (where R is arbitrary) are defined exactly as for polyno-

mials with coefficients in the reals. Now over R[x], if f (x) and g(x) are two
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nonzero polynomials, then deg(f (x)g(x)) = deg(f (x)) + deg(g(x). But for

an arbitrary ring R, the degree of f (x)g(x) can be less than deg(f (x)) +

deg(g(x))!

To see why this is, suppose f (x) = fnx
n + lower-degree terms (with

fn 6= 0), and suppose g(x) = gmx
m + lower-degree terms (with gm 6= 0). On

multiplying out f (x) and g(x), the highest power of x that will show up in

the product is xn+m, and its coefficient will be fngm. If we are working in

R, then fn 6= 0 and gm 6= 0 will force fngm to be nonzero, so the degree of

f (x)g(x) will be exactly n+m. But over arbitrary rings, it is quite possible

for fngm to be zero even though fn and gm are themselves nonzero. (You

have already seen examples of this in matrix rings. Elements a and b in a

ring R such that a 6= 0 and b 6= 0 but ab = 0 will be referred to later in

the chapter as zero-divisors.) When this happens, the highest nonzero term

in f (x)g(x) will be something lower than the xn+m term, so the degree of

f (x)g(x) will be less than n + m!

Clearly, this phenomenon will not occur if the coefficient ring R does not

have any zero-divisors. As will be explained further along in the chapter,

fields do not have any zero-divisors (i.e., they are integral domains.) Hence
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if F is a field and f (x) and g(x) are two nonzero polynomials in F [x], then

deg(f (x)g(x)) = deg(f (x)) + deg(g(x)). (In particular, this shows that if

F is any field, F [x] also does not have zero-divisors—why?)

Remarks on Example 2.22 The additive identity is (0, 0) and the multi-

plicative identity is (1, 1). What is the product of (1, 0) and (0, 1)? Of (2, 0)

and (0, 2)?

Remarks on some properties of rings deducible from the axioms Here

is a hint for some of these properties listed in Remark 2.24:

1. Uniqueness of additive identity: Suppose 0 and 0′ are two additive

identities in a ring R. Consider the expression 0 + 0′. First view 0 as

the identity, and then view 0′ as the identity. What do you find?

2. Additive cancellation: Given that a + b = a + c, what happens if

you add the additive inverse of a to both sides of the equation, and use

associativity?
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3. a · 0 = 0 · a = 0. What happens if you invoke the fact that 0 = 0 + 0

and multiply both sides by a?

4. (−1) · (−1) = 1. You would by now already have proved that a · 0 =

0 · a = a for all a in your ring R. Write (−1) · 0 as (−1) · (1 + (−1))

and play with this!

Remarks on Definition 2.27 The requirement that 1 be in S arises from

a rather nasty technical point that can be ignored during a first reading. If

you are curious, recall first that “1” is merely notation for the multiplicative

identity of R; we could just as easily have referred to it as “e” or something

else all along. It turns out that if we defined subrings without the condition

that 1 be in S, then it is possible for S to be a subring of R (under this hypo-

thetical definition) with S and R having different multiplicative identities!

This is a scenario we wish to avoid, and it turns out that insisting that the

multiplicative identity of R (namely 1) be in S will take care of this problem.

At the same time, it turns out that no such precaution needs to be taken for

the additive identity—the additive identities of R and S will necessarily be
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equal. (The proof is simple: write 0S and 0R for the two additive identities,

so we wish to prove that 0S = 0R. We know that 1 ∈ S. So, working in S,

we find 0S + 1 = 1, by the very definition of 0S. On the other hand, working

in R, we find 0R + 1 = 1. Comparing the two expressions for 1 and working

in R we find 1 = 0S + 1 = 0R + 1. Additive cancellation in R now shows

that 0S = 0R.) This is of course all too pedantic for a first go around—we

would do best by just accepting the definition above and getting on with our

lives!

Remarks on Examples 2.33 Since every integer a can be written as a/1,

and since 1 of course is 20, Z ⊆ Z[1/2]. Since 2 does not divide 1, every

integer a (= a/1) is also in Z(2). Hence, Z[1/2] ∩ Z(2) certainly contains Z.

Now let x be any rational number in Z[1/2] ∩ Z(2). Since x ∈ Z[1/2], x can

be written in the reduced form a/2n, for some integer a and some n ≥ 0. If

n > 0, then x cannot be in Z(2). Hence n = 0, that is, x ∈ Z. It follows

that Z[1/2] ∩ Z(2) is precisely Z.
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Remarks on the notation Q[
√

2]: Subring Generated by an Element

We have used notation like Q[
√

2], Q[ı], Z[1/2], to denote various rings that

we have studied. There is a reason for this notation: these are all examples

of rings generated by a subring and an element. We consider this notion

here.

We will consider only commutative rings, even though the notion exists

for noncommutative rings as well. Accordingly, let R be a commutative ring,

and let S be a subring. (Must S be commutative as well?) Let a be any

element in R. (For instance, let R be the reals, let S be the rationals, and let

a be the real number 1+
√

2.) In general, S∪{a} will not be a subring of R,

since this new set may not be closed under addition and multiplication. (In

our example, the square of 1 +
√

2, which is 3 + 2
√

2, is not in Q∪{1 +
√

2}.
Similarly, the sum of, say 2 and 1+

√
2, which is 3+

√
2 is not inQ∪{1+

√
2}.)

One could then ask: If in general S ∪ {a} is not a subring of R, what are

the elements of R that you should adjoin to the set S ∪{a} to get a set that

is actually a subring of R?

To get a subring of R that contains both S and a, it is clear that we need

to be able to multiply a with itself any number of times, since our desired
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set must be closed under multiplication. Hence, we need to adjoin all the

elements a2, a3,. . . Next, once all powers ai are adjoined, we need to be able

to multiply any power of a with any element of S, so we need to adjoin all

products of the form sai, where s is an arbitrary element of S and ai is an

arbitrary power of a. (The assumption that R is commutative is being used

here somewhere. Where exactly do you think it is used?) Once we have such

products, we need to be able to add such products together if we are to have

a ring (remember, our target set must be closed under addition), so we need

to have all elements of the form s0 + s1a + s2a
2 + · · · + sna

n, where the si

are arbitrary elements of S, and n ≥ 0. Is this enough? It turns out it is!

Definition 2.136

Let R be a commutative ring, S a subring, and a an element of R. An

expression such as s0 + s1a + s2a
2 + · · · + sna

n is called a polynomial

expression in a with coefficients in S. Let S[a] denote the set of all

polynomial expressions in a with coefficients in S, that is, the set of all

elements of R that can be written in the form s0+s1a+s2a
2+· · ·+snan,

for some n ≥ 0, and some elements s0, s1,. . . , sn in S. S[a] is known
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as the subring of R generated by S and a. (If it is clear that we are

working inside a fixed ring R, we often refer to S[a] merely as the ring

generated by S and a.)

Of course, we have blithely referred to S[a] as a ring in the definition

above, but we have yet to prove that S[a] is actually a ring! We will do so

in a moment.

Lemma 2.137. Let R be a commutative ring, and let S be a subring of

R. Let a be an element of R. The set S[a] defined above is a subring of

R.

Proof. Since S ⊂ S[a], and since 1 ∈ S, 1 is in S[a]. Every element in S[a]

is of the form s0 +s1a+s2a
2 + · · ·+snan for some n ≥ 0 and some elements

s0, s1,. . . , sn in S. The negative of such an element is (−s0) + (−s1)a +

(−s2)a2 + · · · + (−sn)an, which is also a polynomial expression in a with

coefficients in S, and is hence in S[a]. By Lemma 2.2.1, we only need to

show that S[a] is closed under addition and multiplication. You should be

able to do this yourselves: show that the sum and product of two polynomial
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expressions in a with coefficients in S are also polynomial expressions in a

with coefficients in S. 2

Notice that S[a] includes both S and a. Our arguments preceding the

lemma above show that any subring of R that contains both S and a must

contain all polynomial expressions in a with coefficients in S, that is, it must

contain S[a]. S[a] should thus be thought of as the smallest subring of R

that contains both S and a.

Here is an exercise: In the setup above, if two polynomial expressions

s0 + s1a+ s2a
2 + · · ·+ sna

n and s′0 + s′1a+ s′2a
2 + · · ·+ s′ma

m are equal (as

elements of R), can you conclude that n = m and si = s′i for i = 0, . . . , n?

(Hint: See the examples below.)

Now let us consider some examples:

Example 2.138

What, according to our definition above, is the subring of the reals gen-

erated by Q and
√

2? It is the set of all polynomial expressions in
√

2 with coefficients in Q, that is, the set of all expressions of the form

q0+q1

√
2+q2(

√
2)2+· · ·+qn(

√
2)n. Now let us look at these expressions
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more closely. Since (
√

2)2 = 2, q2(
√

2)2 is just 2q2, q4(
√

2)4 is just 4q4,

etc. Similarly, q3(
√

2)3 is just 2q3

√
2, q5(

√
2)5 is just 4q5

√
2, etc. By

collecting terms together, it follows that every polynomial expression in
√

2 with coefficients in Q can be rewritten as a+ b
√

2 for suitable ratio-

nal numbers a and b. (For example, 1 + 2
√

2 + (1/2)(
√

2)2 + (1/4)(
√

2)3

can be rewritten as 2 + (5/2)
√

2.) Hence, the subring of the reals gen-

erated by the rationals and
√

2 is the set of all real numbers of the form

a + b
√

2. It is for this reason that we denoted this ring Q[
√

2] as far

back as Example 2.12.

Example 2.139

Similarly, the subring of Q[
√

2] generated by Z and
√

2 is the set of all

real numbers of the form a + b
√

2, where a and b are integers. This is

why we denoted this ring Z[
√

2] in Example 2.31.

Example 2.140

Using the fact that i2 = −1, show that the subring of C generated by

Q and i is the set of all complex numbers of the form a + bi, where a
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and b are rational numbers. This explains the notation Q[ı] for the ring

in Example 2.14.

Example 2.141

Similarly, the subring of Q[ı] generated by Z and i is is the set of all

complex numbers of the form a+ bi, where a and b are integers. Hence

the notation Z[ı] in Example 2.32.

Example 2.142

Show that the subring of Q generated by Z and 1/2 is the set of all ra-

tional numbers that have the property that, when written in the reduced

form a/b with gcd(a, b) = 1, the denominator b is a power of 2. This

explains the notation Z[1/2] in Example 2.33.

Example 2.143

Prove that the subring of R generated by Q[
√

2] and
√

3 is precisely the

ring of Example 2.34. Thus, this ring should be denoted Q[
√

2][
√

3]. We

will often avoid using the second pair of brackets and simply refer to this

ring as Q[
√

2,
√

3].
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Here is a quick exercise: In Lemma 2.137, suppose a is actually in S. Can

you prove that the ring generated by S and a is just S?

Remarks on Definition 2.46 Most textbooks define a field to be a com-

mutative ring in which every nonzero a is invertible. In other words, the

extra condition that we have imposed, namely that the ring in question first

be an integral domain, is omitted by most textbooks. This is because this

extra condition is not really required—one can show easily that any commu-

tative ring in which every nonzero element a is invertible must necessarily

be an integral domain. (If there were to exist a pair of nonzero elements a

and b such that ab = 0, then multiplying both sides by a−1, which exists by

hypothesis, we would find b = 0, a contradiction. Hence there can be no pair

of nonzero elements that multiply out to zero.) The reason we have chosen to

define a field as an integral domain in which every nonzero element is invert-

ible is to highlight the hierarchical nature of the objects that we have been

considering: rings are fairly general objects, commutative rings are special

rings that are nicer to deal with, integral domains are special commutative

rings that are even nicer, and finally, fields are special integral domains that
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are nicest of all!
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3.1 Vector Spaces: Definition and Examples

Recall from elementary linear algebra the notation R2 for 2-dimensional

xy space and R3 for 3-dimensional xyz space. A vector in R2 (respectively

R3) is an arrow with its base at the origin and its tip at some point in R2

(respectively R3). If v and w are vectors, then we add v and w using the

parallelogram law. We know that this process of addition is commutative,

that is, v + w = w + v for all vectors v and w. Vector addition is also

associative, that is, v+(w+u) = (v+w)+u for all vectors v, w, and u. The

vector whose base and tip are at the origin is denoted 0 (suggestively), and

satisfies v+ 0 = 0 + v for all vectors v. Finally, for every vector v, the vector

we get by inverting v about the origin is denoted −v (also suggestively), and

satisfies v + (−v) = (−v) + v = 0.

Focusing just on R2 for convenience, let us stop thinking of R2 as a

geometric object. Instead, since every point of R2 corresponds to a vector
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whose tip is at the given point, let us consider R2 as a set consisting of

abstract objects called vectors. This set has a binary operation defined on

it—addition, where v + w is defined as the vector we get by temporarily

reverting to the geometric interpretation of R2 as a plane and considering

the vector obtained as the diagonal of the parallelogram formed by v and

w. What do you notice about this set of vectors with this binary operation?

The binary operation satisfies all the axioms for an abelian group! Thus,

in addition to being a geometric object (the plane), R2, when considered as

a set with a binary operation, has an algebraic structure—it is an abelian

group!

But there is more. Let us go back to the interpretation of R2 as 2-

dimensional xy space, and let us recall the notion of scalar multiplication. A

scalar is any real number, and given a scalar r and a vector v, we multiply

r and v according to the following definition—if r ≥ 0, then r · v is the

vector in the same direction as v but whose length is r times the length of

v, and if r < 0, then r · v is the vector in the opposite direction as v but

whose length is |r| times the length of v. What are the properties of scalar

multiplication? If r and s are any two scalars, and if v and w are any two
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vectors, we have the following: r ·(v+w) = r ·v+r ·w, (r+s)·v = r ·v+s·v,

(rs) · v = r · (s · v), and 1 · v = v.

Observe that the set of scalars, namely the real numbers, is a field. Now,

let us attempt to generalize all this. In the case of R2 above, we have seen

that the geometric interpretation ofR2 as 2-dimensional xy space furnishes us

with the notion of vector addition and scalar multiplication, but once these

definitions have been furnished, R2 seems to have an algebraic life of its

own. For instance, (R2,+) is an abelian group, while scalar multiplication

has the (algebraic) properties listed above. Could similar sets of objects

called vectors and scalars not arise in different circumstances, with the

same properties as the ones listed above, but with the vector addition and

scalar multiplication perhaps defined by some process other than a geometric

one? The answer is yes, and in fact, they arise in vastly different situations.

As with the other concepts that we have seen (groups, rings, fields, etc.), it

is worth isolating this phenomenon and studying it in its own right.
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Definition 3.1

Let F be a field. A vector space over F (also called an F–vector

space) is an abelian group V together with a function F × V → V

called scalar multiplication and denoted · such that for all r and s in

F and v and w in V ,

1. r · (v + w) = r · v + r · w,

2. (r + s) · v = r · v + s · v,

3. (rs) · v = r · (s · v), and

4. 1 · v = v.

The elements of V are called vectors and the elements of F are called

scalars.

Thus, R2 and R3 are both vector spaces over R. Let us look at several ex-

amples of vector spaces that arise from other than geometric considerations:
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Example 3.2

We have looked at R2 and R3, why not generalize these, and consider

R4, R5, etc.? These would of course correspond to higher-dimensional

“worlds.” It is certainly hard to visualize such spaces, but there is no

problem considering them in a purely algebraic manner. Recall that ev-

ery vector in R2 can be described uniquely by the pair (a, b), consisting

of the x and y components of the vector. (“Uniquely” means that the

vector (a, b) equals the vector (a′, b′) if and only if a = a′ and b = b′.)

Similarly, every vector in R3 can be described uniquely by the triple

(a, b, c), consisting of the x, y, and z components of the vector. Thus,

R2 and R3 can be described respectively as the set of all pairs (a, b)

and the set of all triples (a, b, c), where a, b, and c are arbitrary real

numbers. Proceeding analogously, for any positive integer n, we will let

Rn denote the set of n-tuples (a1, a2, . . . , an), where the ai are arbitrary

real numbers. (As with R2 and R3, the understanding here is that two n-

tuples (a1, a2, . . . , an) and (a′1, a
′
2, . . . , a

′
n) are equal if and only if their

respective components are equal, that is, a1 = a′1, a2 = a′2, . . . , and
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an = a′n.) These n-tuples will be our vectors; how should we add them?

Recall that in R2 we add the vectors (a, b) and (a′, b′) by adding a and

a′ together and b and b′ together, that is, by adding componentwise.

Exercise 3.2.1

Deduce from the parallelogram law of addition of vectors in R2 that

the sum of (a, b) and (a′, b′) is (a + a′, b + b′).

We will do the same with Rn—we will decree that (a1, a2, . . . , an) +

(a′1, a
′
2, . . . , a

′
n) = (a1 + a′1, a2 + a′2, . . . , an + a′n).

Exercise 3.2.2

Check that with this definition of addition, (Rn,+) is an abelian

group.

What should our scalars be? Just as in R2 and R3, let us take our scalars

to be the field R. How about scalar multiplication? In R2, the product

of the scalar r and the vector (a, b) is (ra, rb), that is, we multiply

each component of the vector (a, b) by the real number r. (Is that so?
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Check!) We will multiply scalars and vectors in Rn in the same way:

we will decree that the product of the real number r and the n-tuple

(a1, a2, . . . , an) is (ra1, ra2, . . . , ran).

Exercise 3.2.3

Check that this definition satisfies the axioms of scalar multiplica-

tion in Definition 3.1.

Thus, Rn is a vector space over R.

Example 3.3

Now, why restrict the examples above to n-tuples of R? For any field

F , let F n stand for the set of n-tuples (a1, a2, . . . , an), where the ai

are arbitrary elements of F . Add two such n-tuples componentwise,

that is, define addition via the rule (a1, a2, . . . , an) + (a′1, a
′
2, . . . , a

′
n) =

(a1 +a′1, a2 +a′2, . . . , an+a′n). Take the field F to be the field of scalars,

and define scalar multiplication just as in Rn: given an arbitrary f ∈ F ,

and an arbitrary n-tuple (a1, a2, . . . , an), define their scalar product to
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be the n-tuple (fa1, fa2, . . . , fan).

Exercise 3.3.1

Check that these definitions of vector addition and scalar multipli-

cation make F n a vector space over F .

Taking F = C and n = 2 for instance, we get complex 2-space, which,

for example, is a natural arena in which to study plane curves.

Example 3.4

Similarly, for any field F , let
∏∞

0 F denote the set of all infinite-tuples

(a0, a1, a2, . . . ), where the ai are in F . (It is convenient in certain ap-

plications to index the components from 0 rather than 1, but if this

bothers you, it is harmless to think of the tuples as (a1, a2, a3, . . . ).)

Addition and scalar multiplication are defined just as in F n, except that

we now have infinitely many components. With these definitions,
∏∞

0 F

becomes an F–vector space. (This example is known as the direct prod-

uct of (countably infinite) copies of F .)
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Example 3.5

Consider the ring Mn(R). Focusing just on the addition operation on

Mn(R), recall that (Mn(R),+) is an abelian group. (Remember, for any

ring R, (R,+) is always an abelian group.) We will treat the reals as

scalars. Given any real number r and any matrix (ai,j) in Mn(R), we

will define their product to be the matrix (rai,j). (See the notes on page

364 for a comment on this product.) Verify that with this definition,

Mn(R) is a vector space over R. In a similar manner, if F is any field,

Mn(F ) will be a vector space over F .

Example 3.6

Consider the field Q[
√

2]. Then (Q[
√

2],+) is an abelian group (why?).

Think of the rationals as scalars. There is a very natural way of multi-

plying a rational number q with an element a+ b
√

2 of Q[
√

2], namely,

q · (a+ b
√

2) = qa+ qb
√

2. With this definition of scalar multiplication,

check that Q[
√

2] becomes a vector space over the rationals.

If you probe this example a little harder, you may come up with an

apparent anomaly. What exactly is the role of the rationals here? True,
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we want to think of the rationals as scalars. However, Q ⊆ Q[
√

2], so

every rational number is also an element of Q[
√

2], and is therefore also

a vector! How do we resolve this conflict? As it turns out, there really

is nothing to resolve, we merely accept the fact that the rationals have a

dual role in this example! When we see a rational number “q” by itself,

we want to think of it as q + 0
√

2, that is, we want to think of q as an

element of Q[
√

2], or in other words, we want to think of q as a vector.

However, when we see q in an expression like q(a + b
√

2), we want to

think of q as a scalar, that is, something we multiply vectors by!

Example 3.7

Let us generalize Example 3.6. What we needed above were that

1. Q[
√

2] is a field, so (Q[
√

2],+) is automatically an abelian group,

and

2. Q ⊆ Q[
√

2], so that we could use the natural multiplication inside

Q[
√

2] to multiply any q ∈ Q with any a + b
√

2 ∈ Q[
√

2].

These two facts together gave us a Q–vector space structure on Q[
√

2].
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Now let K/F be any field extension. Since K is a field, (K,+) is an

abelian group. Next, let us consider multiplication. Given any two

elements k and l of K, we know we can multiply the two elements

together. However, let us ignore this fact temporarily, and just consider

the fact that given any element f of F and any element k of K, we can

multiply f and k. (Notice that we have restricted the first element to be

from F . However, we have placed no restriction on the second element, it

can be any element of K. This is just like considering the multiplication

of any q ∈ Q and any a + b
√

2 ∈ Q[
√

2] in Example 63.6 above.) Now

note the following properties of this (restricted) multiplication, which are

just consequences of the properties of the (unrestricted) multiplication

in K: If f and g are any two elements of F , and k and l are any two

elements of K, then 1) f ·(k+ l) = f ·k+f · l, 2) (f+g) ·k = f ·k+g ·k,

3) (fg)·k = f ·(g ·k), and 4) 1·k = k. (In this last property, we consider

1 as an element of F .) What do we notice? If we take the field F as our

scalars, (K,+) as our vectors, and the multiplication operation between

elements of F and elements of K (that arises from the multiplication
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operation on K) as scalar multiplication, then, just as in Example 3.6

above, K becomes an F–vector space!

Also, exactly as in Example 3.6 above, the elements of F have a dual

role, both as scalars and as vectors. When we see an element f ∈ F

by itself, f is playing the role of a vector. But when we see an element

f ∈ F in an expression like f · k, f is playing the role of a scalar that is

multiplying the vector k!

Example 3.8

Now let us generalize Example 3.6 even further, by once again considering

the two conditions at the beginning of Example 3.7. Do we really need

the full force of the fact that Q[
√

2] is a field? No, all we need is

the fact that Q[
√

2] is a ring that contains the field Q; this is enough to

provide an abelian group structure on (Q[
√

2],+) and to furnish a scalar

product between elements of Q and elements of Q[
√

2]. Now let R be

any ring that contains a field F . Then just as in Example 3.7 above,

(R,+) is an abelian group, and we can use the multiplication in R to

define the scalar product between any element f of F and any element
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r of R. This multiplication clearly satisfies the scalar product axioms in

Definition 3.1, so R becomes an F–vector space. Just as in Example 3.7

above, the elements of F have a dual role, both as scalars and as vectors.

Here is a familiar instance of this phenomenon. Consider the polynomial

ring R[x]. This ring contains R (since every real number r lives inside

R[x] as the constant polynomial r + 0x + 0x2 + · · · ). Thus, R[x] is a

vector space over R. Explicitly, the scalar product of any real number r

and any polynomial f =
n∑
i=0

aix
i (where the ai are real numbers and n is

some nonnegative integer) is the polynomial
n∑
i=0

raix
i. The real numbers

have a dual role here: when we see a real number r by itself, we want

to think of it as a vector, and when we see it in an expression r · f , we

want to think of it as a scalar multiplying the vector f .

In the same vein, F [x] is an F–vector space for any field F .

Example 3.9

Here is an example related to F [x]. For any field F and any nonnegative

integer n, write Fn[x] for the set of all polynomials in x with coefficients
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in F whose degrees are at most n. Then Fn[x] is an F–vector space.

Question 3.9.1

Why?

Example 3.10

Now think about this: Suppose V is a vector space over a field K.

Suppose F is a subfield of K. Then V is also a vector space over F !

Question 3.10.1

Why? What do you think the scalar multiplication ought to be?

(See the notes on page 364 for some remarks on this.)

As an example of this phenomenon, R[x], besides being an R–vector

space, is also a Q–vector space. Vector addition is the usual addition

of polynomials. As for scalar multiplication, when we consider R[x]

as a Q–vector space, we only allow multiplication of polynomials by

rational numbers—we ignore the fact that we can multiply polynomials

by arbitrary real numbers.
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Similarly, M2(Q[
√

2], besides being a Q[
√

2]–vector space, is also a Q–

vector space.

Example 3.11

Here is an example that may seem pathological at first, but is not really

so! Consider the trivial abelian group V : this consists of a single

element, namely, the identity element 0V . The only addition rule here is

0V +0V = 0V , and it is easy to check that the set {0V } with the addition

rule above is indeed an abelian group. Now let F be any field. Then V

is a vector space over F with the product rule f · 0V = 0V . There is

only vector in this space, namely 0V , although, there are lots of scalars!

This vector space is known as the trivial vector space or the zero vector

space over F , and shows up quite naturally as kernels of injective linear

transformations (see Lemma 3.87 ahead, for instance).

Remark 3.12

Now observe that all these examples of vector spaces have the following

properties:
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1. For any scalar f , f times the zero vector is just the zero vector.

2. For any vector v, the scalar 0 times v is the zero vector.

3. For any scalar f and any vector v, (−f ) · v = −(f · v).

4. If v is a nonzero vector, then f · v = 0 for some scalar f implies

f = 0.

These properties somehow seem very natural, and one would expect

them to hold for all vector spaces. Just as in Remark 2.24, where

we considered a similar set of properties for rings, we would like these

properties to be deducible from the vector space axioms themselves. This

would, among other things, convince us that our vector space axioms are

the “correct” ones, that is, they yield objects that behave more or less

like the examples above instead of objects that are rather pathological.

As it turns out, our expectations are not misguided: these properties

are deducible from the vector space axioms, and therefore do hold in all

vector spaces. We will leave the verification of this to the exercises (see
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Exercise 3.97).
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3.2 Linear Independence, Bases, Dimension

Now, given a field F and an F–vector space V , it is natural to wonder

about the size of V . To measure this size, we need to consider the concept

of the dimension of a vector space.

Let us contrast R2 with R3. We all share the intuition that R3 is somehow

bigger than R2. But what precisely is it about R2 and R3 that makes us feel

that one is bigger than the other? If we examine our intuition a little more

closely, we discover that the reason that R3 seems bigger than R2 is that

R3 has three coordinate axes, while R2 has only two. Hidden in this fact

is the concept of the dimension of a vector space. And in fact, without

necessarily having paused to think through the notion of dimension or make

it precise, most of us have already absorbed this concept and integrated it

into our lives—we readily describe R2 as a 2-dimensional space and R3 as

a 3-dimensional space.
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With this in mind, what should we take to be the dimension of a vector

space? The number of coordinate axes it contains? As it turns out, this is

indeed correct, but we have some work to do first. Remember, a vector space

is an algebraic object. It is defined as an abelian group (V,+) along with a

scalar multiplication F ×V → V with the properties that we have described

above. Thus, while the term “coordinate axes” has an obvious meaning in the

geometric examples of R2 and R3, it is not clear what meaning it should have

in a general vector space. So our first task is to convert the geometric notion

of coordinate axes into an algebraic notion. Next, we need to worry about

the possibility that an arbitrary vector space defined purely algebraically may

not have any coordinate axes at all, as well as the possibility that different

sets of coordinate axes of the same vector space may have different numbers

of axes in each set! If either of these possibilities were to occur, we would not

have a unique number that we could assign as the dimension of the vector

space. As it turns out, neither of these can happen, and our second task is

to consider the impossibility of these two scenarios.

Let us turn to the first task. Focusing on R2 for convenience, let us denote

the vector with tip at the point (1, 0) by i, and the one with the tip at the
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point (0, 1) by j. From vector calculus, we know that if we take an arbitrary

vector in R2, say u, with its tip at (a, b), then the projection of u onto the

x-axis is just a times the vector i and the projection on the y-axis is just b

times the vector j. The parallelogram law then shows that u is the sum of

a · i and b · j, that is, u = a · i+ b · j. Since u was an arbitrary vector in this

discussion, we find that every vector in R2 can be written as a scalar times

i added to another scalar times j. This example motivates two definitions.

Definition 3.13

Let V be a vector space over a field F . A linear combination of vectors

v1, · · · , vn (or, an F -linear combination of vectors v1, · · · , vn, if we

wish to emphasize the field over which the vector space is defined) is

any vector in V that can be written as f1 · v1 + · · ·+ fn · vn for suitable

scalars f1, · · · , fn.

Thus, what we found above is that every vector in R2 can be written as

a R-linear combination of the vectors i and j. (To give you more examples,

the vectors i + j,
√

2i − 3j =
√

2i + (−3)j, and πi + 3π2j are all linear

combinations of i and j.)
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The other definition motivated by the example of the vectors i and j in

R2 is the following:

Definition 3.14

Let V be a vector space over a field F . A subset S of V is said to span

V (or S is said to be a spanning set for V ) if every vector v ∈ V can

be written as
n∑
i=1

fi ·vi for some integer n ≥ 1, some choice of vectors v1,

. . . , vn from S, and some choice of scalars f1, . . . , fn. (In the language

of Definition 3.13 above, S is a spanning set for V if every vector in V

is expressible as a linear combination of some elements of S.

The discussion before Definition 3.13 showed that the set S = {i, j} is a

spanning set for R2. Here are more examples:

Example 3.15

We have seen in Example 3.6 that Q[
√

2] is a Q–vector space. Note that

every element of Q[
√

2] is of the form a+ b
√

2 for suitable a and b ∈ Q.

Thinking of “a” as “a · 1,” this tells us that every element of Q[
√

2] is

expressible as a Q-linear combination of 1 and
√

2. (We are thinking of

1 as a vector in this last statement. Recall the discussion of the dual
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role of Q in Example 3.6.) Hence, S = {1,
√

2} is a spanning set for the

Q-vector space Q[
√

2].

Example 3.16

The set {1, x, x2, . . . } is a spanning set for the polynomial ring R[x]

considered as a vector space over R (see Example 3.8 above). This is

clear since every polynomial in R[x] is of the form r0 + r1x+ · · ·+ rnx
n

for some integer n ≥ 0 and suitable real numbers r0, r1, . . . , rn. Put

differently, every polynomial can be expressed as a R-linear combination

of 1, x, . . . , xn for some integer n ≥ 0. Since different polynomials have

different degrees, we need to use all powers xi (i = 1, 2, . . . ) to get a

spanning set for R[x].

Remark 3.17

By convention, the empty set is taken as a spanning set for the zero

vector space. Moreover, by convention, the trivial space is the only

space spanned by the empty set. This convention will be useful later,

when defining the dimension of the zero vector space.

So, returning to our study of dimension, should we take the algebraic
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analog of coordinate axes to be any set S of vectors that span V ? No, not

yet! There could be redundancy in this set! It may turn out, for example,

that the smaller set S−{v} obtained by deleting a particular vector v from

the set already spans V ! (If so, why bother using this vector v as one of

coordinate axes?!?)

Let us formulate this as a definition:
Definition 3.18

Given a vector space V over a field F , a vector v in a spanning set S

is said to be redundant if the subset S − {v} obtained by removing v

is itself a spanning set for V . (Put differently, v is redundant in S if

every vector in V can already be expressed as a linear combination of

elements in S − {v}, so the vector v is not needed at all.) We will say

that there is redundancy in the spanning set S if some vector in this set

is redundant.

Example 3.19

For an example of a spanning set with redundancy in it, we do not have

to look very far: Going back to R2, let us write w for the vector with
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tip at (1/
√

2, 1/
√

2). Then i, j, and w also span R2.

Question 3.19.1

This is of course very trivial to see—the vector with tip at (a, b) can

be written as the sum a · i+ b · j+ 0 ·w. More interestingly, can you

show that it can also be written as (a−1/
√

2)·i+(b−1/
√

2)·j+w?

Since i and j already span R2, there is clearly redundancy in the set

{i, j,w}.
To push this example a bit further, note that i and w also form a

spanning set for R2. To see this, note that j = −i +
√

2w. Thus, any

vector a · i+ b · j in R2, can be written as (a− b) · i+ (
√

2b) ·w by simply

substituting −i +
√

2w for j. This shows that i and w also span R2.

Notice that there is no redundancy in the set {i,w}, because if you

remove, say w, then the remaining vector i alone will not span R2: the

various “linear combinations of i” are the vectors of the form ri, where

r is an arbitrary real number, and these are all aligned with the vector

i and will therefore not give all of R2. (Similarly, if you remove i, the
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linear combinations of remaining vector w will all be aligned with w and

will not give all of R2.)

Question 3.19.2

Similarly, can you show that j and w also span R2.

In this example, we would of course take the set {i, j} as coordinate axes

for R2, as is the usual practice, but we could just as easily take the set

{i,w} or the set {j,w} as coordinate axes.

Example 3.20

Let S be a spanning set for a vector space V . If v is any vector in V

that is not in S, then S∪{v} is also a spanning set for V in which there

is redundancy. More generally, if T is any nonempty subset of V that is

disjoint from S, then S ∪ T is also a spanning set for V in which there

is redundancy.

Exercise 3.20.1

Convince yourself of this!
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For instance, we have seen in Example 3.16 above that the set

{1, x, x2, . . . } is a spanning set for the polynomial ring R[x] consid-

ered as a vector space over R. Taking T = {1 + x, 1 + x + x2, 1 +

x + x2 + x3, . . . }, it follows that the set U = {1, x, 1 + x, x2, 1 + x +

x2, x3, 1 + x+ x2 + x3, . . . } is a spanning set for R[x] in where there is

redundancy.

Exercise 3.20.2

Continuing with the example of the polynomial ring R[x] considered

as a vector space over R, show that there is no redundancy in the

spanning set {1, x, x2, . . . }.

Remember, we are trying to formulate an algebraic definition of coordi-

nate axes. Our intuition from Example 3.19, as well as Example 3.16 and

Exercise 3.20.2 above, would suggest that a set of coordinate axes, first,

should span our vector space, and next, should not have more vectors than

are needed to span the space, that is, should not have redundancy in it.

It would be very useful to have alternative characterizations of redun-
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dancy. We have the following:

Lemma 3.21. Let V be a vector space over a field F , and let S be a

spanning set for V . Then, the following are equivalent:

1. There is redundancy in S,

2. Some vector v in S is expressible as a linear combination of some

vectors from the set S − {v}, and

3. There exist a positive integer m and scalars f1, . . . , fm, not all zero,

such that for some vectors v1, . . . , vm from S, we have the relation

f1 · v1 + · · · + fm · vm = 0.

Proof. Let us prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2): Given that there is redundancy in S, this means that there is

some v ∈ S such that S − {v} is already a spanning set for V . Thus, by

definition of what it means to span V , there are some vectors v1, . . . , vn

(for some integer n ≥ 1) in S − {v} such that v is expressible as a linear

combination of v1, . . . , vn. Thus, (1) ⇒ (2).
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(2) ⇒ (3): Given that v in S is expressible as a linear combination of some

vectors from the set S − {v}, this means that there exist vectors v1, . . . , vn

(for some integer n ≥ 1) in S −{v}, and some scalars f1, . . . , fn, such that

v = f1v1 + · · ·+fnvn. We may rewrite this as f1v1 + · · ·+fnvn+(−1)v = 0.

Thus, taking “m” to be n+ 1, vm to be v, fm to be −1, we find f1v1 + · · ·+
fnvn + fmvm = 0. Notice here that fm 6= 0, and that m ≥ 2 > 1. Thus, we

have proved that (2) ⇒ (3).

(3)⇒ (1): Given a dependence relation f1v1 + · · ·+ fnvn + fmvm = 0 where

some fi is nonzero, assume for convenience that fm 6= 0. If m = 1, then the

relation f1v1 = 0 yields v1 = 0. Clearly, S is redundant, since the 0-vector

is not needed for any spanning relation, so S −{0} will continue to span V .

Now assume that m > 1. Then, dividing by fm and moving vm to the other

side, we find

vm = (−f1/fm)v1 + · · · + (−fm−1/fm)vm−1

Write v for vm. We claim now that the set S−{v} is already a spanning

set for V . For, given a vector w, we know that it is expressible as a linear
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combination g1u1 + · · · + gnun of some elements u1, . . . , un from S (here

the gi are scalars). If v is not one of these vectors u1, . . . , un, then u1, . . . ,

un are all in S − {v}, so w is already expressible as a linear combination

of vectors from S − {v}. So assume that v is one of these vectors, say (for

simplicity), v = un. Then, invoking our earlier expression for v = vm, we

find

w = g1u1 + · · · + gnun

= g1u1 + · · · + gn ((−f1/fm)v1 + · · · + (−fm−1/fm)vm−1)

= g1u1 + · · · + (−gnf1/fm)v1 + · · · + (−gnfm−1/fm)vm−1

Notice that w is now expressed as a linear combination of the vectors u1,

. . . , un−1, v1, . . . , vm−1—all of which are in S − {v}. It follows therefore

that every vector in V is expressible as a linear combination of vectors in

S − {v}. In other words, S − {v} already spans V , so there is redundancy

in S. Thus, we have proved that (3) ⇒ (1).

2

With this lemma in mind, we make the following definition:
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Definition 3.22

Let F be a field and V an F–vector space. Let v1, . . . , vn be elements

of v. Then v1, . . . , vn are said to be linearly dependent over F , or F–

linearly dependent if there exist scalars a1, . . . , an, not all zero, such

that a1 ·v1 + · · ·+an ·vn = 0. If no such scalars exist, then v1, . . . , vn are

said to be linearly independent over F , or F–linearly independent.

(If there is no ambiguity about the field F , the vectors are merely referred

to as linearly dependent or linearly independent. Also, if v1, . . . , vn

are linearly independent, respectively linearly dependent, vectors, then

the set {v1, . . . , vn} is said to be a linearly independent, respectively

a linearly dependent, set.) An arbitrary subset S of V is said to be

linearly independent if every finite subset of S is linearly independent.

Similarly, an arbitrary subset S of V is said to be linearly dependent

if some finite subset of S is linearly dependent.

Thus, the implications 1 ⇔ 3 of Lemma 3.21 can be stated in this new

language as follows: There is redundancy in S if and only if S is linearly

dependent.
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Before proceeding further, here are a few quick exercises:

Exercise 3.22.1

Show that if v is a nonzero vector, then the set {v} must be linearly

independent. See Property (4) in Remark 3.12.

Exercise 3.22.2

Show that two vectors are linearly dependent if and only if one is a scalar

multiple of the other.

Exercise 3.22.3

Are the following subsets of the given vector spaces linearly independent?

(Very little computation, if any, is necessary.)

1. In R3: {(1, 1, 1), (10, 20, 30), (23, 43, 63)}

2. In R3: {(1, 0, 0), (2, 2, 0), (3, 3, 3)}

3. In R[x]: {(x + 1)3, x2 + x, x3 + 1}
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Exercise 3.22.4

We know that C2 is a vector-space over both C (Example 3.3) and

over R (Example 3.10). Show that v = (1 + ı, 2ı) and w = (1, 1 + ı)

are linearly dependent when C2 is considered as a C vector space, but

linearly independent when considered as a R vector space.

Also, let us illustrate the meaning of the last two sentences of the Defini-

tion 3.22 above. Let us consider the following:

Example 3.23

Consider the subset S = {1, x, x2, x3, . . . } of R[x], with R[x] viewed as

a vector space over R (we have already considered this set in Examples

3.16 and 3.20 above). This is, of course, an infinite set. Consider any

nonempty finite subset of S, for instance, the subset {x, x5, x17}, or

the subset {1, x, x2, x20}, or the subset {1, x3, x99, x100, x1001, x1004}. In

general, a nonempty finite subset of S would contain n elements (for

some n ≥ 1), and these elements would be various powers of x—say xi1,

xi2, . . . , xin. These elements are definitely linearly independent, since if
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a1x
i1 + · · · + anx

in is the zero polynomial, then by the definition of the

zero polynomial, each ai must be zero. This is true regardless of which

finite subset of S we take—all that would be different in different finite

subsets is the number of elements (the integer n) and the particular

powers of x (the integers i1 through in) chosen. Thus, according to our

definition, the set S is linearly independent.

On the other hand, consider the subset S ′ = S ∪ {1 + x}. Any finite

subset of S ′ that does not contain all three vectors 1, x and 1 + x will

be linearly independent (check!). However, this alone is not enough for

you to conclude that S ′ is a linearly independent set. For the subset

{1, x, 1 +x} of T is linearly dependent: 1 · 1 + 1 ·x+ (−1) · (1 +x) = 0.

By the definition above, T is a linearly dependent set.

Remark 3.24

Note that the zero vector is linearly dependent: for example, the nonzero

scalar 1 multiplied by 0V gives 0V . Thus, if V is the zero vector space,

then {0V } is a linearly dependent spanning set, so by Lemma 3.21, this

set has to have redundancy. Hence, some subset of {0V } must already
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span the trivial space. But the only subset of {0V } is the empty set,

hence this lemma tells us that the empty set must span {0V }. This is

indeed consistent with the convention adopted in Remark 3.17 above.

We are now ready to construct the algebraic analog of coordinate axes.

We will choose as our candidate any set of vectors that spans our vector

space and in which there is no redundancy. Moreover, instead of using the

term coordinate axes (which is inspired by the geometric examples of R2

and R3), we will coin a new term—the algebraic analog of coordinate axes

will be called a basis of our vector space. Since redundancy is equivalent to

linear dependence (Lemma 3.21), lack of redundancy is equivalent to linear

independence. We hence have the following definition:

Definition 3.25

Let F be a field and V an F–vector space. A subset S of V is said to be a

basis of V if S spans V and there is no redundancy in S. Alternatively,

since lack of redundancy is equivalent to linear independence, S is said to

be a basis of V if S spans V and is linearly independent. The individual

vectors that belong to S are referred to as basis vectors. Sometimes,
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when we wish to emphasize the field of scalars, we refer to S as an

F -basis of V .

Here are some examples of bases of vector spaces:

Example 3.26

The set consisting of the vectors i and j is a basis for R2. We have

already seen in the text that i and j span R2.

Exercise 3.26.1

Argue carefully why there is no redundancy in the set {i, j}. Alter-

natively, argue why the set {i, j} is linearly independent.

Exercise 3.26.2

Show that the set consisting of the vectors i and w = (1/
√

2, 1/
√

2)

also forms a basis. (We have already done this, in Example 3.19!)
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Example 3.27

Recall the definition of the vector space Rn in Example 3.2. Let ei

stand for the vector whose components are all zero except in the i-th

slot, where the component is 1. (For example, in R4, e1 = (1, 0, 0, 0),

e3 = (0, 0, 1, 0), etc.). Then the ei form a basis for Rn as a R-vector

space. They clearly span Rn since any n-tuple (r1, . . . , rn) ∈ Rn is just

r1e1 + · · · + rnen. As for the linear independence, assume that r1e1 +

· · ·+rnen = 0 for some scalars r1, . . . , rn. Since the sum r1e1+· · ·+rnen
is just the vector (r1, . . . , rn), we find (r1, . . . , rn) = (0, . . . , 0), so each

ri must be zero.

This basis is known as the standard basis for Rn. Of course, in R2, e1

and e2 are more commonly written as i and j, and in R3, e1, e2, and e3

are more commonly written as i, j, and k.

Exercise 3.27.1

Show that the vectors e1, e2− e1, e3− e2, . . . , en− en−1 also form

a basis for Rn.
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Example 3.28

The set consisting of the elements 1 and
√

2 forms a basis for Q[
√

2] as

a vector space over Q. (We have seen in Example 3.15 above that 1 and
√

2 span Q[
√

2]. As for the Q–linear independence of 1 and
√

2, you

were asked to prove this in Exercise 2.12.4 in Chapter 2!)

Example 3.29

The set {1, x, x2, . . . } forms a basis for R[x] as a vector space over R.

We have seen in Example 3.16 that this set spans R[x]. As for the linear

independence, see the argument in Example 3.23 above.
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Exercise 3.29.1

Prove that the set B = {1, 1 + x, 1 + x + x2, 1 + x + x2 + x3 . . . }
is also a basis for R[x] as a vector space over R.

(Hint: Writing v0 = 1, v1 = 1 + x, v2 = 1 + x + x2, etc., note

that for i = 1, 2, . . . , xi = vi − vi−1. It follows that all powers

of x (including x0) are expressible as linear combinations of the vi.

Why does it follow from this that the vi span R[x]? As for linear

independence, suppose that for some finite collection vi1, . . . , vik

(with i1 < i2 < · · · < ik), there exist scalars r1, . . . , rk such that

r1vi1 + · · · + rkvik = 0. What is the highest power of x in this

expression? In how many of the elements vi1, . . . , vik does it show

up? What is its coefficient? So?)

Example 3.30

Consider Fn[x] as an F–vector space (see Example 3.9 above). You

should easily be able to describe a basis for this space and prove that

your candidate is indeed a basis.
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Example 3.31

The set {1,
√

2,
√

3,
√

6} forms a basis for Q[
√

2,
√

3] as a vector space

overQ. You have seen in Example 2.34 that, by our very definition of the

ring, every element of Q[
√

2,
√

3] is of the form a+ b
√

2 + c
√

3 + d
√

6,

where a, b, c, and d are all rational numbers. This simply says that

the set {1,
√

2,
√

3,
√

6} spans Q[
√

2,
√

3] as a vector space over Q. As

for the linear independence of this set, this was precisely the point of

Exercise 2.115 in Chapter 2!)

Example 3.32

The n2 matrices ei,j (see Exercise 2.16.5 of Chapter 2 for this notation)

are a basis for Mn(R).

Exercise 3.32.1

Prove this! To start you off, here is a hint: In M2(R), for example,

a matrix such as  1 2

3 4


can be written as the linear combination e1,1 + 2e1,2 + 3e2,1 + 4e2,2.
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Example 3.33

Certain linear combinations of basis vectors also give us a basis:

Exercise 3.33.1

Going back to Q[
√

2], show that the vectors 1 and 1 +
√

2 also form

a basis. (Hint: Any vector a + b
√

2 can be rewritten as (a − b) +

b(1 +
√

2). So?)

Exercise 3.33.2

Now show that if V is any vector space over any field with basis

{v1, v2}, then the vectors v1, v1 + v2 also form a basis. How would

you generalize this pattern to a vector space that has a basis con-

sisting of n elements {v1, v2, . . . , vn}? Prove that your candidate

forms a basis.
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Exercise 3.33.3

Let V be a vector space with basis {v1, . . . , vn}. Study Exercise

3.27.1 and come up with a linear combination of the vi, similar to

that exhibited in that exercise, that also forms a basis for V . Prove

that your candidate forms a basis.

Example 3.34

Consider the vector space
∏∞

0 F of Example 3.4 above. You may find

it hard to describe explicitly a basis for this space. However, let ei (for

i = 0, 1, . . . ) be the infinite-tuple with 1 in the position indexed by i

and zeros elsewhere. (Thus, e0 = (1, 0, 0, . . . ), e1 = (0, 1, 0, . . . ), etc.)

Exercise 3.34.1

Why is the set S = {e0, e1, e2, . . . } not a basis for
∏∞

0 F ? Is S

at least linearly independent? (See the notes on page 365 for some

comments on this example.)
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Example 3.35

The empty set is a basis for the trivial vector space. This follows from

Remark 3.17 (see also Remark 3.24), since the empty set spans the trivial

space, and since the empty set is vacuously linearly independent.

Here is a result that describes a useful property of bases and is very easy

to prove.

Proposition 3.36. Let V be a vector space over a field F , and let S be a

basis. Then in any expression of a vector v ∈ V as v = f1b1 + · · ·+ fnbn

for suitable vectors bi ∈ S and nonzero scalars fi, the bi and the fi are

uniquely determined.

Proof. What we need to show is that if v is expressible as f1b1 + · · ·+ fnbn

for suitable vectors bi ∈ S and nonzero scalars fi, and is also expressible

as g1c1 + · · · + gmcm for suitable vectors ci ∈ S and nonzero scalars gi,

then n = m, and after relabelling if necessary, each bi = ci and each fi = gi

(i = 1, . . . , n). To do this, assume, after relabelling if necessary, that b1 = c1,

. . . , bt = ct (for some t ≤ min(m,n)), and that the sets {bt+1, . . . , bn} and

{ct+1, . . . , cm} are disjoint. Then, bringing all terms to one side, we may
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rewrite our equality as

(f1 − g1)b1 + · · · + (ft − gt)bt + ft+1bt+1 + · · · + fnbn

− gt+1bt+1 − · · · − gmbm = 0

By the linear independence of the subset {b1, . . . , bt, bt+1, · · · , bn, ct+1, · · · , cm}
of S, we find that f1 = g1, . . . , ft = gt, ft+1 = · · · = fn = 0, gt+1 = · · · =

gm = 0. But since the scalars were assumed to be nonzero, “ft+1 = 0”

and “gt+1 = 0” are impossible, so, to begin with, there must have been no

“ft+1” or “gt+1” to speak of! Thus, t must have equaled n, and similarly,

t must have equaled m. From this, we get n = m (= t), and then, by our

very definition of t, we find that b1 = c1, . . . , bn = cn. Coupled with our

derivation that f1 = g1, . . . , ft = gt, we have our desired result. 2

Now that we have arrived at the algebraic analog of coordinate axes, we

turn our attention to the next step in our program—we need to show that

every vector space has a basis, and that different bases of the same vector

space have the same number of elements in them.

The first of these two tasks, namely, showing that every vector space has

a basis, is a little tricky to do: to do full justice to this task, we need to
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invoke Zorn’s Lemma, an extremely useful tool of logic. (Zorn’s Lemma, in

spite of its name, is really not a lemma, but an axiom of logic. See Chapter

4.5 in the Appendix.) For a first introduction to abstract algebra, any usage

of Zorn’s Lemma can seem dense and somewhat foreboding (what else will

the Gods of Logic hurl at us?), so we will relegate the full proof to the same

Chapter 4.5 in the Appendix (see Theorem B.7 there). However, to help

build a more concrete feel for the existence of bases, we will also give a proof

of the existence of a basis in the special case when we know that the vector

space in question has a finite spanning set.

We will assume that our vector space is not the trivial space, since we

already know that the trivial space has a basis (see Example 3.35 above).

Proposition 3.37. Let V be a vector space over a field F . Let S be a

spanning set for V , and assume that S is a finite set. Then some subset

of S is a basis of V . In particular, every vector space with a finite

spanning set has a basis.

Proof. Note that S is nonempty, since V has been assumed to not be the

trivial space (see Remark 3.17). If the zero vector appears in S, then the
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set S ′ = S − {0} that we get by throwing out the zero vector will still span

V (why?) and will still be finite. Any subset of S ′ will also be a subset of

S, so if we can show that some subset of S ′ must be a basis of V , then we

would have proved our theorem. Hence, we may assume that we are given

a spanning set S for V that is not only finite, but one in which none of the

vectors is zero.

Let S = {v1, v2, . . . , vn} for some n ≥ 1. If there is no redundancy in S,

then there is nothing to prove: S would be a basis by the very definition of a

basis. So assume that there is redundancy in S. By relabelling if necessary,

we may assume that vn is redundant. Thus, S1 = {v1, v2, . . . , vn−1} is itself

a spanning set for V . Once again, if there is no redundancy in S1, then we

would be done; S1 would be a basis. So assume that there is redundancy

in S1. Repeating the arguments above and shrinking our set further and

further, we find that this process must stop somewhere, since at worst, we

would shrink our spanning set down to one vector, say Sn−1 = {v1}, and a

set containing just one nonzero vector must be linearly independent (Exercise

3.22.1), so Sn−1 would form a basis. (Note that this is only the worst case; in

actuality, this process may stop well before we shrink our spanning set down
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to just one vector.) When this process stops, we would have a subset of S

that would be a basis of V . 2

Remark 3.38

Notice that to prove that bases exist (in the special case where V has

a finite spanning set) what we really did was to show that every finite

spanning set of V can be shrunk down to a basis of V . This result is

true more generally: Given any spanning set S of a vector space V (in

other words, not just a finite spanning set S), there exists a subset S ′

of S that forms a basis of V . See the notes on page 514 Chapter 4.5 in

the Appendix.

Having proved that every vector space has a basis, we now need to show

that different bases of a vector space have the same number of elements in

them. (Remember our original program. We wish to measure the size of

a vector space, and based on our examples of R2 and R3, we think that a

good measure of the size would be the number of coordinate axes, or basis

elements, that a vector space has. However, for this to make sense, we need

to be guaranteed that every vector space has a basis—we just convinced
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ourselves of this—and that different bases of a vector space have the same

number of elements in them.) In preparation, we will prove an important

lemma. Our desired results will fall out as corollaries.

We continue to assume that our vector space is not the trivial space.

Lemma 3.39 (Exchange Lemma). Let V be a vector space over a field

F , and let B = {v1, . . . , vn} (n ≥ 1) be a spanning set for V . Let

C = {w1, . . . , wm} be a linearly independent set. Then m ≤ n.

Proof. The basic idea behind the proof is to replace vectors in the spanning

set B one after another with vectors in C, and observing at the end that

if m were greater than n, then there would not be enough replacements of

elements of B to guarantee linear independence of the set C.

We begin as follows: Since B spans V , every vector in V is expressible as

a linear combination of elements of B. In particular, we may write w1 as a

linear combination of elements of B, that is, w1 = c1v1 + +c2v2 + · · ·+ cnvn

for suitable scalars ci, not all zero. Since one of these scalars is nonzero, we

may assume for convenience (by relabelling the vectors of B if necessary),

that c1 6= 0. As usual, we may write v1 = (−1/c1)w1 + (−c2/c1)v2 +
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(−c3/c1)v3 + · · · + (−cn/c1)vn. Now go back and study how we proved (2)

⇒ (3) in Lemma 3.21. We are going to use the same sort of an argument

here: we will prove that the set {w1, v2, v3, . . . , vn} spans V . For given any

vector v in V , it can be written as a linear combination v = f1v1 + f2v2 +

· · ·+ fnvn for suitable scalars fi (why?). Now, in this expression, substitute

(−1/c1)w1 + (−c2/c1)v2 + (−c3/c1)v3 + · · · + (−cn/c1)vn for v1, and what

do you find?—v is expressible as a linear combination of w1, v2, v3, . . . , vn!

Thus, the set {w1, v2, v3, . . . , vn} spans V as claimed.

Now observe what we have done: we have replaced v1 with w1. Let us

take this to the next step. Since the set {w1, v2, v3, . . . , vn} spans V , we can

write w2 as a linear combination of elements of this set. Thus, w2 = g1w1 +

g2v2 + g3v3 + · · ·+ gnvn for suitable scalars gi, not all zero. Now the scalars

g2, g3, . . . , gn cannot all be zero, since g1 would then have to be nonzero

(why?) and this relation would then read w2 = g1w1—a contradiction, as the

set C is linearly independent. Hence, one of the scalars g2, g3, . . . , gn must

be nonzero. For convenience, we may assume (by relabelling the vectors v2,

v3, . . . , vn if necessary) that g2 6= 0. Dividing by g2 and moving all terms

but v2 to one side, we can write v2 as a linear combination of the vectors w1,
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w2, v3, . . . , vn. Exactly as in the last paragraph, we find that since the set

{w1, v2, v3, . . . , vn} spans V , the set {w1, w2, v3, . . . , vn} also spans V .

So far, we have succeeded in replacing v1 with w1 and v2 with w2, and the

resultant set {w1, w2, v3, . . . , vn} still spans V . Now continue this process,

and consider what would happen if we were to assume that m is greater

than n. Well, we would replace v3 by w3, v4 by w4, etc., and then vn by wn.

(We know that we would be able to replace all the v’s with w’s because by

assumption, there are more w’s than v’s.) At each stage of the replacement,

we would be left with a set that spans V . In particular, the set we would be

left with after replacing vn by wn, namely {w1, w2, . . . , wn}, would span V .

But since we assumed that m is greater than n, there would be at least one

“w” left, namely wn+1. Since {w1, w2, . . . , wn} would span V , we would be

able to write wn+1 as a linear combination of the vectors w1, w2, . . . , wn.

This is a contradiction, since the set C is linearly independent! Hence m

cannot be greater than n, that is, m ≤ n! 2

We are now ready to prove that different bases of a given vector space

have the same number of elements. We will distinguish between two cases:
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vector spaces having bases with finitely many elements, and those having

bases with infinitely many elements. We will take care of the infinite case

first.

Corollary 3.40. If a vector space V has one basis with an infinite number

of elements, then every other basis of the vector space also has an infinite

number of elements.

Proof. Let S be the basis of V with an infinite number of elements (that

exists by hypothesis), and let T be any other basis. Assume that T has only

finitely many elements, say m. Since S has infinitely many elements, we can

certainly pick m+ 1 vectors from it. So pick any m+ 1 vectors from S and

denote this selected set of vectors by S ′. Since the vectors in S ′ are part of

the basis S, they are certainly linearly independent. We may think of the

set T as the set “B” of Lemma 3.39 (after all, T being a basis, will span V ),

and we may think of the set S ′ as the set “C” of the same lemma (after all,

S ′ is linearly independent). The lemma then shows that m+ 1 ≤ m, a clear

contradiction. Hence T must also be infinite! 2

We settle the finite case now. Recall that we are assuming that our vector
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space is not the trivial space. The trivial space has only one basis anyway,

the empty set (see Remark 3.24).

Corollary 3.41. If a vector space V has one basis with a finite number

of elements n, then every basis of V contains n elements.

Proof. Let S = {x1, . . . , xn} be the given basis of V with n elements,

and let T be any other basis. If T were infinite, Lemma 3.40 above says

that S must also be infinite. Since this is not true, we find that T must

have a finite number of elements. So, assume that T has m elements, say

T = {y1, . . . , ym}. We wish to show that m = n. We may think of S as the

set “B” of Lemma 3.39, since it clearly spans V . Also, we may think of the

set T as the set “C” of the lemma, since T , being a basis, is certainly linearly

independent. Then the lemma says that m must be less than or equal to n.

Now let us reverse this situation: let us think of T as the set “B,” and let

us think of S as the set “C”. (Why can we do this?) Then the lemma says

that n must be less than or equal to m. Thus, we have m ≤ n and n ≤ m,

so we find that n = m. 2

We are finally ready to make the notion of the size of a vector space
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precise!

Definition 3.42

A (nontrivial) vector space V over a field F is said to be finite-

dimensional (or finite-dimensional over F ) if it has a basis with a finite

number of elements in it; otherwise, it is said to be infinite-dimensional

(or infinite-dimensional over F ). If V is finite-dimensional, the dimen-

sion of V is defined to be the number of elements in any basis. If V is

infinite-dimensional, the dimension of V is defined to be infinite. If V

has dimension n, then V is also referred to as an n-dimensional space (or

as being n-dimensional over F ); this is often written as dimF (V ) = n.

Remark 3.43

By convention, the dimension of the trivial space is taken to be zero.

This is consistent with the fact that it has as basis the empty set, which

has zero elements.

Let us consider the dimensions of some of the vector spaces in the exam-

ples on page 250 (see also the examples on page 281, where we consider bases

of these vector spaces). R2 and R3 have dimensions 2 and 3 (respectively)
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as vector spaces over R.

Question 3.44

What is the dimension of Rn?

Q[
√

2] is 2-dimensional over Q. R[x] is infinite-dimensional over R, while

Q[
√

2,
√

3] is 4-dimensional over Q. Similarly, Mn(R) is n2-dimensional over

R.
Question 3.45

What is the dimension of Fn[x] over F ? (Warning! It is not n.)

Question 3.46

By Example 3.7, C is a vector space over C, and as well, over R. What

is the dimension of C as a C-vector space? As a R-vector space?

With the definition of dimension under our belt, the following is another

corollary to the Exchange Lemma (Lemma 3.39):

Corollary 3.47. Let V be an n-dimensional vector space. Then every

subset S of V consisting of more than n elements is linearly dependent.

(Alternatively, if S is a linearly independent subset of V then S has at

most n elements.)
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Proof. Assume, to the contrary, that V contains a linearly independent sub-

set S that contains more than n elements. Therefore, we can find n + 1

distinct elements v1, v2, . . . , vn+1 in S. Write C for the set {v1, v2, . . . , vn+1}
and let B be any basis. By the very definition of dimension, B must have

n elements. Now apply Lemma 3.39 to the sets B and C—we find that

n + 1 ≤ n, which is a contradiction. Hence every subset of V consisting of

more than n elements must be linearly dependent, or, what is the same, any

linearly independent subset of V must have at most n elements. 2

Similarly, with the definition of dimension under our belt, the following

is an easy corollary of Proposition 3.37:

Corollary 3.48. Let V be an n-dimensional vector space. Then any span-

ning set for V has at least n elements.

Proof. Let S be a spanning set, and assume that |S| = t < n. By Propo-

sition 3.37, some subset of S is a basis of V . Since this subset can have at

most t elements, it follows that the dimension of V , which is the size of this

basis, is at most t. This contradicts the fact that the dimension of V is n. 2
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Putting together Corollary 3.48 and Proposition 3.37, we find that if V

is an n-dimensional vector space, then any spanning set for V must have at

least n elements, and this set can then be shrunk to a basis of V (consisting of

exactly n elements). There is a corresponding result for linearly independent

elements in V . Corollary 3.47 shows that any linearly independent subset of

V must have at most n elements. What we will see in Proposition 3.49 below

is that any linearly independent subset of V can be expanded to a basis of

V (which will then have exactly n elements).

Proposition 3.49 below holds even when V is not assumed to be finite-

dimensional, but a full proof requires the use of Zorn’s Lemma. The proof

of the general case is sketched in the remarks on page 516 in Chapter 4.5 in

the Appendix.

Proposition 3.49. Let V be a finite-dimensional vector space, and let C

be a linearly indepenent set. Then C can be expanded to a basis of V ,

i.e., there exists a basis B of V such that C ⊆ B.

Proof. Let n be the dimension of V . Then by Corollary 3.47 C has at

most n elements in it. Assume that C = {v1, v2, . . . , vt} for some t ≤ n.
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If C already spans V , then C would be a basis and we would be done.

(And if this happens, you know that t must equal n by Corollary 3.41!) So

assume that C does not span V . By the very definition of what it means

to span a vector space, there must be a vector in V , call it vt+1, that is not

expressible as a linear combination of the elements in C. We claim that the

set C1 = {v1, v2, . . . , vt, vt+1} must be linearly independent. For suppose

f1v1 + · · · + ftvt + ft+1vt+1 = 0 for some scalars fi, not all of which are

zero. Then ft+1 cannot be zero, since otherwise our relation would read

f1v1 + · · ·+ ftvt = 0 for nonzero scalars fi, and this would violate the linear

independence of C. Therefore, we may divide our original relation by ft+1

to find vt+1 = (−f1/ft+1)v1 + · · ·+ (−ft/ft+1)vt, contradicting the fact that

vt+1 is not expressible as a linear combination of elements of C. Thus, C1 is

indeed linearly independent as claimed.

Note that the set C1 has t + 1 elements. If C1 spans V , then C1 would

be a basis of V containing C, and we would be done. Otherwise, we could

expand C1 to a linearly independent set C2 and repeat our arguments . . . .

Notice that in the process above, we start with our set C with t elements,

and at each stage, we come up with a set that has one more element than the
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set at the previous stage. When we reach a set with exactly n elements, this

set must span V , for if not, the set we would get at the next stage would

contain n + 1 elements and would be linearly independent, contradicting

Corollary 3.47 above. This set with exactly n elements would therefore be a

basis of V containing C. 2

Example 3.50

For example, in R2, consider the linear independent set {i}. The con-

tention of the theorem above is that one can adjoin one other vector to

this to get a basis for R2: for instance the set {i, j} is a basis, and so,

for that matter, is the set {i,w}. (Here, just as earlier in the chapter,

i = (1, 0), j = (0, 1), and w = (1/
√

2, 1/
√

2).)

We end this section with two more easy results concerning spanning sets

and linearly independent sets: the proofs simply consist of combining earlier

results!

Proposition 3.51. Let V be an n-dimensional vector space and S a subset

of V . Then:
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1. If S is a spanning set for V (so |S| ≥ n by Corollary 3.48), and if

moreover |S| = n, then S is a basis for V .

2. If S is a linearly independent set (so |S| ≤ n by Corollary 3.47),

and if moreover |S| = n, then S is a basis for V .

Proof. As promised, the proof simply consists of combining previous results:

1. Given S a spanning set with n elements, Proposition 3.37 shows that

some subset S ′ of S is a basis. Hence, as V is n-dimensional, |S ′| = n.

Since |S| = n as well, we find S ′ = S, i.e., S is already a basis for V .

2. Given S a linearly independent set with n elements, Proposition 3.49

shows that S can be expanded to a basis S ′. Hence, as V is n-

dimensional, |S ′| = n. Since |S| = n as well, we find S ′ = S, i.e.,

S is already a basis for V .

2
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Remark 3.52

We have proved quite a few results in this section concerning spanning

sets, linearly independent set, and bases. It would be helpful to sum-

marize these results here. In what follows, V is, as usual, a vector space

over a field F :

1. A basis for V is a subset of V that spans V and in which there

is no redundancy. Alternatively, a basis is a subset that spans V

and is linearly independent.

2. Bases always exist.

3. If one basis for V has an infinite number of elements in it, then

every other basis for V must also have an infinite number of ele-

ments. When this occurs, we say V is infinite dimensional.

4. If one basis for V has a finite number of elements “n” in it, then

every other basis must also have n elements. When this occurs,

we say V if finite-dimensional and we define the dimension of V

to be n.
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5. Assume that V is of finite dimension n:

(a) Any spanning set S for V must contain at least n elements.

(b) Any spanning set S can be shrunk to a basis for V .

(c) If a spanning set S has exactly n elements, then it is already

a basis for V .

(d) Any linearly independent set S must contain at most n ele-

ments.

(e) Any linearly independent set S can be expanded to a basis

for V .

(f) If a linearly independent set S has exactly n elements in it,

then it is already a basis for V .

Of course, the statements in both (5b) and (5e) above hold even when

V is infinite-dimensional.
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3.3 Subspaces and Quotient Spaces

The idea behind subspaces is very similar to the idea behind subrings,

while the idea behind quotient spaces is very similar to the idea behind

quotient rings. (There is one key difference: quotient rings are obtained

by modding out rings by ideals, modding out by subrings will not work.

However, quotient spaces can be made by modding out by subspaces. We

will see this later in the chapter.)

We will consider subspaces first:

Definition 3.53

Given a vector space V over a field F , a subspace of V is a nonempty

subset W of V that is closed with respect to vector addition and scalar

multiplication, such that with respect to this addition and scalar multi-

plication, W is itself a vector space (that is, W satisfies all the axioms

of a vector space).
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Now, we saw in the context of rings (Exercise 2.28 in Chapter 2) that

one could have a subset S of a ring R such that S is closed with respect to

addition and multiplication, and yet S is not a subring of R. It turns out

that in the case of vector spaces, it is enough for a (nonempty) subset W

of a vector space V to be closed with respect to vector addition and scalar

multiplication—W will then automatically satisfy all the axioms of a vector

space. This is the content of Theorem 3.55 below.

But first, a quick exercise, which is really a special case of Exercise 3.5 in

Chapter 4 ahead:

Exercise 3.54. Let W be a subspace of the

vector space V . Thus, by definition (W,+) is

an abelian group. Let 0W denote the identity

element of this group, and let 0V denote the

usual “0” of V . Show that 0W = 0V . (See

also Exercise 2.29 in Chapter 2.)

Theorem 3.55. Let V be a vector space over a field F , and let W be a

nonempty subset of V that is closed with respect to vector addition and

scalar multiplication. Then W is a subspace of V .
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Proof. We need to check that all the axioms of a vector space hold. Let us

first check that (W,+) is an abelian group. Vector addition in W is both

commutative and associative, since for any v1, v2, v3 ∈ W , we may consider

v1, v2 and v3 to be elements of V , and in V , the relations v1 + v2 = v2 + v1,

and (v1 +v2)+v3 = v1 +(v2 +v3) certainly hold. Next, given any v ∈ W , let

us show that −v is also in W . For this we invoke that fact that W is closed

with respect to scalar multiplication—since v ∈ W , −1 · v is also in W , and

−1 · v is, of course, just −v (see Remark 3.12 above). Now let us show that

0 is in W . Observe that so far, we have not used the hypothesis that W

is nonempty. (The proofs that we have given for the fact that addition in

W is associative and that every element in W has its additive inverse in W

hold vacuously even in the case where W is empty. For instance, the chain

of arguments v ∈ W ⇒ −1 · v ∈ W (as W is closed with respect to scalar

multiplication) ⇒ −v ∈ W is correct even when there is no vector v in W

to begin with!) Now let us use the fact that W is nonempty. Since W is

nonempty, it contains at least one vector, call it v. Then, by what we proved

above, −v is also in W . Since W is closed under vector addition, v + (−v)

is in W , and so 0 is in W . We have thus shown that (W,+) is an abelian
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group.

It remains to be shown that the four axioms of scalar multiplication also

hold for W . But for any r and s in F and v and w in W , we may consider

v and w to be elements of V , and as elements of V , we certainly have the

relations r · (v+w) = r ·v+r ·w, (r+s) ·v = r ·v+s ·v, (rs) ·v = r · (s ·v),

and 1 · v = v. Hence, the axioms of scalar multiplication hold for W .

This proves that W is a subspace of V . 2

We have the following, which captures both closure conditions of the test

in Theorem 3.55 above:

Corollary 3.56. Let V be a vector space over a field F , and let W be a

nonempty subset of V that is closed under linear combinations, i.e., for

all w1, w2 in W and all f1, f2 in F , the element f1w1 + f2w2 is also in

W . Then W is a subspace of V . Conversely, if W is a subspace, then

W is closed under linear combinations.

Proof. Assume that W is closed under linear combinations. Taking f1 =

f2 = 1, we find that w1 + w2 is in W for all w1, w2 in W , i.e., W is closed
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under addition. Taking f2 = 0 we find f1w1 is in W for all w1 in W and

all f1 in F , i.e., W is closed under scalar multiplication. Thus, by Theorem

3.55, W is a subspace. Conversely, if W is a subspace, then for w1, w2 in W

and all f1, f2 in F , f1w1 and f2w2 are both in W because W is closed under

scalar multiplication, and then, f1w1 + f2w2 is in W because W is closed

under vector addition. Hence, W is closed under linear combinations. 2

Here are some examples of subspaces. In each case, check that the con-

ditions of Theorem 3.55 apply.

Example 3.57

The set consisting of just the element 0 is a subspace.

Question 3.57.1

Why?

We refer to this as the zero subspace.
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Example 3.58

If you think ofR2 as the vectors lying along the xy plane of 3-dimensional

xyz space, then R2 becomes a subspace of R3.

Example 3.59

For any nonnegative integers n and m with n < m, Fn[x] is a subspace

of Fm[x]. Also, Fn[x] and Fm[x] are both subspaces of F [x].

Example 3.60

Un(R) (the set of upper triangular n× n matrices with entries in R) is

a subspace of the R–vector space Mn(R).

Example 3.61

Q[
√

2] is a subspace of the Q–vector space Q[
√

2,
√

3]. Of course, we

know very well by now that since Q ⊆ Q[
√

2], Q[
√

2] is directly a Q–

vector space. Both Q–vector space structures on Q[
√

2] are the same,

that is, in both ways of looking at Q[
√

2] as a Q–vector space, the

rules for vector addition and scalar multplication are the same. In the

first way (viewing Q[
√

2] as a subspace of Q[
√

2,
√

3]), we first think of
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any element a+ b
√

2 of Q[
√

2] as the element a+ b
√

2 + 0
√

3 + 0
√

6 of

Q[
√

2,
√

3]. Doing so, the vector sum of a+b
√

2+0
√

3+0
√

6 (= a+b
√

2)

and a′+b′
√

2+0
√

3+0
√

6 (= a′+b′
√

2) is (a+a′)+(b+b′)
√

2+0
√

3+0
√

6

(= (a + a′) + (b + b′)
√

2). On the other hand, viewing Q[
√

2] directly

as a Q–vector space, the vector sum of a + b
√

2 and a′ + b′
√

2 is also

(a + a′) + (b + b′)
√

2. In a similar manner, you can see that the rules

for scalar multiplication are also identical.

Example 3.62

The example above generalizes as follows: Suppose F ⊆ K ⊆ L are

fields. The field extension L/F makes L an F–vector space. Since

K is closed with respect to vector addition and scalar multiplication,

K becomes a subspace of L. But the field extension K/F exhibits K

directly as an F–vector space. The two F–vector space structures on

K, one that we get from viewing K as a subspace of the F–vector space

L and the other that we get directly from the field extension K/F , are

the same.
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Example 3.63

In Example 3.4 let
⊕∞

0 F denote the set of all infinite tuples (a0, a1, . . . )

in which only finitely many of the ai are nonzero. Then
⊕∞

0 F is a

subspace of
∏∞

0 F .

Exercise 3.63.1

Prove this!

Exercise 3.63.2

Show that the set S = {e0, e1, e2, . . . } is a basis for
⊕∞

0 F ? (Con-

trast this with Exercise 3.34.1 above.)

This example is known as the direct sum of (countably infinite) copies

of F .

Example 3.64

For any field F , F [x2] (that is, the set of all polynomials of the form
n∑
i=0

fix
2i, n ≥ 0) is a subspace of F [x].
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Question 3.64.1

What is the dimension of this subspace? Can you discover a basis

for this subspace?

Example 3.65

Let V be a vector space over a field F , and let S be any nonempty subset

of V .

Definition 3.65.1. The linear span of S is

defined as the set of all linear combinations

of elements of S, that is, the set of all vectors

in V that can be written as c1s1+c2s2+· · ·+
cksk for some integer k ≥ 1, some scalars ci,

and some vectors si ∈ S.

Exercise 3.65.1

Show that the linear span of S is a subspace of V .

For instance, in R3, if we take S = {i, j}, then the linear span of S is the

set of all vectors in R3 that are of the form ai + bj for suitable scalars a
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and b, in other words, the xy-plane. As we saw in Example 3.58 above,

the xy-plane is a subspace of R3!

You should be able to do the following:

Question 3.66

Which of the following are subspaces of R3?

1. {(a, b, c) | a + 3b = c}

2. {(a, b, c) | a = b2}

3. {(a, b, c) | ab = 0}

We turn our attention now to quotient spaces. Recall how we constructed

the quotient ring R/I given a ring R and an ideal I : we first defined an

equivalence relation on R by a ∼ b if and only if a− b ∈ I (see page 161 in

Chapter 2). We found that the equivalence class of an element a is precisely

the coset a+ I (Lemma 2.75 in that chapter). We then defined the ring R/I

to be the set of equivalence class of R under the naturally induced definitions

[a] + [b] = [a + b] and [a][b] = [ab] (see Definition 2.76 in that chapter). Of
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course, we had to check that our operations were well-defined and that we

indeed obtained a ring by this process (see Lemma 2.77 and Theorem 2.79

in that chapter). We will follow the same approach here.

So, given a vector space V over a field F , and a subspace W , we define

an equivalence relation on W by v ∼ w if and only if v − w ∈ W . Exactly

as on page 161, we can see that this is indeed an equivalence relation. We

define the coset a + W to be the set of all elements of the vector space of

the form a + w as w varies in W , and we call this the coset of W with

respect to a We have the following, whose proof is exactly as in Lemma 2.75

of Chapter 2 and is therefore omitted:

Lemma 3.67. The equivalence class [a] is precisely the coset a + W .

As with quotient rings, we will denote the set of equivalence classes of V

by V/W , whose members we will denote as both [a] and a+W . We define an

addition operation on V/W and a scalar multiplication F × V/W → V/W

by the following:
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Definition 3.68

[u]+[v] = [u+v] and f ·[u] = [f ·u] for all [u] and [v] in V/W and all f in

F . (In coset notation, this would read (u+W )+(v+W ) = (u+v)+W ,

and f (u + W ) = fu + W .) As always, if the context is clear, we will

often omit the “·” sign and write r[b] for r · [b].

The following should now be easy, after your experience with quotient

rings (see Lemma 2.77 in Chapter 2):

Exercise 3.69. Show that the operations of

addition and scalar multiplication on V/W

described above in Definition 3.68 are well-

defined. Show that the addition operation is

commutative.

We now have the following:

Theorem 3.70. (V/W,+, ·) is a vector space over F .

Proof. As in Theorem 2.79 of Chapter 2, the proof involves checking that all

the vector space axioms of Definition 3.1 hold. The proof that (V/W,+) is

an abelian group is in fact identical to the proof that (R/I,+) is an abelian
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group, and we will not do it here (see the remarks on page 367 on where the

similarity comes from). As for the axioms for scalar multiplication, let us go

through them one-by-one:

1. For all r ∈ F and [v], [w] ∈ V/W , we have r([v] + [w]) = r[v + w] =

[r(v+w)] = [rv+rw], where the first and second equalities are because

of the way operations are defined on V/W and the last equality is

because r(v + w) = rv + rw is a property that holds in the original

vector space V . On the other hand, r[v]+r[w] = [rv]+[rw] = [rv+rw],

where the equalities are because of the way operations are defined on

V/W . Thus, both sides equal [rv + rw], so indeed r([v] + [w]) =

r[v] + r[w].

2. For all r, s ∈ F and [v] ∈ V/W , (r + s)[v] = [(r + s)v] = [rv + sv],

where the last equality is because of properties of the original vector

space V . On the other hand, r[v] + s[v] = [rv] + [sv] = [rv + sv]. It

follows that (r + s)[v] = r[v] + s[v].

3. For all r, s ∈ F and [v] ∈ V/W , (rs)[v] = [(rs)v] = [r(sv)], where

the last equality is because of properties of the original vector space V ,
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while r(s[v]) = r[sv] = [r(sv)]. It follows that (rs)[v] = r(s[v]).

4. For all [v] ∈ V/W , 1[v] = [1 · v] = [v], where the last equality is

because 1 · v = v holds in V

2

Definition 3.71

(V/W,+, ·) is called the quotient space of V by the subspace W .

As with the case of quotient rings, the intuition behind V/W is that it

is a space formed by setting all elements of W to zero. More colloquially,

the construction “kills” all elements in W , or “divides out” all elements in

W . This last description explains the term “quotient space,” and pushing

the analogy one step further, V/W can then be thought of as the set of all

“remainders” after dividing out by W , endowed with the natural “quotient”

binary operation and scalar multiplication of Definition 3.71.

For example, take V = R3 and W to be the subspace consisting of all

vectors lying on the xy plane (Example 3.58 above). What sense do we make

of V/W ? Every vector v in R3 can be written as ai + bj + ck for unique
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real numbers a, b, and c (see Example 3.27 above). Notice that both ai and

bj are in W . If we “set these to zero” we are left simply with ck which is

a vector lying on the z-axis. Moreover every vector ck lying on the z-axis

arises this way (why?) so we find that V/W is precisely the z-axis. As in

the case of rings, this is more than just an equality of sets: this identification

of V/W with the z-axis preserves the vector space structure as well, which

we will make more precise in the next section.

The following lemma will be useful ahead. We will state the result only

for finite-dimensional vector spaces, although, the result (suitably phrased)

is true for infinite-dimensional spaces as well (see Exercise 3.109):

Lemma 3.72. Let V be a finite-dimensional vector space over a field F

and let W be a subspace. Let {b1, . . . , bm} be a basis for W . Expand this

to a basis {b1, . . . , bm, bm+1, . . . , bn} of V (see Theorem 3.49). Then the

set (of equivalence classes of vectors) {bm+1 +W, . . . , bn +W} is a basis

for the quotient space V/W .

Proof. Given any v + W ∈ V/W , we may write v = r1b1 + · · · + rmbm +

rm+1bm+1+· · ·+rnbn for suitable scalars r1, . . . , rn. Since the vectors b1, . . . ,
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bm are in W , so is the vector r1b1 + · · ·+rmbm. Thus, v− (rm+1bm+1 + · · ·+
rnbn) ∈ W . But this just says that v +W = (rm+1bm+1 + · · ·+ rnbn) +W .

Recalling how vector addition and scalar multiplication are defined in V/W ,

we find v +W = (rm+1bm+1 + · · ·+ rnbn) +W = rm+1(bm+1 +W ) + · · ·+
rn(bn +W ). This shows that the set {bm+1 +W, . . . , bn +W} spans V/W .

As for the linear independence, assume that rm+1(bm+1 + W ) + · · · +

rn(bn + W ) = 0V/W for some scalars rm+1, . . . , rn. Since 0V/W is the class

of W , we find rm+1bm+1 + · · · + rnbn = w for some w ∈ W . But the set

{b1, . . . , bm} is a basis for W , so we may write w = r1b1 + · · · + rmbm for

suitable scalars r1, . . . , rm. Putting this together, we find r1b1 +· · ·+rmbm+

(−rm+1)bm+1 + · · ·+(−rn)bn = 0. Since the set {b1, . . . , bm, bm+1, . . . , bn} is

a basis of V , each ri (i = 1, . . . , n) must be zero. In particular, rm+1, . . . , rn

must all be zero, proving the linear independence of {bm+1+W, . . . , bn+W}.
2

We get an easy corollary from this:

Corollary 3.73. Let V be a finite-dimensional vector space over a field

F and let W be a subspace. Then dim(V ) = dim(W ) + dim(V/W ).
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Proof. This is clear from the statement of the lemma above. 2
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3.4 Vector Space Homomorphisms: Linear Trans-

formations

The ideas in this section parallel the development of ring homomorphisms

in Chapter 2. As in the passage from R to R/I , we notice some preservation

of structure when passing from V to V/W : the operations in V/W are

“essentially the same” as the operations in V except that the elements of

V have all been divided out by W . What this means is analogous to the

situation with R and R/I : let us denote by f the function f : V → V/W

that “pushes” u ∈ V “down” to u+W . Since u+W = f (u), v+W = f (v),

and (u+ v) +W = f (u+ v), we find f (u) + f (v) = f (u+ v). The function

f that sends u to u + W , along with the property f (u) + f (v) = f (u + v)

for all u and v in V , precisely captures the notion that addition in V/W and

V are “essentially the same.”
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Similarly, the definition of scalar multiplication in V/W : r(u + W ) =

ru+W (here r is in F ) gives the feeling that scalar multiplication in V/W

is “the same” as the scalar multiplication in V except for dividing out by W :

once again this intuition is captured by the function f above along with the

property rf (u) = f (ru) for all r ∈ F and u in V .

Just as with rings we will turn this situation around. Suppose one has a

function f from one vector space V over F to another vector space X over F

(note that the set of scalars F is the same for both spaces) which has the two

properties described above, then one similarly gets the sense that the vector

space operations in the two F vector spaces V and X are “essentially the

same” except perhaps for dividing out by some subspace. In analogy with

rings, we should call this a vector space homomorphism, but traditionally,

such a function has been called a linear transformation:
Definition 3.74

Let V and X be two vector spaces over a field F , and let f : V → X

be a function. Suppose that f has the following properties:

1. f (u) + f (v) = f (u + v) for all u, v, in V ,
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2. rf (u) = f (ru) for all r in F and u in V .

Then f is said to be a linear tranformation from V to X .

Remark 3.75

As with ring homomorphisms, there are some features of this definition

that are worth noting:

1. In the equation f (u) + f (v) = f (u + v), note that the operation

on the left side represents vector addition in the vector space X ,

while the operation on the right side represents addition in the

vector space V .

2. Similarly for the equation rf (u) = f (ru): the operation on the

left side represents scalar multiplication in X , while the operation

on the right side represents scalar multiplication in V .

3. By the very definition of a function, f is defined on all of V , how-

ever, the image of V under f need not be all of X i.e, f need

not be surjective (see Example 3.83 or Example 3.84 for instance,
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although, such examples are really very easy to write down). How-

ever, the image of V under f is not an arbitrary subset of X , the

definition of a linear tranformation ensures that the image of V

under f is actually a subspace of X (see Lemma 3.88 later in this

section).

4. Note that it is not necessary to stipulate that f (0V ) = 0X since

the property holds automatically, see Lemma 3.77 below.

5. The condition (1) of the definition simply says that f should be a

group homomorphism from the group (V,+) to the group (X,+)

(see Definition 4.65 in Chapter 4 ahead), while the second condi-

tion (2) says that the group homomorphism should, in addition,

be F -linear.

The following lemma combines the two conditions in the definition of a

linear transformation into one:

Lemma 3.76. Let V and X be two F -vector spaces, and let f : V → X

be a function that satisfies the property that f (r1v1 + r2v2) = r1f (v1) +
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r2f (v2) for all v1, v2 in V and all r1, r2 in F . Then f is a lin-

ear transformation. Conversely, if f is a linear transformation, then

f (r1v1 + r2v2) = r1f (v1) + r2f (v2) for all v1, v2 in V and all r1, r2 in F .

Proof. Assume that f satisfies the property that f (r1v1 + r2v2) = r1f (v1) +

r2f (v2) for all v1, v2 in V and all r1, r2 in F . Taking r1 = r2 = 1, we see that

f (v1+v2) = f (v1)+f (v2), and taking r2 = 0, we see that f (r1v1) = r1f (v1).

Thus, f is a linear transformation. As for the converse, if f is a linear

transformation, then for all v1, v2 in V and all r1, r2 in F , f (r1v1 + r2v2) =

f (r1v1) + f (r2v2) = r1f (v1) + r2f (v2), as desired.

2

The following lemma is analogous to Lemma 2.87 in Chapter 2:

Lemma 3.77. Let V and X be two F -vector spaces, and let f : V → X

be a linear tranformation. Then f (0V ) = 0X.

Proof. This proof is identical to the proof of the corresponding Lemma 2.87

in Chapter 2, (since, ultimately, these are both proofs that a group homo-

morphism from a group G to a group H maps the identity in G to the
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identity in H—see Lemma 4.67 in Chapter 4 ahead). We start with the fact

that f (0V ) = f (0V + 0V ) = f (0V ) + f (0V ). We now have an equality in

X : f (0V ) = f (0V ) + f (0V ). Since (X,+) is an abelian group, every element

of X has an additive inverse, so there is an element, denoted −f (0V ) with

the property that f (0V ) + (−f (0V )) = (−f (0V )) + f (0V ) = 0X . Adding

−f (0V ) to both sides of f (0V ) = f (0V ) + f (0V ), we get −f (0V ) + f (0V ) =

−f (0V ) + (f (0V ) + f (0V )). The left side is just 0X , while by associativity,

the right side is (−f (0V ) + f (0V )) + f (0V ) = 0X + f (0V ). But by the def-

inition of 0X , 0X + f (0V ) is just f (0V ). We thus find 0X = f (0V ), thereby

proving the lemma. 2

Remark 3.78

Here is another way to prove the statement of the lemma above: Pick

any v ∈ V . Then, 0V = 0Fv, so f (0V ) = f (0Fv) = 0Ff (v) = 0X .

(Here, the first equality is due to Remark 3.12.2, and the last but one

equality is because f (rv) = rf (v) for any scalar r since f is a linear

transformation.)

Before proceeding to examples of linear transformations, let us consider
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one remaining object, analogous to the kernel of a ring homomorphism. The

concept of a linear transformation was introduced to capture the notion of

operations on two F -vector spaces being “the same” except for dividing out

by some subspace. Just as with ring homomorphisms, the natural candidate

for this subspace is the following:

Definition 3.79

Given a linear transformation f : V → X between two F -vector spaces,

the kernel of f is the set {u ∈ V | f (u) = 0X}. It is denoted ker(f ).

As in the case of kernels of ring homomorphisms, the following statement

should come as no surprise:

Proposition 3.80. Let V and X be vector spaces over a field F . The

kernel of a linear tranformation f : V → X is a subspace of V .

Proof. By Corollary 3.56, it is sufficient to check that ker(f ) is a nonempty

subset of V that is closed under linear combinations. Since 0V ∈ ker(f )

(Lemma 3.77), ker(f ) is nonempty. Now, for any w1, w2 in ker(f ) and any

r1, r2 in F , we find f (r1w1 +r2w2) = r1f (w1)+r2f (w2) = r1 ·0X +r2 ·0X =

0X . Hence r1w1 +r2w2 is indeed in the kernel of f , so ker(f ) is closed under
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linear combinations.

2

Remark 3.81

As in the case of ring homomorphisms, for any linear transformation

f : V → X between two F -vector spaces, we will have f (−v) = −f (v).

One proof is exactly the same as in Remark 2.88 in Chapter 2, and this is

not surprising: this is really a proof that in any group homomorphism

f from a group G to a group H , f (g−1) will equal (f (g))−1 for all

g ∈ G (see Corollary 4.68 in Chapter 4). Another proof, of course, is to

invoke scalar multiplication and Remark 3.12.3: f (−v) = f (−1 · v) =

−1f (v) = −f (v).

We are now ready to study examples of linear transformations. The

first example is really the master-example: it provides an algorithm for

constructing linear transformations and leads to matrix representations of

linear transformations that are useful for computations:



CHAPTER 3. VECTOR SPACES 332

Example 3.82

Master-Example of Linear Transformation: Let V be an F -vector

space that is (for simplicity) finite-dimensional, and let {b1, . . . , bn} be

a basis for V . Let X be an F -vector space, and let w1, . . . , wn be

arbitrary vectors in X . Then we have the following:

Lemma 3.82.1. The function f : V → X that sends each basis ele-

ment bi to the vector wi (i = 1, . . . , n) and a general linear combi-

nation r1b1 + · · ·+ rnbn (ri ∈ F ) to the vector r1w1 + · · ·+ rnwn is a

(well-defined) linear transformation. Conversely, any linear trans-

formation f : V → X is determined fully by where f sends each

basis vector bi to: if f (bi) = wi, then f must be defined on all of V

by the formula f (r1b1 + · · · + rnbn) = r1w1 + · · · + rnwn.

Proof. That f is well-defined comes from the fact that the bi form a

basis for V , so each element u ∈ V is expressible as r1b1 + · · · + rfnbn

for a unique choice of scalars ri. Hence, defining what f does to the

element u in terms of the scalars ri poses no problem as the ri are

uniquely determined by u.
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It is now trivial to check that f is a linear transformation: Given u =

r1b1 + · · · + rnbn and v = s1b1 + · · · + snbn (here, the ri and the

sj are scalars), we find u + v = (r1 + s1)b1 + · · · + (rn + sn)bn, so

f (u + v) = (r1 + s1)w1 + · · · + (rn + sn)wn = (r1w1 + · · · + rnwn) +

(s1w1 + · · · + snwn) = f (u) + f (v).

Similarly, given any scalar r ∈ F , rv = r(r1b1 + · · ·+ rnbn) = (rr1)b1 +

· · · + (rrn)bn, so f (rv) = (rr1)w1 + · · · + (rrn)wn = r(r1w1 + · · · +
rnwn) = rf (v).

Exercise 3.82.1

Which vector space axioms were used in the two chains of equalities

in the proof above that f (u+v) = f (u)+f (v) and f (rv) = rf (v)?

Exercise 3.82.2

Would the proof be any more complicated if V were not assumed

to be finite-dimensional? (Work it out!)

Conversely, if f is any linear transformation from V to X and if f (bi) =

wi (i = 1, . . . , n), then, since f is a linear transformation, f (r1b1 +
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· · · + rnbn) = r1f (b1) + · · · + rnf (bn) = r1w1 + · · · + rnbn. Since any

vector in V is a linear combination of the vectors b1, . . . , bn, this formula

completely determines what f sends each vector in V to. 2

Now let us carry this one step further. Let f : V → X be a linear trans-

formation, and suppose (for simplicity) that X is also finite-dimensional,

with some basis {c1, . . . , cm}. Thus, every vectorw ∈ X can be uniquely

expressed as s1c1 + · · ·+smcm for suitably scalars ci. In particular, each

of the vectors wi (= f (bi)) therefore can be expressed as a linear combi-

nation of the cj as follows:

w1 = p1,1c1 + · · · + p1,mcm

w2 = p2,1c1 + · · · + p2,mcm
... = ...

wn = pn,1c1 + · · · + pn,mcm

(The pi,j are scalars. Note how they are indexed: pi,j stands for the

coefficient of cj in the expression of wi as a linear combination of the

various c’s. Thus, across each row of this equation, it is the second index
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in pi,j that varies.) Now consider an arbitrary u ∈ V , expressed as a

linear combination u = r1b1 + · · · + rnbn for suitable scalars ri. Then

f (u) = r1w1 + · · · + rnwn

= r1 (p1,1c1 + · · · + p1,mcm)

+ r2 (p2,1c1 + · · · + p2,mcm)

... ...

+ rn (pn,1c1 + · · · + pn,mcm)

Now let us regroup the right side so that all the scalars that are attached

to the basis vector c1 are together, all scalars attached to the basis vector

c2 are together, etc. Doing so, we find

f (u) = (p1,1r1 + p2,1r2 + · · · + pn,1rn) c1

= (p1,2r1 + p2,2r2 + · · · + pn,2rn) c2

= ...

= (p1,mr1 + p2,mr2 + · · · + pn,mrn) cm
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(Study this relation carefully: note how the indices of the pi,j behave:

pi,j multiplies ri and is attached to cj. Notice that across each row of

this equation, it is the first index of pi,j that changes: this is in contrast

to the behavior of the indices in the previous equations. There, it was

the second index of pi,j that changed in each row.)

Now suppose that we adopt the convention that we will write any vector

u ∈ V , u = r1b1 + · · · + rnbn as the column vector

u =


r1

r2

...

rn


and any vector w ∈ X , w = s1c1 + · · · + smcm as the column vector

w =


s1

s2

...

sm
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Let us rewrite our equation for f (u) above in the form f (u) = s1c1 +

· · · + smcm for suitable scalars si. Since the coefficient of c1 in f (u)

is p1,1r1 + p2,1r2 + · · · + pn,1rn (see the equation above), we find s1 =

p1,1r1 + p2,1r2 + · · ·+ pn,1rn. Similarly, since the coefficient of c2 in f (u)

is p1,2r1 +p2,2r2 + · · ·+pn,2rn, we find s2 = p1,2r1 +p2,2r2 + · · ·+pn,2rn.

Proceeding thus, we find that the vectors u and f (u) are related by the

matrix equation
s1

s2

...

sm

 =


p1,1 p2,1 . . . pn,1

p1,2 p2,2 . . . pn,2
... ... . . . ...

p1,m p2,m . . . pn,m




r1

r2

...

rn

 (3.1)

There is an easy way to remember how this matrix is constructed: notice

that the first column of the matrix is precisely the vector w1 written in

terms of its coefficients in the basis {c1, . . . , cm}, the second column is

precisely the vector w2 written in terms of its coefficients in the basis

{c1, . . . , cm}, and so on, until the last column is precisely the vector wn

written in terms of its coefficients in the basis {c1, . . . , cm}.
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Notice something else about this matrix: it depends vitally on the choice

of the basis {b1, . . . , bn} for V and on the choice of the basis {c1, . . . , cm}
of X . For, our entire derivation of Equation 3.1 depended on our writing

u as a linear combination of the vectors {b1, . . . , bn} and the vi as a linear

combination of the vectors {c1, . . . , cm}. A different choice of basis for

V or a different choice of basis for X would have led to different linear

combinations, hence to a different matrix in Equation 3.1 above.

We refer to this matrix as the matrix of the linear transformation f in

the bases {b1, . . . , bn} for V and {c1, . . . , cm} for X . (If V = X and

we use the same basis to describe both vectors and their images under

f , then we simply refer to this matrix as the matrix of f in the basis

{b1, . . . , bn}.) Since each linear transformation is uniquely determined

by the wi = f (bi), and since the wi can be written uniquely as a linear

combination of the basis vectors {c1, . . . , cm}, and since these unique

coefficients of the cj then become the i-th column in the matrix, we find

that each linear transformation uniquely determines an m × n matrix

with coefficients in F , by this procedure.
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But more is true. Since an arbitrary m × n matrix with coefficients

in F determines a collection of vectors w1, . . . , wn from X (with the

i-th column representing wi), and since a linear transformation f can be

constructed from these vectors w1, . . . , wn by defining f (r1b1 + · · · +
rnbn) = r1w1 + · · ·+ rnwn, we find that an arbitrary m×n matrix with

coefficients in F leads to a linear transformation f : V → X . Thus, the

set of linear transformations f : V → X is in one-to-one correspondence

with m× n matrices with coefficients in F .

This is all very pretty!



CHAPTER 3. VECTOR SPACES 340

Question 3.82.3

For practice with a concrete example, think about the following:

1. If you are given that a linear transformation f : R2 → R3

sends the vector i = (1, 0) to the vector (1, 2, 0) and the vector

j = (0, 1) to the vector (2, 1, 3), what does f do to an arbitrary

vector (a, b) in R2?

2. What is the matrix of f with respect to the basis {i, j} of R2

and the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R3?

3. What is the matrix of f with respect to the basis {i,w =

(1/
√

2, 1/
√

2)} of R2 (see Example 3.26) and the basis

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R3? (Hint: What does f do

to w?)
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Question 3.82.4

What are the coordinates, in the standard basis for R3 (see Example

3.27), of the vector xi + yj, after it undergoes the linear transfor-

mation f : R2 → R3 given by the matrix
a b

c d

e f


where the matrix is written with respect to the basis {i,w =

(1/
√

2, 1/
√

2)} of R2 and the basis {(1, 0, 0), (−1, 1, 0), (0,−1, 1)}
of R3? (See Exercise 3.27.1 for why {(1, 0, 0), (−1, 1, 0), (0,−1, 1)}
is a basis of R3.)

Question 3.82.5

How will the treatment in this example change if either V or X

(or both) were to be infinite-dimensional F -vector spaces? (See the

remarks on page 367 in the notes for some hints.)
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Example 3.83

Let V be an F -vector space. The map f : V → V that sends any v ∈ V
to 0 is a linear transformation.

Question 3.83.1

If V is n-dimensional with basis {b1, . . . , bn}, what is the matrix of

f with respect to this basis?

Example 3.84

Let V be an F -vector space, and let W be a subspace. The map f :

W → V defined by f (w) = w is a linear transformation.

Question 3.84.1

Assume that W is m-dimensional and V is n-dimensional. Pick

a basis B = {b1, . . . , bm} of W and expand to a basis C =

{b1, . . . , bm, bm+1, . . . , bn} of V . What is the matrix of f with re-

spect to the basis B of W and the basis C of V ?
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Example 3.85

Let F be a field, and view Mn(F ) as a vector space over F (see Example

3.5). Now view F as an F -vector space (see Example 3.7: note that F

is trivially an extension field of F ). Then the function f : Mn(F )→ F

that sends a matrix to its trace is a linear tranformation. (Recall that

the trace of a matrix is the sum of its diagonal entries.)

To prove this, note that this is really a function that sends basis vectors

of the form ei,i to 1 and ei,j (i 6= 0, j 6= 0) to 0, and an arbitrary matrix∑
i,jmi,jei,j to m1,1 · 1 + · · · + mn,n · 1. Now apply Lemma 3.82.1 to

conclude that f must be a linear transformation.

See Exercise 3.100 at the end of the chapter.

Example 3.86

Let V be a vector space over a field F and let W be a subspace. Assume

that V is finite-dimensional (for simplicity). Let dimF (V ) = n, and

dimF (W ) = m. Let {b1, . . . , bm} be a basis for W , and let us expand

this to a basis {b1, . . . , bm, bm+1, . . . , bn} (see Theorem 3.49). Given any

v ∈ V , we may therefore write v = f1b1 + · · · + fmbm + fm+1bm+1 +



CHAPTER 3. VECTOR SPACES 344

· · · fnbn} for unique scalars fi ∈ F .

Exercise 3.86.1

Show that the function π : V → W that sends any v expressed as

above to the vector f1b1+· · ·+fmbm in W is a linear transformation

from V to W .

Exercise 3.86.2

Is π surjective? Describe a basis for ker(π).
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Exercise 3.86.3

The basis {b1, . . . , bm} of W can be expanded to a basis

{b1, . . . , bm, bm+1, . . . , bn} of V in many different ways (see Exam-

ple 3.50). The definition of π above depends on which choice of

{bm+1, . . . , bn} we make. For example, take V = R2 and W the

subspace represented by the x-axis. Take the vector b1 = i (= (1, 0))

as a basis for W . Show that the definition of π depends crucially

on the choice of vector b2 used to expand {b1} to a basis for R2 as

follows: Select b2 in two different ways and show that for suitable

v ∈ R2, π(v) defined with one choice of b2 will be different from

π(v) defined by the other choice of b2.

We now come to isomorphisms between vector spaces. In analogy with

ring isomorphisms, vector space isomorphisms capture the notion that the

vector space structures in two spaces are “essentially the same” without even

having to divide out by any subspace. As with rings, we need a couple of

lemmas first:
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Lemma 3.87. Let V and X be two vector spaces over a field F and let

f : V → X be a linear transformation. Then f is an injective function

if and only if ker(f ) is the zero subspace.

Exercise 3.87.1

The proof of this is very similar to the proof of the corresponding Lemma

2.99 in Chapter 2: study that proof and write down a careful proof of

Lemma 3.87 above.

Our next lemma is analogous to Lemma 2.100 of Chapter 2:

Lemma 3.88. Let V and X be two vector spaces over a field F and let

f : V → X be a linear transformation. Write f (V ) for the image of V

under f . Then f (V ) is a subspace of X.

Proof. We will apply Corollary 3.56 to f (V ). By Lemma 3.77, 0X ∈ f (V ),

so f (V ) is nonempty. Now take any w1, w2 in f (V ), and any r1, r2 in

F . We wish to show that r1w1 + r2w2 is also in f (V ). Since w1 ∈ f (V ),

w1 = f (v1) for some v1 ∈ V . Similarly, w2 = f (v2) for some v2 ∈ V . Then,



CHAPTER 3. VECTOR SPACES 347

f (r1v1 + r2v2) = f (r1v1) + f (r2v2) = r1f (v1) + r2f (v2) = r1w1 + r2w2, as

desired.

2

Lemma 3.88 above allows us to make a quick definition:

Definition 3.89

Let V and X be two vector spaces over a field F and let f : V → X be

a linear transformation. The rank of f is defined to be the dimension

of f (V ) as an F -vector space.

It is tempting to prove the following two easy results before proceeding

to vector space isomorphisms:

Lemma 3.90. Let V and X be vector spaces over a field F and let f :

V → X be a linear transformation. Let B be a basis for V . Then the

vectors {f (b) | b ∈ B} span f (V ).

Proof. Any vector in f (V ) is of the form f (v) for some v ∈ V . Since B

is a basis for V , v = r1b1 + · · · rnbn for some scalars r1, . . . , rn and some

vectors b1, . . . , bn from B. Then, f (v) = r1f (b1) + · · · + rnf (bn), showing
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that every vector in f (V ) is expressible as a linear combination of the vectors

{f (b) | b ∈ B}, as desired. 2

Lemma 3.91. Continuing with the notation of Lemma 3.90, assume fur-

ther that f is injective. Then the vectors {f (b) | b ∈ B} form a basis

for f (V ).

Proof. With the additional assumption that f is injective, we need to show

that the vectors {f (b) | b ∈ B} are linearly independent, since we already

know from Lemma 3.90 that they span f (V ). Assume that r1f (b1) + · · · +
rnf (bn) = 0X for some scalars r1, . . . , rn and some vectors b1, . . . , bn from

B. Since f is a linear transformation, the left side is just f (r1b1 + · · ·+rnbn).

By the injectivity of f , we find r1b1 + · · · + rnbn = 0V . But since the bi are

linearly independent in V , r1, . . . , rn must all be zero, showing that the

vectors {f (b) | b ∈ B} are indeed linearly independent. 2

We now have the following, completely in analogy with rings:
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Definition 3.92

Let V and X be vector spaces over a field F , and let f : V → X be a

linear transformation. If f is both injective and surjective, then f is said

to be an isomorphism between V and X . Two vector spaces V and X

are said to be isomorphic (written V ∼= X) if there is some function

f : V → X that is an isomorphism between V and X .

Example 3.93

Any two vector spaces over the same field F of the same dimension n are

isomorphic. For, if V andW are two vector spaces over F both of dimen-

sion n, and if, say, {v1, v2, . . . , vn} is a basis for V and {w1, w2, . . . , wn}
is a basis for W , then the function f : V → W defined by f (v1) = w1,

f (v2) = w2, . . . , f (vn) = wn, and f (r1v1 + r2v2 + · · · + rnvn) =

r1w1 + r2w2 + · · · + rnwn is an F -linear transformation, by Lemma

3.82.1. This map is injective: if v = r1v1 + r2v2 + · · ·+ rnvn is such that

f (v) = 0, then this means r1w1 + r2w2 + · · ·+ rnwn = 0, and since the

wi form a basis for W , each ri must be zero, so v must be zero. Also,

f is surjective: clearly, given any w = r1w1 + r2w2 + · · · + rnwn in W ,
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the vector v = r1v1 + r2v2 + · · · + rnvn maps to w under f . Thus, f is

an isomorphism between V and W .

Remark 3.93.1

If f : V → W is an isomorphism between two vector spaces V

and W over a field F then, since f provides a bijection between

V and W , we may define f−1 : W → V by f−1(w) equals that

unique v ∈ V such that f (v) = w. Clearly, the composite function

V
f→ W

f−1→ V is just the identity map on V , and similarly, the

composite function W
f−1→ V

f→ W is just the identity map on W .

But more: the map f−1 is a linear transformation from W to V .

Exercise 3.93.2

If f : V → W is an isomorphism, show that the map f−1 of Remark

3.93.1 above is a linear transformation from W to V .

The following is analogous to Theorem 2.107 of Chapter 2:
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Theorem 3.94. (Fundamental Theorem of Linear Transformations of

Vector Spaces.) Let V and X be vector spaces over a field F . Let

f : V → X be a linear transformation, and write f (V ) for the image of

V under f . Then the function f̃ : V/ker(f ) → f (V ) defined by f̃ (v +

ker(f )) = f (v) is well-defined, and provides an isomorphism between

V/ker(f ) and f (V ).

Proof. The proof is similar to the proof of 2.107 of Chapter 2. We first

check that f̃ is well-defined. Suppose u + ker(f ) = v + ker(f ). Then

u − v ∈ ker(f ), so f (u − v) = f (u) − f (v) = 0X , so f (u) = f (v). Thus,

f̃ (u + ker(f )) = f̃ (v + ker(f )), i.e., f̃ is well-defined.

Now let us apply Lemma 3.76: We have f̃ (r1(v1 + ker(f )) + r2(v2 + ker(f ))) =

f̃ ((r1v1 + ker(f )) + (r2v2 + ker(f ))) = f̃ ((r1v1 + r2v2) + ker(f )) = f (r1v1+

r2v2) = r1f (v1) + r2f (v2) = r1f̃ (v1 + ker(f )) + r2f̃ (v2 + ker(f )). Hence f̃

is a linear transformation.

Exercise 3.94.1

Justify all the equalities above.
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We check that f̃ is surjective as a function from V/ker(f ) to f (V ). Note

that any element of f (V ) is, by definition, of the form f (v) for some v ∈ V .

But then, by the way we have defined f̃ , we find f (v) = f̃ (v + ker(f )), so

indeed f̃ is surjective.

Finally, we check that f̃ is injective. Suppose that v+ker(f ) is in ker(f̃ ).

Thus, f̃ (v+ ker(f )) = 0X . Since f̃ (v+ ker(f )) = f (v), we find f (v) = 0X .

Hence v ∈ ker(f ). But this means that the coset v + ker(f ) equals the

coset ker(f ) (why?), so v + ker(f ) is the zero element of V/ker(f ). Thus

f̃ is injective.

Putting this together, we find that f̃ provides an isomorphism between

V/ker(f ) and f (V ).

2

We now study the relation between the dimensions of V , ker(f ) and

f (V ) in the case where V is finite-dimensional. But first, let us state a

consequence of Lemmas 3.90 and 3.91:

Corollary 3.95. Let V and X be vector spaces over a field F and let

f : V → X be a linear transformation. If f is an isomorphism between
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V and X, then f sends any basis of V to a basis of X.

Exercise 3.95.1

Convince yourselves that this follows from Lemmas 3.90 and 3.91!

We are now ready to prove:

Theorem 3.96. Let V and X be vector spaces over a field F and let

f : V → X be a linear transformation. Assume that V is finite-

dimensional. Then dimF (V ) = dimF (f (V )) + dimF (ker(f )).

Proof. The proof is a combination of Theorem 3.94, Lemma 3.72, and Corol-

lary 3.95. Start with a basis {b1, . . . , bm} of ker(f ), and expand this to

a basis {b1, . . . , bm, bm+1, . . . , bn} of V . (Thus, dimF (ker(f )) = m and

dimF (V ) = n.) Then, according to that lemma, the set {bm+1+ker(f ), . . . , bn+

ker(f )} is a basis for V/ker(f ). By Theorem 3.94, the function f̃ : V/ker(f )→
f (V ) defined by f̃ (v + ker(f )) = f (v) is an isomorphism, so by Corollary

3.95 the set of vectors {f̃ (bm+1 +ker(f )), . . . , f̃ (bn+ker(f ))} forms a basis

for f (V ). In particular, the dimension of f (V ) must be the size of this set,

which is n−m. It follows that dimF (V ) = dimF (f (V )) + dimF (ker(f )).
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2
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3.5 Further Exercises

Exercise 3.97. Starting from the vector space axioms, prove that the prop-

erties listed in Remark 3.12 hold for all vector spaces. (Hint: You should get

ideas from the solutions to the corresponding Exercise 2.111 of Chapter 2: the

proofs of the first three properties are quite similar in spirit. As for the last

property, look to f−1 for help!)

Exercise 3.98. Prove that the polynomials 1, 1 + x, (1 + x)2, (1 + x)3, . . .

also form a basis for R[x] as a R–vector space. (Hint: To show that these

polynomials span R[x], it is sufficient to show that the polynomials 1, x, x2,

. . . are in the linear span (see Example 3.65 above) of 1, 1 + x, (1 + x)2,

(1 + x)3, . . . (Why?) The vector 1 is of course in the linear span. Assuming

inductively that the vectors 1, x, . . . , and xn−1 are in the linear span, show

that xn is also in the linear span by considering the binomial expansion of

(1 + x)n. As for linear independence, suppose that
n∑
i=0

di(1 + x)i = 0. You

may assume that dn 6= 0 (why?) Now expand each term (1 + x)i above and

consider the coefficient of xn. What do you find?)

If you find the hint too computational, you can also establish this result by

invoking Exercise 3.106 ahead and Exercise 2.106.2 in Chapter 2. (However,

note that Exercise 2.106.2 in turn is computational, so this merely shifts all

the computations to a different place!)
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Exercise 3.99. Show that the matrices ei,j and
√

2ei,j (1 ≤ i, j ≤ 2) form

a basis for M2(Q[
√

2]) considered as a Q–vector space. (
√

2ei,j is the 2 × 2

matrix with
√

2 in the (i, j) slot, and zeros in the remaining slots.) Now

discover a basis for M2(C) considered as a vector space over R.

Exercise 3.100. Show that the set of all matrices in Mn(R) whose trace

is zero is a subspace of Mn(R) by exhibiting this space as the kernel of a

suitable homomorphism that we have considered in the text. Use Theorem

3.96 to prove that this subspace has dimension n2 − 1. Discover a basis for

this subspace.

Exercise 3.101. Let V be an F -vector space. So far, we have considered

individual linear tranformations of the form f : V → V ; this exercise deals

with the collection of all such F -linear transformations. Let EndF (V ) denote

the set of all F -linear transformations from V to V . (“End” is short for the

word “endomorphism,” which is another word for a homomorphism from one

(abelian) group to itself, while the subscript F indicates that we are considering

those (abelian) group homomorphisms that are in addition F -linear—see (5)

in Remark 3.75 earlier in this chapter.)

1. Let f and g be two elements in EndF (V ). Consider the function,

suggestively denoted “f + g” that is obtained by defining (f + g)(v) =

f (v) + g(v). Show that f + g is also an F -linear transformation, and

hence is an element of EndF (V ).
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2. Show that EndF (V ), with this definition of addition of two linear trans-

formations, is an abelian group. What is the identity element in this

group? How do you define the inverse with respect to addition of any

f ∈ EndF (V )?

3. Let f ◦ g denote the usual composition of functions on V , defined by

(f ◦g)(v) = f (g(v)). Show that f ◦g is also an F -linear transformation,

and hence is an element of EndF (V ).

4. Show that by thinking of function composition “◦” as a multiplication

operation on EndF (V ), the set (EndF (V ),+, ◦) becomes a ring. What

is the multiplicative identity in this ring? Is this ring commutative?

(What if the dimension of V is 1?)

Exercise 3.102. Prove that an element f ∈ EndF (V ) (see Exercise 3.101

above) is invertible if and only if f is an isomorphism. (Hint: For one direction

of this problem, Remark 3.93.1 and Exercise 3.93.2 may be helpful.)

Exercise 3.103. Now that you have shown that EndF (V ) is a ring in Exercise

3.101 above, here is an example that shows ab = 1 doesn’t imply ba = 1 in

an arbitrary ring! (See Definition 2.44 in Chapter 2.)

Let V be a vector space with a countably infinite basis vi, i ∈ Z. (For

example, see Exercise 3.63.2 earlier in this chapter.) Let T be the F -linear

transformation that sends vi to vi+1 for i = 1, 2, . . . , and let S be the linear

transformation that sends vi to vi−1 for i = 1, 2, . . . with the understanding
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that v0 means the zero vector. (Why are these linear transformations? See the

remarks on page 367 on how to define linear transformations between infinite-

dimensional spaces.) Show that in the ring EndF (V ), the product ST = 1

but the product TS sends v1 to zero and hence is not 1.

Exercise 3.104. Let V be an F -vector space of dimension n with basis

{b1, . . . , bn}. Recall from Example 3.82 how one can assign to each F -linear

transformation T on V the (n × n) matrix of T with respect to the ba-

sis {b1, . . . , bn}. Write MT for the matrix in Mn(F ) that corresponds to T

under this assignment. Study the addition and multiplication operations on

EndF (V ) in Exercise 3.101 above, and prove that the map M : EndF (V )→
Mn(F ) that sends T to MT provides a ring isomorphism between EndF (V )

and Mn(F ).

Exercise 3.105. Let K/F be a field extension. By Example 3.7, K may be

viewed as an F -vector space. Assume that the dimension of K as an F -vector

space is n. This exercise shows how K may be realized as a subring of Mn(F ),

thus generalizing Example 2.105 in Chapter 2.

1. For each k ∈ K, write lk for the map from K to K that sends any

x ∈ K to kx. Show that lk is an F -linear transformation from K to K.

2. Recall from Exercise 3.101 that EndF (V ), the set of all F -linear trans-

formations of an F -vector space V , is a ring, under the operation of



CHAPTER 3. VECTOR SPACES 359

composition of functions. In particular, viewing K as an F -vector space,

EndF (K) is a ring, and the linear transform lk of Part (1) above is an

element of this ring. Show that the map l : K → EndF (K) that sends

k ∈ K to the linear transform lk is an injective ring homomorphism

from K to EndF (K).

3. Let {b1, . . . , bn} ⊆ K be an F -basis of K. The linear transformation lk
corresponds to a matrix Mlk with respect to the basis {b1, . . . , bn} ⊆ K

(as in Example 3.82). Show that the map from K to Mn(F ) that sends

k to Mlk is a ring homomorphism.

(Hint: By Exercise 3.104 above, EndF (K) is isomorphic to Mn(F ) via

the map M that sends a linear transform T to its matrix MT written in

the basis {b1, . . . , bn}. Compose the map l : K → EndF (K) with the

map M : EndF (K)→Mn(F ).)

4. Show that this ring homomorphism in (3) above is injective. Conclude

that K is isomorphic to a subring of Mn(F ) using Lemma 2.100 and

Theorem 2.107 of Chapter 2.

The image of K under the homomorphism in (3) above is called the regular

representation of K in Mn(F ).

Exercise 3.106. Let R be a ring containing a field F , so R is an F -vector

space (see Example 3.8 earlier in this chapter). Let f : R → R be a ring
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isomorphism that acts as the identity on F (i.e., f (r) = r for all r ∈ F ).

Show that if B ⊂ R is an F -basis of R, then the set f (B) = {f (b) | b ∈ B}
is also an F -basis of R.

Exercise 3.107. Recall from Exercise 2.120 in Chapter 2 that the set S of all

functions from R to R is a ring under the operation of pointwise addition and

multiplication of functions. Since, by that same exercise, the set of constant

functions is a subring of S that is isomorphic to R, S carries the natural

structure of a R-vector space. (Explicitly, the vector space structure is given

by the map R × S → S that sends (r, f ) to the function sr · f , where sr is

as in Exercise 2.120. More simply, however, the product of the real number r

and the function f (x) is the function, suggestively denoted r · f , defined by

(r · f )(x) = rf (x).)

1. Which of the following are subspaces of S?

(a) {f ∈ R | f (1) = 0}
(b) {f ∈ R | f (0) = 1}
(c) The set of all constant functions.

(d) {f ∈ R | f (x) ≥ 0 for all x ∈ R}

2. Show that the set {1, sin2(x), cos2(x)} is linearly dependent.

3. Is the set {ex, 1, x, x2, x3, . . . } linearly dependent or independent?
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Exercise 3.108. Prove Proposition 3.49 without the assumption that V is

finite-dimensional. (See the notes on page 516 in Chapter 4.5 in the Appendix

for hints.)

Exercise 3.109. This exercise shows that Lemma 3.72 holds even for infinite-

dimensional spaces. Let V be a vector space over a field F and let W be

a subspace. Let B be a basis for W . Expand this to a basis S of V (see

Proposition 3.49, as well as the remarks on page 516 in Chapter 4.5 in the

Appendix). Write T for S−B (so S is the disjoint union of B and T ). Prove

that the set (of equivalence classes of vectors) {t+W | t ∈ T} is a basis for

the quotient space V/W .

Exercise 3.110. If V is a finite-dimensional vector space and if W is a sub-

space of V , prove that the dimension of W is no bigger than the dimension

of V . Now prove that if the dimension of W and V are equal, then W = V .

Exercise 3.111. Let V be a vector space over a field F , and let U and W be

two subspaces.

1. Show that U ∩W is a subspace of V . (Is U ∪W a subspace of V ?)

2. Denote by U + W the set {u + w | u ∈ U and w ∈ W}. Show that

U + W is a subspace of V .
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3. Now assume that V is finite-dimensional. The aim of this part is to

establish the following:

dim(U + W ) = dim(U) + dim(W )− dim(U ∩W )

(a) Let {v1, . . . , vp} be a basis for U ∩ W (so dim(U ∩ W ) = p).

Expand this to a basis {v1, . . . , vp, u1, . . . , uq} of U , and also to

a basis {v1, . . . , vp, w1, . . . , wr} of W (so dim(U) = p + q and

dim(W ) = p+r). Show that the setB = {v1, . . . , vp, u1, . . . , uq, w1, . . . , wr}
spans U + W .

(b) Show that the set B is linearly independent. (Hint: Assume that

we have the relation f1v1 + · · · + fpvp + g1u1 + · · · + gquq +

h1w1 + · · · + hrwr = 0. Rewrite this as g1u1 + · · · + gquq =

−(f1v1 + · · · + fpvp + h1w1 + · · · + hrwr). Observe that the left

side is in U while the right is in W , so g1u1 + · · · + gquq must be

in U ∩W . Hence, g1u1 + · · ·+ gquq = j1v1 + · · ·+ jpvp for some

scalars j1, . . . , jp. Why does this show that the gi must be zero?

Now proceed to show that the fi and the hi must also be zero.)

(c) Conclude that dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

(d) Prove that any two 2-dimensional spaces of R3 must intersect in a

space of dimension at least 1.

Exercise 3.112. Show that the nth Bernstein PoylnomialsB
(n)
i (x) =

(
n
i

)
xi(1−

x)n−i, (i = 0, 1, . . . , n) form a basis for Rn[x] (n ≥ 1) as follows:
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1. Show that 1 =
∑n

i=0B
(n)
i .

2. The equation in part 1 above continues to hold if we replace n by n− 1

everywhere. (Why?) Make this replacement, multiply throughout by x,

and derive the relation x =
∑n

i=0(i/n)B
(n)
i . (Hint: you will need to use

the relation
(
n−1
i−1

)
= (i/n)

(
n
i

)
. Why does this last relation hold?)

3. Similarly, for k = 2, . . . , n − 1, show that xk =
∑n

i=0(i(i − 1) · · · (i −
k + 1)/n(n− 1) · · · (n− k + 1))B

(n)
i .

4. Now conclude that the B
(n)
i span Rn[x].

5. Use Proposition 3.51 above to conclude that the B
(n)
i form a basis.

These Bernstein polynomials find applications in diverse areas of mathematics,

as well as in various applied fields, such as computer graphics! For instance,

in advanced calculus, they are useful in showing that any continuous function

on an interval [a, b] can be approximated arbitrarily closely by a polynomial

function. (This is known as the Weierstrass Approximation Theorem.) In

computer graphics, they are used to fit, through a given set of points, a curve

that is smooth and has minimal “wiggle,”and as well, to provide convenient

handles by which the user can then control the shape of this curve.
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Notes

Remarks on Example 3.5 It is worth remarking that our definition of

scalar multiplication is a very natural one. First, observe that we can consider

R to be a subring of Mn(R) in the following way: the set of matrices of the

form diag(r), as r ranges throughR, is essentially the same asR (see Example

2.103 in Chapter 2). (Observe that this makes the set of diagonal matrices of

the form diag(r) a field in its own right!) Under this identification of r ∈ R
with diag(r), what is the most natural way to multiply a scalar r and a vector

(ai,j)? Well, we think of r as diag(r), and then define r · (ai,j) as just the

usual product of the two matrices diag(r) and (ai,j). But, as you can check

easily, the product of diag(r) and (ai,j) is just (rai,j)! It is in this sense that

our definition of scalar multiplication is natural—it arises from the rules of

matrix multiplication itself. Notice that once R has been identified with the

subring of Mn(R) consisting of the set of matrices of the form diag(r), this

example is just another special case of Example 3.8.
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Remarks on Example 3.10 (V,+) remains an abelian group. This does

not change when we restrict our attention to the subfield F . So we only need

to worry about what the new scalar multiplication ought to be. But there is a

natural way to multiply any element f of F with any element v of V : simply

consider f as an element of K, and use the multiplication already defined

between elements of K and elements of V ! The scalar multiplication axioms

clearly hold: for any f and g in F and any v and w in V , we may first think of

f and g as elements of K, and since the scalar multiplication axioms hold for

V viewed as a vector space over K, we certainly have f ·(v+w) = f ·v+f ·w,

(f + g) · v = f · v + g · v, (fg) · v = f · (g · v), and 1 · v = v.

Remarks on Example 3.34 This example is a bit tricky. Why are the ei

not a basis? They are certainly linearly independent, since if
n∑
i=0

ciei = 0 for

some scalars ci ∈ F , then the tuple (c0, c1, . . . , cn, 0, 0, . . . ) must be zero,

but a tuple is zero if and only if each of its components is zero. Thus, each of

c0, c1, . . . , cn must be zero, proving linear independence. However, the ei do

not span
∏∞

0 F , contrary to what one might expect. To understand this,

let us look at something that has been implicit all along in the definition of
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linear combination. The ei would span
∏∞

0 F if every vector in
∏∞

0 F could

be written as a linear combination of elements of the set {e0, e1, e2, . . . }.
Now notice that whenever we consider linear combinations, we only consider

sums of a finite number of terms. Hence, a linear combination of elements

of the set {e0, e1, e2, . . . } looks like ci1ei1 + ci2ei2 + · · · + cinein for some

finite n. It is clear that any vector that is expressible in such a manner

will have only finitely many components that are nonzero. (These will be at

most the ones at the slots i1, i2, . . . , in; all other components will be zero.)

Consequently, the vectors in
∏∞

0 F in which infinitely many components are

nonzero (for example, the vector (1, 1, 1, . . . )), cannot be expressed as linear

combinations of the ei.

On the other hand, see Exercise 3.63.2.

It is worth pointing out that infinite sums have no algebraic meaning.

Addition is, to begin with, a binary operation, that is, it is a rule that

assigns to a1 and a2 the element a1 + a2. This can be extended inductively

to a finite number of ai: for instance, the sum a1 + a2 + a3 + a4 + a5 is

defined as (((a1 + a2) + a3) + a4) + a5. (In other words, we first determine

a1 + a2, then we add a3 to this, then a4 to what we get from adding a3, and
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then finally a5 to what we got at the previous step.) While this inductive

definition makes sense for a finite number of terms, it makes no sense for an

infinite number of terms. To interpret infinite sums of elements, we really

need to have a notion of convergence (such as the ones you may have seen

in a course on real analysis). Such notions may not exist for arbitrary fields.

Remarks on the proof Theorem 3.70 The reason why the proofs that

(V/W,+) and (R/I,+) are abelian groups are so similar is that what we are

essentially proving in both is that if (G,+) is an abelian group and if H is a

subgroup, then the set of equivalence classes of G under the relation g1 ∼ g2

if and only if g1− g2 ∈ H with the operation [g1] + [g2] = [g1 + g2] is indeed

an abelian group in its own right! We will take this up in Chapter 4 ahead.

Remarks on linear transformations f : V → X when V or X are

not necessarily finite-dimensional Similar considerations will apply: we

let S = {bβ | β ∈ B} be a basis for V , where B is some index set. Let

{wβ | β ∈ B} be arbitrary vectors in X . Every vector in V can be uniquely

written as r1bβ1 + · · · + rkbβk , where the ri are scalars from the field F
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and {bβ1, . . . , bβk} is some finite subset of S. Then, just as in the finite-

dimensional case, the function f : V → X that sends r1bβ1 + · · · rkbβk to

r1wβ1 + · · · rkwβk is a linear transformation, and all linear transformations

from V to X are given in this way. Let T = {cγ | γ ∈ C} be a given basis of

X (again, C is some index set). The matrix representation of f with respect

to the basis S of V and T of X is a |B|× |C| matrix (where |B| and |C| are

the cardinality of the possibly infinite sets B and C), with the rows indexed

by the basis vectors in T and the columns indexed by the basis vectors in S.

The column with index β represents the image of bβ under f , written as a

column vector, whose entry in the row indexed by γ is the coefficient of cγ (in

the expression of f (bβ) as a linear combination of the cγ). Note that since

any vector is always expressed as a finite linear combination of the basis

vectors in C (see the remarks on Example 3.34 on page 365), each column of

the matrix will have only finitely-many nonzero entries. Conversely, given

any |B|×|C| matrix with entries in F in which each column has only finitely

many nonzero entries, one can defined a linear transformation f : V → X

exactly as in Example 3.82, with the column indexed by β corresponding to

f (bβ).
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4.1 Groups: Definition and Examples

Of all the algebraic objects that we have considered in this course–groups,

rings, fields, and vector spaces–groups are technically the most elementary:

they are sets with just one binary operation, and there are just three axioms

that govern them: (i) the binary operation should be associative, (ii) there

should be an identity for this operation, and (iii) every element should have

an inverse with respect to this operation (See Definition 2.2 in Chapter 2).

Yet, we have reserved our study of groups to the last and have started with

rings instead. The primary reason for this is that even if they are technically

more complicated than groups, rings are a much more familiar object to

most students who are seeing abstract algebra for the first time: after all,

the “number systems” that we have grown up with and are so intimate

with, namely the integers, the rationals, the reals, and the complexes, are

all examples of rings. Rings are thus, for many, a natural entry point into
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algebra. In the same vein, examples like R2 and R3 make vector spaces also

a familiar object, and their study is therefore a natural candidate to follow

our study of rings.

However, let neither their elementary definition nor the location of this

chapter in this book lull you into underestimating the importance of groups:

groups are vitally important in mathematics, and they show up in just about

every nook and corner of the subject. Although this may not be obvious from

the examples that we have seen so far (which have all been groups of the form

(R,+), where R is a ring and + is the addition operation on the ring, or of

the form (R∗, ·), the set of invertible elements of a ring R under multiplica-

tion), groups are objects by which one measures symmetry in mathematical

objects. Of course, what a mathematician means by symmetry is something

very abstract, but it is merely a generalization (albeit a vast one) of what

people mean by symmetry in day-to-day contexts. Since symmetry is so

central to mathematics (one view would have it that all of mathematics is a

study of symmetry!), it should come as no surprise that groups are central

to mathematics.

Here is what a mathematician would mean by symmetry. Suppose you
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have a set, and suppose the set has some structure on it. To say that the

set has some structure is merely to say that it has some specific feature that

we are focusing on for the moment: the set could have lots of other features

as well, but we will ignore those temporarily. A symmetry of a set with

a given structure is merely a bijective correspondence from the set to itself

which preserves the structure, i.e., a one-to-one onto map from the set to

itself which preserves the feature that we are considering. The set of all such

one-to-one and onto maps whose inverse also preserves the feature that we

are considering constitute a group, which is called the symmetry group of

the set for the given structure, and both the size and the nature of this group

then quantify the kind of symmetry that the set with structure has.

Now this is too advanced for a first reading, so we will postpone consid-

eration of sets with structure and their symmetry groups to the notes at the

end of the chapter (see Page 477). But first, let us repeat the definition of

groups from Chapter 2, just so to have the definition within this chapter:
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Definition 4.1

(Repeat of Definition 2.2) A group is a set S with a binary operation

“∗” : S × S → S such that

1. ∗ is associative, i.e., a ∗ (b ∗ c =====) = (a ∗ b) ∗ c for all a, b,

and c in S,

2. S has an identity element with respect to ∗, i.e., an element “id”

such that a ∗ id = id ∗ a = a for all a in S, and

3. every element of S has an inverse with respect to ∗, i.e., for every

element a in S there exists an element “a−1” such that a ∗ a−1 =

a−1 ∗ a = id.

To emphasize that there are two ingredients in this definition—the set

S and the operation ∗ with these special properties—the group is some-

times written as (S, ∗), and S is often referred to as a group with

respect to the operation ∗.

Recall from Chapter 2 (Definition 2.3) that an abelian group is one in
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which the group operation is commutative, i.e., a ∗ b = b ∗ a for all a and b

in the group.

Here are some examples of groups other than those that appear as the

additive group of a ring or the multiplicative group of a field:
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4.1.1 Symmetric groups

Example 4.2

Consider the set Σ3 = {1, 2, 3}, and consider one-to-one and onto maps

from Σ3 to itself: in more common language, such maps are known as

permutations of {1, 2, 3}. Let us, for example, write
(

1 2 3
2 3 1

)
for the

permutation that sends 1 to 2, 2 to 3, and 3 to 1 (so we write the image

of an element under the element, we will call this the stack notation).

Then it is easy to see that there are exactly six permutations, and they

are listed in the following table (where we have given a name to each

permutation):
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Σ3 Permutations

id
(

1 2 3
1 2 3

)
r1

(
1 2 3
2 3 1

)
r2

(
1 2 3
3 1 2

)
f1

(
1 2 3
1 3 2

)
f2

(
1 2 3
3 2 1

)
f3

(
1 2 3
2 1 3

)
Now let us see how these permutations compose. You will observe that

r1 ◦r1 takes 1 to 2 under the first application of r1 and then 2 to 3 under

the second application of r1. Likewise, r1 ◦ r1 takes 2 to 3 and then to

1, and similarly, 3 to 1 and then to 2. The net result: r1 ◦ r1 is the

permutation
(

1 2 3
3 1 2

)
, that is, r1 ◦ r1 = r2!

Now play with r1◦f1 and compare it with f1◦r1. When computing r1◦f1,

for instance, we observe that 1 goes to 1 under f1, and then 1 goes to 2

under r1. Computing fully, we find that r1◦f1 is the permutation
(

1 2 3
2 1 3

)
,

that is, r1 ◦ f1 = f3. Computing f1 ◦ r1 similarly, we find f1 ◦ r1 = f2!
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Computing fully, we find the following table that describes how the six

permutations of Σ3 compose:

S3 Composition

◦ id r1 r2 f1 f2 f3

id id r1 r2 f1 f2 f3

r1 r1 r2 id f3 f1 f2

r2 r2 id r1 f2 f3 f1

f1 f1 f2 f3 id r1 r2

f2 f2 f3 f1 r2 id r1

f3 f3 f1 f2 r1 r2 id

Now observe the following: (i) The composition of two permutations

of Σ3 is another permutation of Σ3: we computed this out explicitly

above, but we already would have known this from an earlier exposure

to functions: if f : S → S and g : S → S are functions (here S is

some set) and if both f and g are bijective, then both compositions
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(g ◦ f ) and (f ◦ g) from S to S are also bijective, (ii) Composition of

functions is an associative operation: this too would be familiar to us

from our earlier exposure to functions: if f : S → S, g : S → S, and

h : S → S are three functions on some set S, then for any s ∈ S,

((f ◦ g) ◦ h)(s) = (f ◦ g)(h(s)) = f (g(h(s))), while (f ◦ (g ◦ h))(s) =

f ((g ◦ h)(s)) = f (g(h(s))), so indeed (f ◦ g) ◦ h = f ◦ (g ◦ h), (iii)

The permutation id acts as the identity element: this is clear from the

first row and the first column of the table above, and finally, (iv) Every

permutation of S3 has an inverse: r1 ◦ r2 = r2 ◦ r1 = id, id ◦ id = id,

f1◦f1 = id, f2◦f2 = id and f3◦f3 = id. Hence, the set of permutations

of Σ3 forms a group under composition. We denote this group as S3, and

call it the symmetric group on three elements. (S3 can be interpreted

as the set of symmetries of Σ3 with the trivial structure: see Example

4.96 in the notes at the end of the chapter.)

Observe something about this group: it is not a commutative group! For

instance, as we observed above, r1 ◦ f1 = f3 while f1 ◦ r1 = f2. We say

that the group is nonabelian.
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From now on we will suppress the “◦” symbol, and simply write fg for

the composition f ◦ g. Not only is there less writing involved, but it is

notation that we are used to: it is the notation we use for multiplication.

Continuing the analogy, we write f◦f as f 2, and so on, and we sometimes

write 1 for the identity (see Remark 4.22 ahead for more on the notation

used for the identity and the group operation). In this notation, note

that r3
1 = r3

2 = 1, f 2
1 = f 2

2 = f 2
3 = 1.

The table such as the one above that describes how pairs of elements in

a group compose under the given binary operation is called the group

table for the group.

Exercise 4.2.1

Use the group table to show that every element of S3 can be written

as ri1f
j
1 for uniquely determined integers i ∈ {0, 1, 2} and j ∈

{0, 1}.
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Example 4.3

Just as we considered the set of permutations of the set Σ3 = {1, 2, 3}
above, we can consider for any integer n ≥ 1, the permutations of the

set Σn = {1, 2, . . . , n}. This set forms a group under composition, just

as S2 and S3 did above.

Definition 4.3.1. The set of permutations of

Σn, which forms a group under composition,

is denoted Sn and is called the symmetric

group on n elements.

Exercise 4.3.1

Write down the set of permutations of the set Σ2 = 1, 2 and con-

struct the table that describes how the permutations compose. Ver-

ify that the set of permutations of Σ2 forms a group. Is it abelian?

This group is denoted S2, and called the symmetric group on two

elements.
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Exercise 4.3.2

Compare the group table of S2 that you get in the exercise above

with the table for (Z/2Z,+) on Page ??. What similarities do you

see?

Exercise 4.3.3

Prove that Sn has n! elements.

Exercise 4.3.4

Find an element g ∈ Sn such that gn = 1 but gt 6= 1 (see Remark

4.22 ahead on notation for the identity element) for any positive

integer t < n.

Here is an alternative notation that is used for a special class of permu-

tations, which we will call the cycle notation : Working for the sake of

concreteness in Σ5, consider the permutation that sends 1 to 3, 3 to 4,

and 4 back to 1, and acts as the identity on the remaining elements 2 and
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5. (This is the permutation we have denoted up to now as
(

1 2 3 4 5
3 2 4 1 5

)
.)

Notice the “cyclic” nature of this permutation: it moves 1 to 3 to 4 back

to 1, and leaves 2 and 5 untouched. We will use the notation (1, 3, 4)

for this special permutation and call it a “3-cycle.” In general, if a1, . . . ,

ad are distinct elements of the set Σn (so 1 ≤ d ≤ n), we will denote by

(a1, a2, . . . , ad) the permutation that sends a1 to a2, a2 to a3, . . . , ad−1

to ad, ad back to a1, and acts as the identity on all elements of Σn other

than these ai. We will refer to (a1, a2, . . . , ad) as a d-cycle or a cycle

of length d. A 2-cycle (a1, a2) is known as a transposition, since it only

swaps a1 and a2 and leaves all other elements unchanged. Of course a

1-cycle (a1) is really just the identity element since it sends a1 to a1 and

acts as the identity on all other elements of Σn.

Notice something about cycles: the cycle (1, 3, 4) is the same as

(3, 4, 1), as they both clearly represent the same permutation. More

generally, the cycle (a1, a2, . . . , ad) is the same as (a2, a3, . . . , ad, a1),

which is the same as (a3, a4, . . . , ad, a1, a2), etc. We will refer to

these different representations of the same cycle as internal cyclic rear-
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rangements.

Since a d-cycle is just a special case of a permutation, it makes perfect

sense to compose a d-cycle and an e-cycle: it is just the composition of

two (albeit special) permutations. For instance, in any Sn (for n ≥ 3), we

have the relation (1, 3)(1, 2) = (1, 2, 3) (check!). (We will see shortly—

Corollary 4.7 ahead—that every permutation in Sn can be “factored”

into transpositions.)

Exercise 4.3.5

Write the 4-cycle (1, 2, 3, 4) of Sn (here n is at least 4) as a product

of three transpositions.

Exercise 4.3.6

Show that any k cycle in Sn (here n ≥ k ≥ 2) can be written as

the product of k − 1 transpositions.

Two cycles (a1, . . . , ad) and (b1, . . . , be) are said to be disjoint if none

of the integers a1, . . . , ad appear among the integers b1, . . . , be and none
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of the integers b1, . . . , be appear among the integers a1, . . . , ad. For

example, in S6, the cycles s = (1, 4, 5) and t = (2, 3) are disjoint.

Notice something with this pair of permutations: s and t commute! Let

us rewrite s and t in the stack notation and compute:

st =

(
1 2 3 4 5 6

4 2 3 5 1 6

) (
1 2 3 4 5 6

1 3 2 4 5 6

)
=

(
1 2 3 4 5 6

4 3 2 5 1 6

)
ts =

(
1 2 3 4 5 6

1 3 2 4 5 6

) (
1 2 3 4 5 6

4 2 3 5 1 6

)
=

(
1 2 3 4 5 6

4 3 2 5 1 6

)
This computation is of course very explicit, but the intuitive idea behind

why s and t commute is the following: s only moves the elements 1, 4,

and 5 among themselves, and in particular, it leaves the elements 2 and 3

untouched. On the other hand, t swaps the elements 2 and 3, and leaves

the elements 1, 4 and 5 untouched. Since s and t operate on disjoint sets

of elements, the action of s is not affected by t and the action of t is not

effected by s. In particular, it makes no difference whether we perform

s first and then t or the other way around.

Essentially these same ideas lead to the following:
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Lemma 4.4. Let s and t be any two disjoint cycles in Sn. Then s and t

commute.

Example 4.5

Exercise 4.5.1

Prove this assertion carefully by writing s = (a1, . . . , ad) and

t = (b1, . . . , be) for disjoint integers a1, . . . , ad, b1, . . . , bd, and

writing out the effect of both st and ts on each integer 1, . . . , n.

(See the notes on page 488 for some hints.)

Now let us consider another feature of permutations: it turns out that

any permutation can be decomposed into a product of disjoint cycles!

To take an example, consider the permutation s =
(

1 2 3 4 5 6
3 2 1 6 4 5

)
. Let

us take the element 1 and follow it under repeated action of s: 1 goes

to 3 which goes back to 1. Thus, the effect of s on the subset {1, 3}
is to act as a swap, or a transposition. Now pick another element not

equal to either 1 or 3, say 2, and follow it under repeated action of s:
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2 stays untouched. Thus, the effect of s on the subset {2} is to act

as the identity. So now, pick an element not equal to either 1 or 3 or

2, say 4: we find 4 goes to 6 which goes to 5 which then goes back

to 4. Hence, the effect of s on the subset {4, 5, 6} is to act as the

3-cycle (4, 6, 5). It is now easy to see, either by explicitly computing,

or by using the same intuition as we did above for why disjoint cycles

commute, that s =
(

1 2 3 4 5 6
3 2 1 6 4 5

)
= (4, 6, 5)(2)(1, 3). (Since (2) is just

the identity permutation, it is typically omitted, and this product is

written as (4, 6, 5)(1, 3).

Notice that since disjoint cycles commute, (4, 6, 5)(1, 3) is the same as

(1, 3)(4, 6, 5). Notice, too, that had we started with, for instance, 6 and

followed it around, and then picked 3 and followed it around, we have

found s = (3, 1)(6, 5, 4). Any other decomposition of s into disjoint

cycles must be related to the first decomposition s = (4, 6, 5)(1, 3) in

a similar manner as these two above: either the cycles could have been

swapped, or internally, a cycle could have been rearranged cyclically

(such as (6, 5, 4) instead of (4, 6, 5)). This is because, the product
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of disjoint cycles simply follows, one by one, the various elements of

{1 2 3 4 5 6} under repeated action of s, and no matter in which manner

the cycles are written, the repeated action of s must be the same.

These same ideas apply to arbitrary permutations, and we have the fol-

lowing (whose proof we omit because it is somewhat tedious to write in full

generality):

Proposition 4.6. Every permutation in Sn factors into a product of dis-

joint cycles. Two factorizations can only differ in the order in which

the cycles appear, or, within any one cycle, by an internal cyclic rear-

rangement.

Corollary 4.7. Every permutation in Sn can be written as a product of

transpositions.

Proof. This is just a combination of Proposition 4.6 and Exercise 4.3.6 above,

which establishes that every cycle can be written as a product of transposi-

tions. 2
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Remark 4.8

Unlike the factorization of a permutation into disjoint cycles, there is

no uniqueness to the factorization into transpositions. (For instance, in

addition to the factorization (1, 3)(1, 2) = (1, 2, 3) we had before,

we also find (1, 2)(3, 2) = (1, 2, 3).) But something a little weaker

than uniqueness holds even for factorizations into transpositions: if a

permutation s has two factorizations s = d1 · d2 · · · · · dl and s =

e1 · e2 · · · · · em where the di and ej are transpositions, then either l and

m will both be even or both be odd! (The proof is slightly complicated,

and we will omit it since this is an introduction to the subject.) This

allows us to define unambiguously the parity of a permutation: we call

a permutation even if the number of transpositions that appear in any

factorization into transpositions is even, and likewise, we call it odd if

this number is odd.
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4.1.2 Dihedral groups

Example 4.9

Consider a piece of cardboard in the shape of an equilateral triangle. Now

consider all operations we can perform on the piece of cardboard that do

not shrink, stretch, or in anyway distort the triangle, but are such that

after we perform the operation, nobody can tell that we did anything to

the triangle! To help determine what such operations could be, pretend

that the piece of cardboard has been placed at a fixed location on a table,

and the location has been marked by lines drawn under the edges of the

cardboard. Also, label the points on the table that lie directly under the

vertices of the triangle as a, b, and c respectively. After we have done our

(yet to be determined!) operation on the cardboard, the triangle should

stay at the same location–otherwise it would be obvious that somebody

has done something to the piece of cardboard. This means that after our
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operation, each vertex of the triangle must somehow end up once again

on top of one of the three points a, b, and c marked on the table.

b c

a

We will refer to our operations as symmetries of the equilateral triangle.

We will also refer to each operation as a rigid motion, because, by not

distorting the cardboard, it preserves its rigidity. Observe that since we

are not allowed to distort the triangle, once we know where the vertices

have gone to under our operation, we would immediately know where

every other point on the triangle would have gone to. For, if a point P

is at a distance x from a vertex A, a distance y from a vertex B and a

distance z from the third vertex C, then the image of P must be at a

distance x from the image of A, a distance y from the image of B and a

distance z from the image of C, and this fixes the location of the image

of P . (Actually, more is true: it is sufficient to know where any two

vertices have gone to under our operation to know where every point
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has gone: see Remark 4.11 ahead if you are interested. But of course,

if you know where two vertices have gone, then you automatically know

where the third vertex has gone.) Hence, it is enough to study the

possible rearrangements, or permutations, of the vertices of the triangle

to determine our operations. A key sticking point is that while every

symmetry of the triangle corresponds to a permutation of the vertices,

it is conceivable that not every permutation of the vertices comes from

a symmetry. As it turns out, this is not the case, as we will see below.

Let us, for example, write
(
a b c
b c a

)
for the permutation of the vertices that

takes whichever vertex that was on the point on the table marked a and

moves it to the point marked b, whichever vertex that was on the point

on the table marked b and moves it to the point marked c, and whichever

vertex that was on the point on the table marked c and moves it to the

point marked a. Notice that since there are three vertices, there are only

six permutations to consider. With this notation, let us consider each of

the six permutations in turn, and show that they can be realized as a

symmetry of the triangle:
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1. id =
(
a b c
a b c

)
. This of course corresponds to doing nothing to the

triangle. This is a valid operation of the sort that we are seeking: it

is clearly a rigid motion of the triangle (there is no distortion of the

cardboard), and after we have performed this operation, we would

not be able to tell whether anybody has disturbed the triangle or

not!

2. σ =
(
a b c
b c a

)
. This can be realized by rotating the triangle counter-

clockwise by 120◦. This is a rigid motion (there is no stretching or

other distortion involved), and of course, after the rotation is over,

we would not be able to tell if the cardboard has been moved.

3. σ2 =
(
a b c
c a b

)
. This can be realized as a counter-clockwise rotation

by 240◦, or what is the same thing, a clockwise rotation by 120◦.

Notice that if were to form the composition σ ◦σ, we would arrive

at this permutation, and it is for this reason that we have denoted

this permutation by σ2.

4. τa =
(
a b c
a c b

)
. This can be realized by flipping the triangle about
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the line joining the point a and the midpoint of the opposite side

bc. This too is a rigid motion, and after the flip is over, we would

not be able to tell if the cardboard has been moved.

5. τb =
(
a b c
c b a

)
. This can be realized by flipping the triangle about

the line joining the point b and the midpoint of the opposite side

ac. Like τa, this too is a rigid motion, and after the flip is over, we

would not be able to tell if the cardboard has been moved.

6. τc =
(
a b c
b a c

)
. This is just like τa and τb, and can be realized by

flipping the triangle about the line joining the point c and the

midpoint of the opposite side ab.

Thus, we have obtained all six permutations as symmetries of the trian-

gle! Notice that these six symmetries compose as follows:
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D3 Composition

◦ id σ σ2 τa τb τc

id id σ σ2 τa τb τc

σ σ σ2 id τc τa τb

σ2 σ2 id σ τb τc τa

τa τa τb τc id σ σ2

τb τb τc τa σ2 id σ

τc τc τa τb σ σ2 id

Notice that we get a group: the composition of any two symmetries

is a symmetry, composition is associative since this is always true for

composition of functions, the element id acts as the identity, and it is

clear from the relations σσ2 = σ2σ = id, τaτa = τbτb = τcτc = id that

every element has an inverse. This group is called the dihedral group

of index 3 and is denoted D3. (Notice the similarity between this group

and the group S3 of Example 4.2. We will take this up again when we
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consider isomorphisms later in this chapter.)

See Example 4.97 in the notes at the end of the chapter, where D3 is

interpreted as the group of symmetries of the equilateral triangle with

the rigid structure.

Example 4.10

This example is similar in spirit to the previous example. We consider

a piece of cardboard in the shape of a square. We wish to determine

all operations we can perform on the piece of cardboard that do not

shrink, stretch, or in anyway distort the square, but are such that after

we perform the operation, nobody can tell that we did anything to the

square! To help determine what such operations could be, pretend that

the piece of cardboard has been placed at a fixed location on a table,

and the location has been marked by lines drawn under the edges of the

cardboard. Also, label the points on the table that lie directly under the

vertices of the square as a, b, c, and d respectively. After we have done

our (yet to be determined!) operation on the cardboard, the square

should stay at the same location–otherwise it would be obvious that
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somebody has done something to the piece of cardboard.

b c

a d

We will refer to our operations as symmetries of the square and will refer

to each operation as a rigid motion. Just as in the previous example,

each vertex of the square must somehow end up once again on top of one

of the four points a, b, c, and d marked on the table after the application

of a symmetry. As before, the preservation of the rigidity of the square

ensures that once we know where the vertices have gone to under the

application of a symmetry, we would immediately know where every

other point on the square would have gone to. (In fact, it is enough to

know where two adjacent vertices have gone—see Remark 4.11 ahead.)

Hence, it is enough to study the possible permutations of the vertices of

the square to determine its symmetries. Unlike the previous example,

however, it is not true that every permutation of the vertices comes from
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a symmetry.

As before, we write, for example,
(
a b c d
b c d a

)
for the permutation of the

vertices that takes whichever vertex that was on the point on the table

marked a and moves it to the point marked b, the vertex on b to c, the

vertex on c to d, and the vertex on d to a. Notice that since there are four

vertices, there are 4! = 24 permutations to consider (see Exercise 4.3.3

above). With this notation, let us see which of these 24 permutations

can be realized as a symmetry of the square:

1. id =
(
a b c d
a b c d

)
. This of course corresponds to doing nothing to the

square. As with the operation of the previous example that does

nothing on the equilateral triangle, this operation on the square is a

rigid motion of the square, and after we have performed this oper-

ation, we would not be able to tell whether anybody has disturbed

the square or not.

2. σ =
(
a b c d
b c d a

)
. This can be effected by rotating the square counter-

clockwise by 90◦. This too is a rigid motion, and after the rotation
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is over, we would not be able to tell if the cardboard has been

moved.

3. σ2 =
(
a b c d
c d a b

)
. This is effected by rotating the square counter-

clockwise (or clockwise) by 180◦, and corresponds to the composi-

tion σ ◦ σ. Hence the name σ2 for this symmetry.

4. σ3 =
(
a b c d
d a b c

)
. This is effected by rotating the square counter-

clockwise by 270◦ (or clockwise by 90◦), and corresponds to the

composition σ ◦ σ ◦ σ.

5. τH =
(
a b c d
b a d c

)
. This corresponds to flipping the square about its

horizontal axis (i.e., the line joining the midpoints of the sides ab

and cd).

6. τV =
(
a b c d
d c b a

)
. This corresponds to flipping the square about its

vertical axis (i.e., the line joining the midpoints of the sides ad and

bc).

7. τac =
(
a b c d
a d c b

)
. This corresponds to flipping the square about the
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top-left to bottom-right diagonal, i.e., the line joining the points a

and c.

8. τbd =
(
a b c d
c b a d

)
. This corresponds to flipping the square about the

bottom-left to top-right diagonal, i.e., the line joining the points b

and d.

One can check that the remaining permutations of the vertices cannot

be realized by rigid motions. For instance, consider the permutation(
a b c d
b c a d

)
. If, for example, vertex A of the square lies on the point a

and vertex D of the square lies on d, then this permutation fixes D but

moves the vertex A so that it lies on b. The segment AD therefore is

converted from a diagonal of the square to a side of the square, and is

hence shortened–this is clearly not a rigid motion!

Dispensing off all remaining permutations similarly, we find that our

square with its structure of being a rigid object lying at the given location

has just these eight symmetries above.



CHAPTER 4. GROUPS 401

Remark 4.11

Here is another way of seeing that there are only eight symmetries:

Observe that once we know where a pair of adjacent vertices have gone

under the application of a symmetry, we immediately know where every

other point on the square has gone, because of the rigidity. This is

because if a point P of the square is at a distance x from a vertex A

and a distance y from the adjacent vertex B, then the image of P must

be at a distance x from the image of A and a distance y from the image

of B. There is a unique point on or inside the four lines drawn on the

table that satisfies this property, and this point will be the image of P .

Now consider a pair of adjacent vertices A and B. After the application

of a symmetry, A can end up in one of four possible locations marked a,

b, c, or d that correspond to the four vertices of the square. Moreover,

for the cardboard to not get distorted, B must end up at one of these

locations that is adjacent to A. Hence, once a symmetry has placed A

in one of four locations, there are only two possible locations where the

symmetry could place B: either adjacent to A in the clockwise direction
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or adjacent toA in the counter-clockwise direction. Since the symmetries

of the square are determined by where they send the adjacent vertices

A and B, we find that there are 4 · 2 = 8 potential symmetries. On

the other hand, we have explicitly exhibited eight distinct symmetries

already. Hence the set of symmetries of the square consists precisely of

these eight symmetries above.

Example 4.12

It is a fun exercise for you to prove that these symmetries form a group

(see below). Notice that this group is noncommutative: στH = τHσ
3 for

example.

Exercise 4.12.1

Create a table that shows how these symmetries compose and ar-

gue, as in Example 4.9 above, why this table shows that the set of

symmetries forms a group.

This group is called the dihedral group of index 4, and is denoted D4.
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Exercise 4.12.2

Use the group table of D4 to show that every element of D4 can be

expressed as σiτ jH for uniquely determined integers i ∈ {0, 1, 2, 3}
and j ∈ {0, 1}.

Definition 4.12.3

The center of a group is defined to be the set of all elements in

the group that commute with all other elements in the group. (For

instance, the identity element is always in the center of a group as

it commutes with all other elements.)

Exercise 4.12.4

Determine the elements in D4 that lie in its center.
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4.1.3 Cyclic groups

Example 4.13

Notice that the subset {1,−1} of Z endowed with the usual multiplica-

tion operation of the integers is a group!

Question 4.13.1

What similarities do you see between this group and the group

(Z/2Z,+)?



CHAPTER 4. GROUPS 405

Question 4.13.2

Let G be any group that has exactly two elements. Can you see that

G must be similar to the group (Z/2Z,+) in exactly the same way

that this group {1,−1} is similar to (Z/2Z,+)? Now that you have

seen the notion of isomorphism in the context of rings and vector

spaces, can you formulate precisely how any group with exactly two

elements must be similar to (Z/2Z,+)?

We will now generalize Example 4.13.

Example 4.14

Let n ≥ 3 be any integer. Recall that the complex number zn =

cos(2π/n) + ı sin(2π/n) has modulus 1, and is at an angle θn = 2π/n

with respect to the positive real axis. DeMoivre’s theorem ((cos(θ) +

ı sin(θ))k = cos(kθ) + ı sin(kθ) for k = 1, 2, . . . ) shows that the complex

number z2
n = cos(4π/n) + ı sin(4π/n). This also has modulus 1, but

is now at an angle 2θn = 4π/n. Proceeding, we find that the complex

numbers 1, zn, z2
n, z3

n, . . . , zn−1
n are evenly spaced around the unit circle,
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and znn gives you back the complex number 1.

The elements zi6 are shown below:

1

b

a d

c

caption

b

a

c

caption

1 = z6

zz2

z3

z4 z5

Cyclic group of order 6

It is easy to see that the set Cn = {1, zn, z2
n, . . . , z

n−1
n } is a group; it is

known as the cyclic group of order n. (See Lemma 4.37.1 to note that

Cn = 〈zn〉, with notation as in that lemma. Thus, in the language of

Definition 3.5 ahead, Cn is the group generated by zn. See also Remark

4.40 ahead as well as Exercise 4.80.1.)

Question 4.14.1

If zinz
j
n = zkn for some k with 0 ≤ k < n, what is k in terms of i and j?
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Question 4.14.2

If (zin)−1 = zjn for some j with 0 ≤ j < n, what is j in terms of i?

Question 4.14.3

Consider the group (Z/nZ,+), for a fixed integer n ≥ 1. Notice that

every element in this group is obtained by adding [1]n to itself various

number of times. For instance, [2]n = [1]n + [1]n (which we write as

2 · [1]n), [3]n = [1]n + [1]n + [1]n (which we write as 3 · [1]n), etc. What

similarities do you see between (Z/nZ,+) and the group Cn above?

Now that you have seen the notion of isomorphism in the context of

rings and of vector spaces, can you formulate precisely how (Z/nZ,+)

and Cn are similar?
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4.1.4 Direct product of groups

Example 4.15

LetG andH be groups. We endow the cartesian productG×H with the

operation (g1, h1)(g2, h2) = (g1g2, h1h2) (compare with Example 2.22 in

Chapter 2). Here, the product g1g2 refers to the operation in G, while

the product h1h2 refers to the operation in H .

Exercise 4.15.1

Verify that with this definition of operation, the set G×H forms a

group.

This is known as the direct product of G and H.

Question 4.15.2

What is the identity element in G×H? What is the inverse of an

element (g, h)?
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Question 4.15.3

If G and H are abelian, must G × H necessarily be abelian? If

G×H is not abelian, can G or H be abelian? Can both G and H

be abelian?

Exercise 4.15.4

Consider the direct product (Z/2Z,+)×(Z/3Z,+). Show by direct

computation that every element of this group is a multiple of the

element ([1]2, [1]3). What similarities do you see between this group

and (Z/6Z,+)? With your experience with isomorphisms in the

context of rings and vector spaces, can you formulate precisely how

(Z/2Z,+)× (Z/3Z,+) and (Z/6Z,+) are similar?
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4.1.5 Matrix groups

Example 4.16

We know (see Exercise 2.112 in Chapter 2) that the set of invertible

elements of a ring R, denoted R∗, forms a group under the multiplication

operation in the ring. In particular, taking R to be Mn(F ) for a fixed

field F , we find that the set of n× n invertible matrices with entries in

F forms a group with respect to matrix multiplication. This is a very

important group in mathematics, and has its own notation and its own

name: it is denoted by Gln(F ) and is called the general linear group

of order n over F . Recall (see the parenthetical remarks in Exercise

2.55.1 in Chapter 2) that a matrix with entries in a field is invertible if

and only if its determinant is nonzero. Thus, Gln(F ) may be thought of

as the group of all n× n matrices with entries in F whose determinant

is nonzero.
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Exercise 4.16.1

Write down the group table for the group of units of the ring

Gl2(Z/2Z) (see Exercise 2.55.1 in Chapter 2). What familiar group

is this isomorphic to?

Remark 4.17

Recall from Exercise 3.104 in Chapter 3 that if V is an n-dimensional

vector space over F , then the ring of F -linear transformation from V

to V , namely EndF (V )—see Exercise 3.101 of that same chapter as

well—is isomorphic to the ring Mn(F ). As in Exercise 3.104, let M :

EndF (V ) → Mn(F ) be the function that provides this isomorphism

(M depends on a choice of basis for V , but that is not important at

this point). It follows at once that the invertible elements of EndF (V )

will correspond to the invertible elements of Mn(F ) bijectively under

M . Since the invertible elements of Mn(F ) are what we have denoted

as Gln(F ) above, and since the invertible elements of EndF (V ) are just

those linear transformations that are both injective and surjective (see
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Exercise 3.102 in Chapter 3), we find that elements ofGln(F ) correspond

to the injective and surjective linear transformations of V . But more,

if the matrix MT corresponds to the linear transform T and the matrix

MS to the linear transform S under this isomorphism, then, since the

map M “preserves multiplication,” we find that the product matrix

MTMS corresponds to T ◦ S. Although we have not studied the notion

of isomorphisms of groups–we will in Section 3.5 ahead)–we have enough

experience with isomorphisms in the context of rings and vector spaces

by now to realize that Gln(F ) and the group of units of EndF (V ) are

isomorphic as groups.

Many interesting groups arise as subgroups of Gln(F ) for suitable n and

F . (Of course, we have not formally defined the term “subgroup” yet–we

will in Section 3.5 ahead—but we have enough experience with subrings and

subspaces already to know what that term should mean: a subset of a group

G that is closed with respect to the operation in G and forms a group on its

own under this operation.) In fact, every finite group that has n elements

in it occurs as a subgroup of Gln(F ), for every field F . We consider a few
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examples of subgroups of Gln(F ) ahead. The identity element in all such

groups will be the n×n identity matrix. Moreover, the multiplication in such

groups will necessarily be associative, since matrix multiplication is known

to be an associative operation (see Question 2.16.7 in Chapter 2).

Example 4.18

The set of matrices in Gln(F ) whose determinant is 1 forms a group

under matrix multiplication, denoted Sln(F ), and called the special

linear group of order n over F .

Question 4.18.1

Why does this subset form a group? Check that the axioms hold.

Example 4.19

Let B2(R) be the set of matrices in M2(R) of the form g =

 a b

0 d


where ad 6= 0. Since the determinant of g is precisely ad, the condition

ad 6= 0 shows that g is invertible, i.e., g ∈ Gl2(R). B2(R) is a group

with respect to matrix multiplication.
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Question 4.19.1

What does the product of two such matrices g and h above look

like?

Question 4.19.2

What does the inverse of a matrix such as g above look like?

More generally, consider the subset Bn(F ) of upper triangular matrices

in Mn(F ) whose product of diagonal entries is nonzero. Since the deter-

minant of an upper triangular matrix is just the product of its diagonal

entries, Bn is a subset of Gln(F ). Bn(F ) forms a group with respect to

matrix multiplication It is referred to as the upper triangular subgroup

of Gln(F ) or the standard Borel subgroup of Gln(F ).

Exercise 4.19.3

Prove that the determinant of an upper triangular n × n matrix

(with, say, entries in a field F ), is just the product of its diagonal

entries.
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Exercise 4.19.4

Show that the product of two upper triangular matrices is also upper

triangular.

Exercise 4.19.5

Show that the inverse of an invertible upper triangular matrix is

also upper triangular.

Example 4.20

LetU2(R) be the subset of matrices inM2(R) of the form ga =

 1 a

0 1

,

where a ∈ R. Note that the determinant of ga = 1 for all a. U2(R) is a

group with respect to matrix multiplication.

Question 4.20.1

What is the product of ga and gb in terms of a and b?
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Question 4.20.2

What is the multiplicative inverse of ga?

Question 4.20.3

What similarity do you see between U2(R) and (R,+)?

Question 4.20.4

View the elements of U2(R) as the matrix of linear transformations

of R2 with respect to the usual basis i and j. Where do i and j go

to under the action of ga?

Question 4.20.5

How would any of these calculations above in Questions (4.20.1)

or (4.20.2) or (4.20.4) be changed if we had restricted a to be an

integer? What similarity would you then have seen between this

modified set (with a now restricted to be an integer) and (Z,+)?
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See Exercise 4.87 at the end of the chapter for a generalization to n× n
matrices.

Example 4.21

As we will see in Exercise 4.86, the set of 2×2 matrices with entries in R
satisfying AtA = I , where I is the identity matrix and At stands for the

transpose of A, forms a group: it is precisely the group of symmetries

of the set described in Example 4.100 on Page 483. This set of matrices

is indeed a subset of Gl2(R), since, as you are asked to prove as well in

Exercise 4.86, the relation AtA = I yields that the determinant of A is

±1, and in particular, nonzero. More generally, one can consider the set

of n×n matrices A with entries in any field F satisfying AtA = I . This

set will form a group, known as the orthogonal group of order n over

F . We will use the notation On(F ) for such groups.

See Remark 4.5 at the end of the chapter as well about more general

orthogonal groups than the one we have introduced above.
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Exercise 4.21.1

Prove that the set of n× n matrices A with entries in G satisfying

AtA = I forms a group under matrix multiplication. (Hint: you

will need to show that AtA = I is equivalent to AAt = I , and from

this, that (A−1)t = (At)−1.)
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4.1.6 Remarks and some general properties of groups

Remark 4.22

In an abstract group, several different symbols are used to denote the

binary operation, the identity element, and the inverse of an element.

Sometimes, one uses the symbol id for the identity element, as we have

done above for the groups S3, D3, etc. Sometimes the symbol e is used

for the identity element. Very often, one imagines the group operation

to be some sort of “multiplication” between group elements (Warning:

this is just an informal way to think about the operation—in general,

the operation may not represent any sort of actual multiplication in the

sense of multiplication in rings), and in such cases, one uses the familiar

symbol 1 to represent the identity element. (In such a situation we say

that the group is written in multiplicative notation, or written multi-

plicatively.) When writing the group multiplicatively, one simply writes
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the binary operation without any symbol, thus, the “product” of two

elements a and b is simply written ab. (We have followed this convention

already with S3, for example.) In the case where the group is abelian,

one often imagines the group operation as some sort of “addition” in

analogy with the addition operation in rings (Same Warning: this is

just an informal way to think about the operation), and one writes +

for the group operation and 0 for the identity. And continuing with

the analogy, one writes −a for the inverse of an element a. (In such

a situation, we say that the group is written in additive notation, or

written additively.)

Before proceeding further, here are some exercises that would be useful.

You would have encountered many of these results already in the context of

the additive group of a ring or a vector space. (For instance, see Remark

2.24, Exercise 2.111, and the notes on page 234 in Chapter 2):

Exercise 4.23

Show that the identity element in a group is unique.
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Exercise 4.24

Show that the inverse of an element in a group is unique.

Exercise 4.25

Show that for any element a in a group G, (a−1)−1 = a.

Exercise 4.26

( Cancellation in Groups) If ab = ac for elements a, b, and c in a group

G, show that b = c (left cancellation). Similarly, if ba = ca, show that

b = c (right cancellation).

Exercise 4.27

Let G be a group, and let a and b be elements in G. Show that (ab)−1 =

b−1a−1.

Exercise 4.28

Let G be a group written multiplicatively. For any element a ∈ G and

for any positive integer j, it is customary to write aj for a · a · · · · a︸ ︷︷ ︸
jtimes

.

Similarly, for any negative integer j, it is customary to write aj for
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a−1 · a−1 · · · · a−1︸ ︷︷ ︸
|j|times

. Finally, it is customary to take a0 to be 1. Prove the

following:

1. If y = aj for some integer j, then y−1 = a−j. (Hint: Compute

aja−j by invoking the definition of aj and a−j—you would of course

have to divide your proof into whether j is positive, negative, or

zero.

2. For integers s and t, prove that asat = as+t. (Hint: First dispose

of the case where either s or t is zero, and then divide your proof

into four cases according to whether s is positive or negative and

t is positive or negative.)
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4.2 Subgroups, Cosets, Lagrange’s Theorem

After our practice with subrings and subspaces, the following concept

must now be quite intuitive:

Definition 4.29. Let G be a group. A subgroup of G is a subset H that

is closed with respect to the binary operation such that with respect to this

operation, H is itself a group.

Exercise 4.30

Let G be a group and let H be a subgroup. Prove that the identity

element of H must be the same as the identity element of G. (Hint:

Write idG and idH for the respective identities. Then idHidH = idH .

Also, idGidH = idH . So?)

The following lemma allows us to check if a nonempty subset of a group

is a subgroup.
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Lemma 4.31. (Subgroup Test) Let G be a group, and let H be a nonempty

subset. If for all a and b in H the product ab−1 is also in H, then H is

a subgroup of G.

Proof. Since H is nonempty (note that we are invoking the nonemptiness

hypothesis!), H has at least one element in it, call it a. Then, taking b = a in

the the statement of the lemma, we find aa−1 = e ∈ H . Thus, H contains

the identity. Next, given any x ∈ H , we take a = e and b = x in the

statement of the lemma to find that the product ex−1 = x−1 must be in H ,

so H contains inverses of all its elements. Finally, given any x and y in H ,

note that y−1 must also be in H by what we just saw, so, taking a = x and

b = y−1, we find x(y−1)−1 = xy must be in H . Putting all this together,

we find that H is closed with respect to the group operation, contains the

identity, and contains inverses of all its elements. Since the associativity of

the group operation is simply inherited from the fact that the operation is

associative on all of G, we find that H satisfies all group axioms, and hence,

H is a subgroup of G.

2
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Example 4.32

Let G be a group. The subset {1G} is a subgroup, called the trivial

subgroup.

Exercise 4.32.1

Prove this by applying the subgroup test (Lemma 4.31).

Example 4.33

In the group S3, the subset {id, r1, r2} is a subgroup, as are the subsets

{id, f1}, {id, f2}, and {id, f3}.

Exercise 4.33.1

Prove these assertions by studying the group table of S3 on page

378.

Example 4.34

In the group Sn of permutations of {1, 2, . . . , n}, let H be the subset

consisting of all permutations that act as the identity on n.
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Exercise 4.34.1

Prove that H is a subgroup of Sn using the subgroup test (Lemma

4.31).

Exercise 4.34.2

Compare H with Sn−1. What similarities do you see?

Example 4.35

The various matrix groups we considered above such as Sln(F ), Bn(F ),

On(F ), etc., are all subgroups of Gln(F ).

Example 4.36

Let G be a group. Recall that we have defined the center of G (see

Definition 3.5 ) to be the subset consisting of all elements of G that

commute with every other element of G.

Exercise 4.36.1

Prove that the center of G is a subgroup of G.
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Question 4.36.2

What can you say about the center of G when G is abelian?
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4.2.1 Subgroup generated by an element

Example 4.37

Let G be a group, and let a be an element in G. What would be the

smallest subgroup of G that contains a? (By smallest, we mean smallest

with respect to set theoretic inclusion, that is, we seek a subgroup H

of G that contains a such that if K is any other subgroup of G that

contains a, then H ⊆ K.) Let us write G multiplicatively. Then, any

subgroup H that contains a must contain, along with a, the elements

a · a = a2, a · a2 = a3, . . . , because the subgroup must be closed with

respect to the group operation. It must contain the identity 1 (= a0)

since it is a subgroup. Similarly, it must contain the inverse a−1, and

then, it must contain all products a−1 · a−1 = a−2, a−1 · a−2 = a−3, . . . .

We have the following:

Lemma 4.37.1. The set 〈a〉 = {an | n ∈ Z} is a subgroup of G. It is
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the smallest subgroup of G that contains a, in the sense that if H is

any subgroup of G that contains a, then 〈a〉 ⊆ H.

Proof. The discussions just before the statement of this lemma show

that if H is any subgroup of G that contains a, then H must contain

all ai, for i ∈ Z, that is, H must contain 〈a〉. Thus, we only need to

show that 〈a〉 is a subgroup of G. But this is easy by the subgroup

test (Lemma 4.31): 〈a〉 is nonempty since a is in there. Given any two

elements x and y in 〈a〉, x = ai for some i ∈ Z, and y = aj for some

j ∈ Z. Note that y−1 = a−j (Exercise 3.5). Then xy−1 = aia−j. Hence

(Exercise 3.5 again), xy−1 = ai−j ∈ 〈a〉, proving that 〈a〉 is indeed a

subgroup. 2

Before proceeding further, we pause to give a name to the object con-

sidered in the lemma above:
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Definition 4.37.1

Let G be a group, and let a be an element in G. The subgroup

〈a〉 is called the subgroup generated by a. A subgroup H of G is

called cyclic if H = 〈g〉 for some g ∈ G. In particular, G itself is

called cyclic if G = 〈g〉 for some g ∈ G.

Exercise 4.37.2

Let G be a group written multiplicatively, and let a ∈ G. For

integers s and t, prove that asat = as+t by mimicking the proof

that (aj)−1 = a−j in the lemma above. (Hint: First dispose of the

case where either s or t is zero, and then divide your proof into four

cases according to whether s is positive or negative and t is positive

or negative.)

In S3, for instance, we see that 〈r1〉 is the (finite) set {id, r1, r
2
1 = r2}.

This is because we need no further powers: r3
1 = id, so r4

1 = r7
1 =

· · · = r1, and r5
1 = r8

1 = · · · = r2
1 = r2. Similarly, r−1

1 = r2, so
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r−2
1 = r−1

1 r−1
1 = r2

2 = r1, and from this, we see that all powers r−n1

(n = 1, 2, . . . ) is one of id, r1, or r2.

By contrast, the subgroup 〈1〉 of the additive group (Z,+) is all of Z.

This is easy to see: 〈1〉 = {1, 1 + 1 = 2, 1 + 2 = 3, . . . , 0,−1, (−1) +

(−1) = −2, (−1) + (−2) = −3, . . . }.
These examples suggest an interesting and important concept:

Definition 4.37.3

Let G be a group (written multiplicatively), and let a ∈ G. The

order of a (written o(a))is the least positive integer n (if it exists)

such that an = 1. If no such integer exists, we say that a has infinite

order.

We now have the following:

Lemma 4.37.2. Let G be a group and let a ∈ G. Then o(a) is finite

if and only if 〈a〉 is a finite set. When these (equivalent) conditions

hold, o(a) equals the number of elements in the subgroup 〈a〉, and if

this common integer is m, then the elements 1, a, . . . , am−1, are all

distinct, and 〈a〉 = {1, a, . . . , am−1}.
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Proof. Assume that o(a) is finite, say m. Then, any integer l can be

written as bm + q for 0 ≤ q < m, so al = abm+q = (am)baq = 1 · aq.
Hence, every power of a can be written as aq for some q between 0 and

m − 1, that is, 〈a〉 = {1, a, . . . , am−1}. This shows that 〈a〉 is a finite

set.

Now assume that 〈a〉 is a finite set. Then, the powers 1, a, a2, . . . cannot

all be distinct (otherwise 〈a〉 would be infinite), so there exist nonneg-

ative integers k and l, with k < l, such that ak = al. Multiplying by

a−k = (ak)−1, we find 1 = al−k. Note that l − k is positive. Thus, the

set of positive integers t such that at = 1 is nonempty, since l − k is in

this set. By the well-ordering principle, there is a least positive integer

s such that as = 1. This shows that a has finite order, namely s.

Now assume that these equivalent conditions hold. We have already

seen above that if o(a) is finite and equal to some m, then 〈a〉 =

{1, a, . . . , am−1}. Note that these elements are all distinct, since if

aj = ak for 0 ≤ j < k ≤ m − 1, then, multiplying both sides by

a−j = (aj)−1, we would find 1 = ak−j, and since 0 < k − j < m, this
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would contradict the fact that m is the least positive integer l such that

al = 1. It follows that the number of elements in 〈a〉 is precisely m, the

order of a. 2

The following result is useful, its proof uses an idea that we have already

encountered in the proof of Lemma 4.37.2 above:

Lemma 4.37.3. Let a be an element of a group G and suppose that

al = 1 for some integer l. Then the order of a divides l. (In partic-

ular, the order of a is finite.)

Proof. Note that if l is negative, then a−l = (al)−1 = 1. Hence, the

set of positive integers n such that gn = 1 is nonempty, since either l

or −l is in that set. By the Well-Ordering principle, this set has a least

element, so indeed the order of g is finite.

Now suppose the order of a is m. Write l = bm+ r for integers b and r

with 0 ≤ r < m. Then ar = ala−bm = al(am)−b = 1, because both al

and am equal 1. Since m is the least positive integer n such that an = 1,

it follows that r = 0, i.e., that m divides l. 2
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We now prove a result that determines the order of ad in terms of the

order of a, in the case where the order of a is finite:

Lemma 4.37.4. Let G be a group and let a ∈ G have finite order m.

Then, for any integer d, the order of ad equals m/gcd(m, d).

Proof. Let us assume first that d is positive. Denote the order of ad

by t. Thus, the integer t will correspond to the first time that 1 occurs

in the list ad, a2d, a3d, . . . . By Lemma 4.37.3 above, the integer t will

correspond to the first time m divides a member of the list d, 2d, 3d, . . . .

This member will then be a common multiple of d andm, and since this is

the first common multiple in the list, it will the least common multiple of

d and m. In other words, t will be such that dt will be the least common

multiple of m and d. Since dm = gcd(m, d)lcm(m, d) = gcd(m, d)dt,

we find t = m/gcd(m, d), as desired.

If d is zero or negative, choose a positive integer p so that pm + d ≥ 0.

Now observe that apm+d = (am)pad = 1pad = ad. Hence, the order of

ad is the same as the order of apm+d, and since pm + d > 0, we may

apply the result of the last paragraph to find that the order of ad =
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m/gcd(m, pm + d). To finish the proof, we will show that gcd(m, d) =

gcd(m, pm + d). It is enough to show that the set of common divisors

of the two pairs of integers are the same. But this is easy: if l divides

both m and d, then it must also divide the linear combination pm + d

by Lemma 1.3, so l is a common divisor of m and pm + d. Thus the

set of common divisors of m and d is a subset of the common divisors

of m and pm + d. On the other hand, if l divides both m and pm + d,

then l must divide the linear combination (−p)m + pm + d = d, so l

is a common divisor of m and d. Thus, we have the reverse inclusion:

the set of common divisors of m and pm+ d is a subset of the common

divisors of m and d. The two sets are hence equal. 2

We have the following immediately:

Corollary 4.37.1. With a and m as above,

1. If d divides m, then ad has order m/d.

2. If d is relatively prime to m, then ad has order m, and 〈ad〉 =

〈a〉.
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Proof. It follows directly from the lemma that if d divides m then ad has

order m/d, and that if d and m are relatively prime, then ad has order

m. To see that 〈ad〉 = 〈a〉 in the case where d and m are relatively

prime, note that by Lemma 4.37.2, the subgroup 〈a〉 has m elements

since a has order m, and likewise, the subgroup 〈ad〉 has m elements

since ad has order m. But 〈ad〉 is a subset of 〈a〉, since any power of ad

is also a power of a. Since a subset T of a finite set S that has the same

number of elements as S must equal S, we find that 〈ad〉 = 〈a〉. 2

Here is a quick exercise to show you that cyclic groups can come in

hidden forms!

Exercise 4.37.4

Show that Z/2Z× Z/3Z is cyclic. (Hint: What is the order of the

element ([1]2, [1]3)?) After you work this out, see Exercise 4.80.1

ahead and Exercise 4.94 at the end of the chapter.

Now let H be a subgroup of a group G, and assume that the number of
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elements in G is finite. Then there is a very tight restriction on the possible

number of elements in H (Theorem 4.47 ahead), and we will work towards

understanding this restriction in the next two subsections. First, a definition:

Definition 4.38

Let G be a group. The order of G (written o(G)) is the number of

elements in G, if this number is finite. If the number of elements in G

is infinite, we say G is of infinite order.

Remark 4.39

Do not confuse the order of an element a in a group G with the order of

the group G, these refer to two separate concepts. (All the same, even

though these are separate concepts, we will see (Corollary 4.48 ahead)

that the two integers are related.) Note that Lemma 4.37.2 above says

that the order of a equals the order of the subgroup generated by a.

Thus in the special case when G is cyclic, i.e., when G = 〈a〉 for some

a ∈ G (See Definition 3.5 above), the order of a and the order of the

group G = 〈a〉 are indeed the same integers, even though they arise out

of different concepts.
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Remark 4.40

Continuing with the special situation at the end of Remark 4.39 above,

let G be any cyclic group of order n. Thus G = 〈a〉 for some a ∈ G,

and since G has order n, Lemma 4.37.2 shows that the element a must

have order n, and that G = {1, a, . . . , an−1}. Notice the similarity with

Example 4.14 above. See also Exercise 4.80.1.
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4.2.2 Cosets

We have already seen the notion of the coset of a subgroup with respect

to an element before. We saw this in the context of subgroups I of abelian

groups of the form (R,+), where R is a ring and I is an ideal (see page 161).

We also saw this in the context of subgroups W of abelian groups of the

form (V,+), where V is a vector space and W is a subspace (see page 317).

The following should therefore come as no surprise, the only novel feature

is that we need to distinguish between right and left cosets since the group

operation in an arbitrary group need not be commutative:

Definition 4.41

Let G be a group and let H be a subgroup. Given any a ∈ G, the left

coset of H with respect to a is the set of all elements of the form ah as

h varies in H , and is denote aH . Similarly, the right coset of H with

respect to a is the set of all elements of the form ha as h varies in H ,
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and is denoted Ha.

Example 4.42

Let us consider an example that will show that indeed left and right

cosets can be different. Take G to be S3 (see Example 4.2), and let

H = 〈f1〉. Since the order of f1 is 2 (see the group table for S3 on page

378), 〈f1〉 = {1, f1} by Lemma 4.37.2. Take a to be the element r1.

Then the left coset r1〈f1〉 = {r1, r1f1} = {r1, f3} (see the group table),

while the right coset 〈f1〉r1 = {r1, f1r1} = {r1, f2}. Clearly, the left

and right cosets of r1 with respect to the subgroup 〈f1〉 are not equal!

Continuing with this example, let us make a table of all left and right

cosets of 〈f1〉.
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Cosets

a Left Coset

a〈f1〉
Right Coset

〈f1〉a

id {1, f1} {1, f1}

r1 {r1, f3} {r1, f2}

r2 {r2, f2} {r2, f3}

f1 {1, f1} {1, f1}

f2 {f2, r2} {f2, r1}

f3 {f3, r1} {f3, r2}

Notice that every coset (left or right) has exactly two elements, which is

the same number as the number of elements in the subgroup 〈f1〉 that

we are considering. This will be useful in understanding the proof of

Lagrange’s theorem (Theorem 4.47) below.
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Exercise 4.43

Take G = S3 and take H = 〈r1〉. Write down all left cosets of H

and all right cosets of H with respect to all the elements of G. What

observation do you make?

The following equivalence relation in Lemma 4.44 below is analogous to

the corresponding equivalence relations for rings (see page 161) and vector

spaces (see page 317), except that once again, we need to distinguish two

cases because the group operation need not be commutative. Note that in

the case of rings, for example, we define a ∼ b if and only if a− b ∈ I (where

I is some given ideal). Now note that a − b is really a + (−b). Thus, in

the group situation, the expression analogous to a + (−b) would be ab−1,

and this is indeed the expression we consider in the lemma below. (And

while a+ (−b) = (−b) + a in the situation of rings, the operation in a group

need not be commutative, so we need to consider the expression analogous

to (−b) + a as well, which is b−1a.)

Lemma 4.44. Let G be a group and H a subgroup. Define two relations

on G, denoted “∼L” and “∼R,” by the following rules: a ∼L b if and
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only if b−1a ∈ H, and a ∼R b if and only if ab−1 ∈ H. Then ∼L and

∼R are both equivalence relations on G. The equivalence class [a]L of

an element a with respect to the relation ∼L is the left coset aH, while

its equivalence class [a]R with respect the relation ∼R is the right coset

Ha

Proof. The proof that ∼L is an equivalence relation is similar to the proof of

Lemma 2.75 in Chapter 2, except that we have to account for the fact that

the group operation need not be commutative.

To show that a ∼L a, simply note that a−1a = 1 ∈ H . To show that

a ∼L b implies that b ∼L a, note that a ∼L b gives (by definition) b−1a = h

for some h ∈ H , and taking inverses of both sides (see Exercise 3.5 above),

we find (b−1a)−1 = a−1b = h−1. Since h−1 is also in H as H is a subgroup,

we find a−1b is in H , which shows that b ∼L a. Finally, given a ∼L b and

b ∼L c, note that (by definition) b−1a = h1 and c−1b = h2 for some h1 and

h2 in H . Then h2h1 = c−1b · b−1a = c−1a, and since h2h1 is also in H (as

H is a subgroup), we find a ∼L c as well.

The proof that ∼R is an equivalence relation is similar.
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To prove that [a]L = aH , note that any element b in aH is of the form ah

for some h ∈ H . Multiplying by a−1, we find a−1b = h and hence a−1b ∈ H .

This shows that b ∼L a. Thus, all elements in aH are in the equivalence

class of a, i.e., aH ⊆ [a]L. For the other direction, take any b ∈ [a]L. Then

b ∼L a, so (by definition) a−1b = h for some h ∈ H . Thus, multiplying both

sides by a, we find b = ah, so b ∈ aH . Hence, [a]L ⊆ aH as well.

The proof that [a]R = Ha is similar.

2

Note that we immediately have:

Corollary 4.45. Any two left cosets aH and bH are either equal or dis-

joint. Similarly any two right cosets Ha and Hb are either equal or

disjoint.

Proof. This follows from the fact that aH = [a]L and bH = [b]L, and the

fact that any two equivalence classes arising from an equivalence relation are

either equal or disjoint. (The proof is identical for right cosets.) 2

Here is a quick exercise:
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Exercise 4.46

Show that H is itself a left coset, as well as a right coset. Now show

that the left coset aH equals H if and only if a ∈ H . Similarly, show

that the right coset Hb equals H if and only if b ∈ H . More generally,

show that left coset aH equals the left coset bH if and only if a ∈ bH
if and only if b ∈ aH (and similarly for right cosets).
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4.2.3 Lagrange’s theorem

Theorem 4.47. (Lagrange’s Theorem) Let G be a group of finite order,

and let H be a subgroup. Then the order of H divides the order of G.

Proof. The crux of the proof is to show that any two left cosets of H have the

same number of elements (recall that we have already seen this phenomenon

in Example 4.42 above: see the table of left and right cosets in that example).

Once we have shown this, it will follow that every coset has o(H) elements

in it, since H itself is one of these left cosets (it is the left coset hH for any

h ∈ H , for instance, see Exercise 3.5). From this it is trivial to conclude

that o(H) must divide o(G): since the left cosets are disjoint and their union

is G, and since each left coset has o(H) elements, we would find that o(H)

times the number of distinct left cosets of H must equal o(G), i.e., o(H)

must divide o(G).

To prove that any two left cosets of H have the same number of elements,
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take two left cosets aH and bH . Every element of aH can be written as ah

for some unique h ∈ H . For, by definition, every element of aH is already

of the form ah for some h ∈ H . We only have to show that h is unique.

But this is clear: if ah = ah′, then by cancellation (see Exercise 3.5), h must

equal h′. Hence, the following function f : aH → bH is well defined: take

an element in aH , it is expressible as ah for some uniquely determined h,

so send this element to bh which lives in the left coset bH . This is a one-to-

one function, since if ah1 = ah2, then cancelling a, we would find h1 = h2.

It is onto as well because every element in bH is of the form bh for some

(uniquely determined) element h in H , and hence, f (ah) = bh. It follows

that the number of elements in aH equals the number of elements in bH .

The rest of the proof of the theorem is as described in the first paragraph.

(Note that essentially the same proof shows that any two right cosets of

H have the same number of elements.)

2

Here is an immediate corollary containing a result promised in Remark

4.39 above:
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Corollary 4.48. Let G be a group of finite order. Then the order of any

element of G divides the order of G.

Proof. By Lemma 4.37.2, the order of any element a equal the order of the

subgroup 〈a〉 generated by a. But, by the theorem above, o(〈a〉) divides

o(G). It follows that o(a) divides o(G).

2

Here is is a corollary to Corollary 4.48:

Corollary 4.49. Let G be a group of finite order d. Then ad = 1 for all

a ∈ G.

Proof. Let the order of a be q. We saw in Corollary 4.48 that q|d, so d = mq

for some integer m. Then, ad = (aq)m = 1m = 1. 2

One of the prettiest theorems in elementary number theory is Fermat’s

Little Theorem, which is purely an application of the corollary above.

Theorem 4.50. Let p be a prime, and let a be any integer. Then ap ≡ a

(mod p).
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Proof. If p|a, then clearly p|ap, so both ap and a are congruent to 0 mod

p. In particular, this means that ap ≡ a (mod p) for such a. Thus, we only

need to consider the case where p - a. In that case, note that [a]p = [r]p,

where r is one of 1, 2, . . . , p−1. Now we have already observed in our earlier

examples (see Example 2.58 in Chapter 2) that Z/pZ is a field. By Exercise

2.47 of the same chapter, the nonzero elements of a field form a group under

multiplication. In particular, this means that the nonzero elements of Z/pZ
form a group under multiplication, and this group clearly has order p − 1.

So, by the corollary above, [r]p−1
p = [1]p. Multiplying both sides by [r]p, we

find [r]pp = [r]p. Since [r]p is just [a]p, we find [a]pp = [a]p in the ring Z/pZ,

so, back in Z, we find ap ≡ a (mod p).

2
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4.3 Normal Subgroups, Quotient Groups

Recall how we formed a quotient ring R/I(see page 161) from a ring

R and an ideal I ; the elements of R/I were the cosets a + I as a ranged

through R, and the addition and multiplication were defined respectively by

(a+I)+(b+I) = (a+b)+I , and (a+I) ·(b+I) = (ab)+I . We showed that

these rules for addition and multiplication were well-defined (Lemma 2.77)

and then went on to show (Theorem 2.79) that R/I with these operations

was indeed a ring. Similarly, recall how we formed a quotient space V/W

(see page 318) from a vector space V over a field F and a subspace W :

the elements of V/W were the cosets u + W as u ranged through V , and

the vector addition and scalar multiplication were defined respectively by

(u+W ) + (v+W ) = (u+ v) +W , and f (u+W ) = fu+W . Once again,

we observed that these rules for vector addition and scalar multiplication

were well-defined (Exercise 3.69) and then went on to show that V/W with
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these operations was indeed a vector space over F (Theorem 3.70).

We would of course like to mimic these constructions and form a quotient

group G/H from a group G and a subgroup H : we would take the elements

of G/H to be the various (say, left) cosets gH as g ranges through G, and

we would define the group operation on G/H by aH · bH = (ab)H . But

when we carry out this program, we run into a slight problem: in general, the

operation aH ·bH = (ab)H is not well defined! For, suppose that aH = a′H

and bH = b′H . Viewing aH as a′H and bH as b′H , our desired operation

should yield that aH · bH = a′H · b′H = (a′b′)H . Thus, (ab)H ought

to equal (a′b′)H whenever aH = a′H and bH = b′H (or put differently,

whenever a ∼L a′ and b ∼L b′).
In general, this need not happen. For instance, take G = S3, and take

H = 〈f1〉. Consider the cosets r1〈f1〉 = {r1, f3} and r2〈f1〉 = {r2, f2} (see

the table in Example 4.42). Now, it is clear from the table that r1〈f1〉 =

f3〈f1〉 and that r2〈f1〉 = f2〈f1〉. So, the question is: is (r1r2)〈f1〉 =

(f3f2)〈f1〉? The answer is no! We find that (r1r2)〈f1〉 = 1〈f1〉 = {1, f1},
while (f3f2)〈f1〉 = r2〈f1〉 = {r2, f2}.

So how should one fix this problem? Let us first analyze the situation
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some more. Since a′ = a′ · 1 ∈ a′H and since a′H = aH , we find a′ ∈ aH ,

so a′ = ah for some h ∈ H . Similarly, b′ = bk for some k ∈ H . Then

a′b′ = ahbk. If (ab)H ought to equal (a′b′)H , then a′b′ ought to equal abl

for some l ∈ H (see Exercise 3.5). We have gotten a′b′ to look like ahbk, let

us massage this a bit and write it as abb−1hbk. Now, suppose that b−1hb

is also in H by some miracle, say that b−1hb = j for some j ∈ H . Then,

a′b′ = ahbk = abb−1hbk = abjk, and of course, jk ∈ H as both j and k are

in H . It would follow that if this miracle were to happen, then a′b′ would

look like ab times an element of H , and therefore, abH would equal a′b′H .

As the example of G = S3 and H = 〈f1〉 above shows, this miracle

will not always happen, but there are some special situations where this will

happen, and we give this a name:

Definition 4.51

Let G be a group. A subgroup H of G is called a normal subgroup if

for any g ∈ G, g−1hg ∈ H for all h ∈ H .
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Remark 4.52

Alternatively, write g−1Hg for the set {g−1hg | h ∈ H}. Then we

may rewrite the definition above as follows: H is said to be normal if

g−1Hg ⊆ H for all g ∈ G. Note that this is equivalent to requiring

that gHG−1 ⊆ H for all g ∈ G. For, setting y to be g−1, note that as

g ranges through all the elements of G, y = g−1 ranges through all the

elements of G as well.

Example 4.53

Take G = S3 again, but this time around, take H = 〈r1〉 = {1, r1, r2}.
Let us consider the sets g−1Hg as g ranges through S3. We can obtain

the various products by using the group table for S3 on page 378, for

instance, f1{1, r1, r2}f−1
1 = f1{1, r1, r2}f1 = {f1f1, f1r1f1, f1r2f1} =

{1, r2, r1}, etc. Doing so, we obtain the following:
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S3 Conjugations

g g{1, r1, r2}g−1

id {1, r1, r2}

r1 {1, r1, r2}

r2 {1, r1, r2}

f1 {1, r2, r1}

f2 {1, r2, r1}

f3 {1, r2, r1}

Thus, for each y ∈ G, we find yHy−1 = H (so most definitely, yHy−1 ⊆
H as needed in Definition 4.52), so indeed H is a normal subgroup of G.

It was not a coincidence in the example above that yHy−1 actually turned

out be equal to H instead of merely being a subset. We have the following

easy result:

Lemma 4.54. Prove that if H is a normal subgroup of G, then indeed

yHy−1 = H for all y ∈ G.
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Proof. Fix a y ∈ G. SinceH is normal, we know that yHy−1 ⊆ H . We wish

to show thatH ⊆ yHy−1 as well. But sinceH is normal, y−1H(y−1)−1 ⊆ H ,

so y−1Hy ⊆ H . Thus, for any h ∈ H , y−1hy = k for some k ∈ H . We may

rewrite this as h = yky−1 by pre-multiplying by y and post-multiplying by

y−1. But yky−1 is an element of yHy−1 as k ∈ H , so we find that for each

h ∈ H , h ∈ yHy−1. Thus H ⊆ yHy−1 as desired. 2

There is an immediate corollary to this:

Corollary 4.55. Let G be a group, and let N be a normal subgroup. Then

for any g ∈ G, the left coset gN and the right coset Ng are equal.

Proof. Since N is normal, we may apply the lemma above with y = g to

find gNg−1 = N . Hence, for any n ∈ N , we have gng−1 = m for some

m ∈ N . Post-multiplying this by g, we find gn = mg. Thus, gn ∈ Ng.

Since this is true for arbitrary n ∈ N , we find gN ⊆ Ng. For the reverse

inclusion, take y = g−1 in Lemma 4.54 to find g−1Ng = N as well. Hence,

given any n ∈ N , g−1ng = m for some m ∈ N . Pre-multiplying this by g,

we find ng = gm, so ng ∈ gNH . Since this is true for arbitrary n ∈ N , we

find Ng ⊆ gN . 2
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Remark 4.56

As a result of this corollary, if N is normal in G, we may simply talk of

the cosets of N without specifying whether these are left or right coset.

Exercise 4.57

Prove the converse of Corollary 4.55: If N is a subgroup of G such that

for every g ∈ G, the left coset gN equals the right coset Ng, then N is

normal.

Exercise 4.58

Prove that the center of a group (see Definition 3.5) is a normal subgroup.

Exercise 4.59

Prove that every subgroup of an abelian group is normal.

The following is now a consequence of all our discussions:

Lemma 4.60. Let G be a group, and let N be a normal subgroup. Denote

by G/N the set of cosets (see Remark 4.56) of N . Then, the binary

operation defined on G/N by (aN)(bN) = (ab)N is well-defined.

Proof. The proof of this lemma is contained in the discussions just before

Definition 4.51. In fact, it was precisely the analysis of what would make
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the operation (aH)(bH) = (ab)H on the (left) cosets of an arbitrary group

H well-defined that led us to the definition of normal subgroups. It would

be a good idea to read that discussion and furnish the proof of this lemma

yourselves.

2

Theorem 4.61. Let G be a group, and let N be a normal subgroup. Then,

the set G/N , with the operations as defined in the statement of Lemma

4.60, is a group.

Proof. We have observed in Lemma 4.60 that these operations are well-

defined. We have to check if all group axioms are satisfied.

1. Associativity: Given aN , bN , and cN inG/N , we have (aN)[(bN)(cN)] =

(aN)[(bc)N ] = [a(bc)]N = [(ab)c]N (the last equality because of asso-

ciativity in G). On the other hand, [(aN)(bN)](cN) = [(ab)N ](cN) =

[(ab)c]N . Hence, (aN)[(bN)(cN)] = [(aN)(bN)](cN).

2. Identity element: The coset N = 1 · N acts as the identity element.

For, for any aN , we have (aN)(1 · N) = (a · 1)N = aN , and (1 ·
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N)(aN) = (1 · a)N = aN .

3. Existence of inverses: For any aN , consider the coset a−1N . We find

(aN)(a−1N) = (aa−1)N = 1 ·N = N , and similarly, (a−1N)(aN) =

(a−1a)N = 1 · N = N . Since the coset N is the identity element in

G/N , we find that the coset a−1N is the inverse of the coset aN .

This proves that G/N with the operation as above is indeed a group.

2

Definition 4.62

The set G/N with the binary operation defined in the statement of

Lemma 4.60 is called the quotient group of G by the normal subgroup

N .

Exactly as with quotient rings and quotient vector spaces, the intuition

behind quotient groups is that it is a group obtained from a group G by

“killing” or “dividing out” all elements in a given normal subgroup N . Thus,

G/N is to be thought of as the set of all remainders left after dividing out

by N , endowed with the natural “quotient” operation of Lemma 4.60.
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Exercise 4.63

If the order of G is finite, show that o(G/N) = o(G)/o(N).

Exercise 4.64

Take G to be D4, and take N to be the group generated by σ2 (see

Example 4.10 and also Exercise 4.12.2).

1. Prove that N is normal in G.

2. Prove that G/N has order 4.

3. Prove that G/N is abelian.

4. Prove that G/N is not cyclic.
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4.4 Group Homomorphisms and Isomorphisms

Having had enough experience with quantifying the fact that sometimes

the ring operations in two given rings may be “the same except perhaps for

dividing out by an ideal,” or that, sometimes, the vector space operations

in two given vector spaces over a field may be “the same except perhaps

for dividing out by a subspace,” the following concept should now be very

intuitive:
Definition 4.65

Let G and H be groups. A function f : G → H is called a group

homomorphism if f (g)f (h) = f (gh) for all g, h ∈ G.

Remark 4.66

Just as with the definitions of ring homomorphisms and vector space

homomorphisms (linear transformations) there are some features of this
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definition that are worth noting:

1. In the equation f (g)f (h) = f (gh), note that the operation on the

left side represents the group operation in the group H , while the

operation on the right side represents the group operation in the

group G.

2. By the very definition of a function, f is defined on all of G. The

image of G under f , however, need not be all of H (i.e, f need not

be surjective). We will see examples of this ahead (see Example

4.71 and Example 4.72 for instance). However, the image of G

under f is not an arbitrary subset of H : the definition of a group

homomorphism ensures that the image of G under f is actually a

subgroup of H (see Lemma 4.76 later in this section).

3. Note that it is not necessary to stipulate that f (1G) = 1H since

the property holds automatically, see Lemma 4.67 below.

Lemma 4.67. Let f : G→ H be a group homomorphism. Then f (1G) =
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1H.

Proof. We have already seen the proof of this in the context of ring homo-

morphisms (Lemma 2.87 in Chapter 2) and of vector space homomorphisms

(Lemma 3.77 in Chapter 3). For completeness, we will prove it again: you

should read this proof and go back and re-read the proofs of the correspond-

ing lemmas on ring homomorphisms and vector space homomorphisms. We

have f (1G) = f (1G · 1G) = f (1G) · f (1G), so putting this together, we have

f (1G) = f (1G) · 1H = f (1G) · f (1G). Invoking left cancellation (see Exercise

3.5), we find 1H = f (1G). 2

We get an immediate corollary to this (see Corollary 2.88 in Chapter 2,

as also Remark 3.81 in Chapter 3):

Corollary 4.68. Let f : G → H be a group homomorphism. Then for

any g ∈ G, f (g−1) = (f (g))−1.

Proof. Since gg−1 = 1G, we have f (gg−1) = f (g)f (g−1) = f (1G) = 1H ,

and similarly, from g−1g = 1G we find f (g−1)f (g) = 1H . This shows that

f (g) and f (g−1) are inverses in H . 2
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The following definition should be natural at this point, after your expe-

riences with ring homomorphisms and vector space homomorphisms:

Definition 4.69

Given a group homomorphism f : G → H , the kernel of f is the set

{g ∈ G | f (g) = 1H}. It is denoted ker(f ).

No surprise here:

Proposition 4.70. The kernel of a group homomorphism f : G → H is

a normal subgroup of G.

Proof. Let us prove first that ker(f ) is a subgroup. Since 1G ∈ ker(f )

(see Lemma 4.67), ker(f ) is certainly nonempty. Now that we know it is

nonempty, by Lemma 4.31, it is sufficient to show that whenever g and k are

in ker(f ), then gk−1 is also in ker(f ). First note that by Corollary 4.68,

f (k) and f (k)−1 are inverses of each other in the group H . With this at

hand, we have f (gk−1) = f (g)f (k−1) = f (g)(f (k))−1 = 1H1H = 1H (we

have invoked the fact here that both g and k are in the kernel of f so they

get mapped to 1H under f ). We thus find gk−1 ∈ ker(f ) as desired.

To show ker(f ) is normal, we need to show that gkg−1 ∈ ker(f ) for all
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g ∈ G and all k ∈ ker(f ). But this is easy: for any g ∈ G and k ∈ ker(f ),

f (gkg−1) = f (g)f (k)f (g−1) = f (g)1H(f (g))−1 = f (g)(f (g))−1 = 1H , so

indeed, gkg−1 ∈ ker(f ).

2

Example 4.71

Given groups G and H , the map f : G→ H that sends every g ∈ G to

1H is a group homomorphism.

Question 4.71.1

Why is this f a group homomorphism? What is the kernel of f?

Notice that if H has more than just the identity element, then f is not

surjective.

Example 4.72

Let R and S be rings, and let f : R → S be a ring homomorphism.

Then, focusing just on the addition operations in R and S (with respect

to which we know that R and S are abelian groups), the function f :
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(R,+) → (S,+) is a group homomorphism. In particular, if f is not

surjective as a ring homomorphism (for example, the natural inclusion

map Z → Q, see Example 2.94 in Chapter 2), then f is not surjective

as a group homomorphism either.

Example 4.73

Let G and H be groups (see Example 4.15). Define a function f :

G×H → H by f (g, h) = h.

Question 4.73.1

Why is this f a group homomorphism? What is the kernel of f?

Example 4.74

Define a function f : S3 → {1,−1} (see Example 4.13) by f (ri1f
j
1 ) =

(−1)j (see Exercise 4.2.1).

Question 4.74.1

Why is this f a group homomorphism? What is the kernel of f?
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We now come to group isomorphisms. Just as ring isomorphisms capture

the notion that the addition and multiplication in two rings are “essentially

the same” without even having to divide out by any ideal, and just as vector

space isomorphisms capture the notion that the vector space operations in

two vector spaces are “essentially the same” without even having to divide

out by any subspace, group isomorphisms capture the notion that the group

operations in two groups are “essentially the same” without even having to

divide out by any normal subgroup.

As with rings and vector spaces, we need a couple of lemmas first:

Lemma 4.75. Let G and H be two groups and let f : G→ H be a group

homomorphism. Then f is an injective function if and only if ker(f ) is

the trivial subgroup {1G}.

Proof. The proof of this is very similar to the proof of the corresponding

Lemma 2.99 in Chapter 2: let us redo that proof in the context of groups.

Suppose f is injective. Suppose that g ∈ ker(f ), so f (g) = 1H . By Lemma

4.67, f (1G) = 1H . Since both g and 1G map to the same element in H and
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since f is injective, we find g = 1G. Thus, the kernel of f consists of just

the element 1G, which is precisely the trivial subgroup. Conversely, suppose

that ker(f ) = {1G}. Suppose that f (g1) = f (g2) for g1, g2 in G. Since f is

a group homomorphism, we find f (g1g
−1
2 ) = f (g1)f (g−1

2 ) = f (g1)(f (g2))−1

(the last equality is because of Remark 4.68), and of course f (g1)(f (g2))−1 =

f (g1)(f (g1))−1 = 1H . Thus, g1g
−1
2 ∈ ker(f ). But ker(f ) = {1G}, so

g1g
−1
2 = 1G, i.e., g1 = g2. Hence, f is injective.

2

Our next lemma is analogous to Lemma 2.100 of Chapter 2 and Lemma

3.88 of Chapter 3:

Lemma 4.76. Let G and H be two groups and let f : G→ H be a group

homomorphism. Write f (G) for the image of G under f . Then f (G) is

a subgroup of H.

Proof. Note that 1H ∈ f (G) by Lemma 4.67, so f (G) is nonempty. We can

hence apply Lemma 4.31, so given h and k in f (G), we need to show that

hk−1 is also in f (G). By definition of being in f (G), there exist g and j in



CHAPTER 4. GROUPS 468

G such that f (g) = h and f (j) = k. Note that f (j−1) = k−1, by Remark

4.68. Hence f (gj−1) = f (g)f (j−1) = hk−1, showing that hk−1 ∈ f (G).

Hence f (G) is a subgroup of H . 2

We are now ready for

Definition 4.77

Let f : G → H be a group homomorphism. If f is both injective and

surjective, then f is said to be an isomorphism between G and H . Two

groups G and H are said to be isomorphic (written G ∼= H) if there is

some function f : G→ H that is an isomorphism between G and H .

Here are some examples:

Example 4.78

The function f : S2 → (Z/2Z,+) that sends 1S2 to [0]2 and the element

(1, 2) (written in cycle notation) to [1]2 is an isomorphism (see Exercise

4.3.2). Verify this!
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Example 4.79

The groups S3 and D3 are isomorphic.

Question 4.79.1

Compare their group tables on pages 378 and 394. Can you deter-

mine a function f : S3 → D3 that effects an isomorphism between

S3 and D3.

Example 4.80

Recall that Remark 4.40 showed that if G is a cyclic group of order

n, generated by an element g, then g also has order n and that G =

{1, g, . . . , gn−1}.

Exercise 4.80.1

Extend this statement to prove: If G and H are any two cyclic

groups of order n, then G ∼= H .
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Example 4.81

Let G be a cyclic group of order n and H a cyclic group of order m. If m

and n are relatively prime, then the direct product G×H is isomorphic

to Cnm. (See Exercise 4.37.4, as also, Exercise 4.94 at the end of the

chapter.)

Exercise 4.81.1

Prove this by showing first that if G = 〈g〉 and H = 〈h〉, then

(g, h) must have order mn. Since mn is also the order of G ×H ,

G × H must equal the cyclic subgroup generated by (g, h). Now

use Exercise 4.80.1 above.

Example 4.82

Recall the group G/N where G = D4 and N is the subgroup generated

by σ2 (see Exercise 3.5).

Exercise 4.82.1

Prove that G/N is isomorphic to (Z/2Z,+)× (Z/2Z,+).
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Finally, we have the following:

Theorem 4.83. (Fundamental Theorem of Homomorphisms of Groups.)

Let f : G→ H be a homomorphism of groups, and write f (G) for the

image of G under f . Then the function f̃ : G/ker(f ) → f (G) defined

by f̃ (g · ker(f )) = f (g) is well-defined, and provides an isomorphism

between G/ker(f ) and f (G).

Proof. The proof is similar to the proofs of the corresponding theorems for

rings (Theorem 2.107 of Chapter 2) and vector spaces (Theorem 3.94 of

Chapter 3). We first check that f̃ is well-defined. Suppose that g · ker(f ) =

h · ker(f ). Then gh−1 ∈ ker(f ), so f (gh−1) = 1H . But also, f (gh−1) =

f (g)f (h−1) = f (g)(f (h))−1. Thus, 1H = f (g)(f (h))−1, so f (g) = f (h).

Now we check that f̃ is a homomorphism. We have f̃ (g · ker(f )) · f̃ (h ·
ker(f )) = f (g)f (h) = f (gh) (as f is a group homomorphism). On the

other hand, f̃ ((gh) · ker(f )) = f (gh). Hence f̃ is a group homomorphism.

We check that f̃ is surjective: Note that any h ∈ f (G) is by definition of

the form f (g) for some g ∈ G. It is clear that f̃ (g · ker(f )) = f (g) = h, so

f̃ is surjective.
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Now we check that f̃ is injective. Suppose that f̃ (g · ker(f )) = 1H .

Then, f (g) = 1H , so g ∈ ker(f ). It follows that g · ker(f ) = ker(f ), i.e.

g · ker(f ) = 1G/ker(f). Hence f is injective.

2

Here is a quick exercise that uses this theorem:

Exercise 4.84

Let G be a group of finite order, and let f : G → H be a surjective

group homomorphism. Prove that H also has finite order, and that the

order of H divides the order of G. (Hint: Combine Exercise 3.5 and the

theorem above.)
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4.5 Further Exercises

Exercise 4.85. You have seen the dihedral groups of index 3 and 4 in the text

(Examples 4.9 and 4.10). The groups Dn are defined analogously for n ≥ 5.

Determine the group table for D5 and determine its center.

Exercise 4.86. We will determine the group of symmetries of the set in Ex-

ample 4.100 (see Page 483). Recall from Example 3.82 in Chapter 3 that after

fixing a basis of R2, we can identify the set of all linear transformations of R2

with M2(R).

Let T be a linear transformation that preserves the structure of our set,

and let MT be its matrix representation with respect to, say, the standard

basis {i, j} of R2. Then,

MT =

(
a b

c d

)
for suitable real numbers a, b, c, and d. We will describe the conditions that

a, b, c, and d must satisfy:

1. By considering the lengths of an arbitrary vector (x, y) before and after

applying T , prove that (ax+ by)2 + (cx+ dy)2 = x2 + y2 for all x and

y in R.

2. Show that this relation leads to the following necessary and sufficient

conditions for MT to represent a symmetry of our set:
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(a) a2 + c2 = 1

(b) b2 + d2 = 1, and

(c) ab + cd = 0

3. Show that the conditions in (2) above are equivalent to the condition

(MT )tMT = I , where I is the identity matrix, and (MT )t stands for the

transpose of MT . Conclude from this that any matrix that satisfies the

condition in (2) above must have determinant equal to ±1.

4. Now assume that MT satisfies these conditions. Observe that this means

that the columns of MT are of length 1, and that the two columns are

perpendicular to each other. (Such a matrix is called orthonormal.) We

have thus determined the symmetries of the set in Example 4.100 to be

the set of 2× 2 orthonormal matrices with entries in R. Now prove that

this set actually forms a group under matrix multiplication. This group

is known as the orthogonal group of order 2 over R. You should go back

and revisit Example 4.21 as well. In alignment with that example, the

group in this exercise should be denoted O2(R).

Exercise 4.87. Here is a group that generalizes Example 4.20. Let Un(R)

denote the set of n × n upper triangular matrices with entries in R, all of

whose diagonal entries equal 1. Thus, every matrix in Un(R) can be expressed

as the sum of the identity matrix I and a strictly upper triangular matrix N .

We will show that Un(R) forms a group with respect to multiplication.
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1. For any matrix M in Mn(R), define the level l of M as follows: the

level of the zero matrix is ∞, and for nonzero matrices M , l(M) =

min{j − i | Mi,j 6= 0}, where Mi,j stands for the (i, j) entry of M .

Thus, a matrix is of level 0 if and only if it is upper triangular with at

least one nonzero entry along the diagonal, and it is of level 1 if and only

if it is strictly upper triangular, with at least one nonzero entry along

the “super diagonal” (the super diagonal is the set of entries that run

diagonally from the (1, 2) slot down to the (n − 1, n) slot), etc. Show

that l(MN) ≥ l(M) + l(N). Give an example of matrices M and N

such that MN 6= 0, and l(MN) > l(M) + l(N).

2. Conclude that any strictly upper triangular matrix N is nilpotent (see

Exercise 2.119 in Chapter 2).

3. Now show using Parts (1) and (2) above that Un(R) forms a group with

respect to matrix multiplication. (You may also want to look at Exercise

2.119 in Chapter 2 for some ideas.)

Exercise 4.88. Let G be a group with an even number of elements. Prove

that G has at least one nonidentity element a such a2 = 1. (Hint: To say that

a2 = 1 is to say that a = a−1. Now pair the elements in the group suitably,

and invoke the fact that the group has an even number of elements.)

Exercise 4.89. Prove that a group G is abelian if and only if the function

f : G→ G that sends any g to g−1 is a homomorphism.
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Exercise 4.90. Prove that a group G is abelian if and only if (gh)2 = g2h2

for all g and h in G.

Exercise 4.91. The discussions preceding Definition 4.51 established the fol-

lowing: if N is a normal subgroup of G, then the operation on the left cosets

of N determined by (aN)(bN) = abN is well-defined. Prove the converse of

this: if N is a subgroup of G such that the operation on the left cosets

of N determined by (aN)(bN) = abN is well-defined, then N must be

normal in G. (Hint: For any g ∈ G, consider the product of left cosets

g−1N · gN = 1GN = N . For any n ∈ N , note that the coset (g−1n)N is

the same as g−1N (why?). Since the product is well-defined, (g−1n)N · gN
should also equal N . So?)

Exercise 4.92. What is the last digit in 4399999? (Hint: Work mod 2 and mod

5 separately, applying Corollary 4.49 above, and then combine the result.)

Exercise 4.93. By Exercise 3.5, the center Z(G) of a group G is a normal

subgroup of G. Hence, it makes sense to talk of the quotient group G/Z(G).

Prove that if G/Z(G) is cyclic, then G must be abelian, and thus, Z(G) must

equal G.

Exercise 4.94. Let G be a cyclic group of order m and H a cyclic group of

order n. Show that G×H is cyclic if and only if gcd(m,n) = 1.
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Notes

Remarks on sets with structure and their symmetry groups Recall

from the text (Page 372) that a set with structure is simply a set with a

certain feature that we wish to focus on, and a symmetry of such a set is

a one-to-one onto map from the set to itself that preserves this feature. If

f and g are two such maps, then the composition f ◦ g as well as g ◦ f
will also be one-to-one onto maps that preserve the feature. (Recall that if

f : S → S and g : S → S are two functions from a set S to itself, then the

composition of f and g, written f ◦ g takes s ∈ S to f (g(s)), and similarly,

g ◦ f takes s to g(f (s)).) Often, if f is such a feature-preserving map, then

f−1 (which exists because f is a bijection) will also preserve the feature,

although, this is not always guaranteed. (See the remarks on Page 489 later

in these notes for some examples where the inverse of a structure-preserving

map is not structure-preserving.) So, if we restrict our attention to those

structure-preserving maps whose inverse is also structure-preserving, then

these maps constitute a group, called the symmetry group of the set with

the given structure.
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We consider some examples below of sets with structure and their sym-

metry groups:

Example 4.95

The set in question could be any set, such as Σ3 = {1, 2, 3}, with the

feature of interest being merely the fact that it is a set. (This structure

is called the trivial structure.) Of course this particular set has lots of

other features (for example, each element in Σ3 corresponds to a length

on a number line–see Example 4.96 below), but we do not focus on any

other feature for the moment. Any one-to-one onto map from a set such

as Σ3 to itself will certainly preserve the feature that Σ3 is a set, so,

the symmetries of a set with trivial structure are precisely the various

one-to-one maps from the set to itself. We have already considered this

group in Example 4.2, it is S3.

Example 4.96

If we consider instead Σ3 with the feature that each element corresponds

to a length on a number line—1 to the unit length, 2 to twice the unit-

length, and 3 to three times the unit length—then our symmetry group
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would be different. Any symmetry f would now have to satisfy the

property that if n ∈ Σ3 corresponds to a certain length, then f (n)

should also correspond to the same length. It follows immediately that

f (1) has to equal 1: f (1) cannot be 2 or 3 since 1 has unit length while 2

has twice the unit length and 3 has three times the unit length. Similary

f (2) = 2 and f (3) = 3. Hence, f can only be the identity map. Thus,

the symmetry group of Σ3 with the feature that each element corresponds

to a length on the number line is the trivial group consisting of just the

identity.

Example 4.97

The set could be a piece of cardboard cut in the shape of an equilat-

eral triangle with the feature that it is a rigid object. Again, this set

could have other features (for example, the cardboard could be colored

in alternating horizontal strips of black and white–see Question 4.98.1

below), but we will ignore those. The symmetries of this set would be

those one-to-one and onto maps f from the triangle to itself that pre-

serve the rigidity of the triangle, i.e, that do not distort the cardboard.
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(Put differently, if p and q are any two points on the triangle, then the

distance between p and q should be the same as the distance between

f (p) and f (q)). We have seen this group before: it is the group D3

(Example 4.9).

Example 4.98

Just as in the last example, the set could be a piece of cardboard cut in

the shape of a square, with the structure that it is a rigid object. We

have seen the symmetries of this set, it is D4 (Example 4.10).
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Question 4.98.1

Pick one edge of the square, and refer to its direction as the “horizon-

tal” direction. Suppose the piece of cardboard of this example had,

additionally, been colored in alternating horizontal strips of black

and white. Suppose that the total number of strips is odd (and at

least three), so that the strips along the two horizontal edges are

both of the same color and there is at least one strip of the other

color. What would be the symmetries of this new set? What would

be the symmetries if the total number of strips were even, so that

the strips along the two horizontal edges are of different color?

Example 4.99

The set could be R2, and the feature of interest could be the fact that

it is a vector space over the reals. What would be the symmetries of

a vector space that preserve its vector space structure? In fact, what

should it mean to preserve the vector space structure? A vector space is

characterized by two operations, an addition operation on vectors, and
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a scalar multiplication operation between a scalar and a vector. We say

that a map f : R2 → R2 preserves its vector space structure if for any

two vectors v and w in R2 and for any scalar a ∈ R, “f respects these

operations,” i.e., if f sends v to some f (v) and w to some f (w), then

f must send v + w to f (v) + f (w) and av to af (v). We have seen

such maps f before in Chapter 3: f must be a linear transformation of

R2. Hence, a symmetry of R2 with its vector space structure is a linear

transformation of R2 that is both injective and surjective.

Exercise 4.99.1

Show that if f is a one-to-one onto linear transformation of R2, then

the inverse map f−1 is also a linear transformation of R2. (Hence,

the inverse also preserves the vector space structure of R2. It follows

that the symmetry group of R2 with its vector space structure is

precisely the set of injective and surjective linear transformations of

R2.)
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Example 4.100

This examples puts further conditions on Example 4.99: We could take

the set to be R2 as before, with the structure being that it is a vector

space over the reals, and that each vector has a length. (Recall that

the length of the vector (a, b) in R2 is taken to be
√
a2 + b2.) The

symmetries of this set would be one-to-one onto linear transformations

of R2 that in addition preserve the length of a vector. (See Exercise 4.86

at the end of the chapter.)

Example 4.101

This example and the next are central in Galois theory, and you may

wish to postpone them for a future reading. The set could be the field

Q[
√

2], and the structure could be that (i) Q[
√

2] is a field, and (ii) every

element in Q[
√

2] satisfies a family of polynomials over the rationals.

The symmetries ofQ[
√

2] that preserve the fact that it is a field are those

one-to-one onto maps f : Q[
√

2]→ Q[
√

2] that satisfy the property that

for all a and b in Q[
√

2], f (a+ b) = f (a) + f (b), f (ab) = f (a)f (b) and

f (1) = 1: in other words, f must also be a ring homomorphism. (Note
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that once f satisfies the property that it is a ring homomorphism, the

relations ab = 1 will mean that f (a)f (b) = 1, so pairs of multiplicative

inverses will go to pairs of multiplicative inverses under f . Thus, the

essential character of Q[
√

2] that gives it the structure of not just a ring

but a field will automatically be preserved.) Put differently, we find that

f must be a ring isomorphism from Q[
√

2] to Q[
√

2] if it is to preserve

the field structure of Q[
√

2].

As for the second feature, we say that a one-to-one onto map f :

Q[
√

2]→ Q[
√

2] preserves the minimal polynomial over the rationals if

any a ∈ Q[
√

2], the element f (a) satisfies the same minimal polynomial

over the rationals as a. Now take an arbitrary a ∈ Q (note). It will have

minimal polynomial x− a (why?). Hence f (a) must also have minimal

polynomial x−a if the minimal polynomial is to be preserved. In partic-

ular, f (a) must satisfy f (a)−a = 0, i.e, f (a) must equal a. Since this is

true for arbitrary a ∈ Q, we find that any symmetry of Q[
√

2] that pre-

serves the field structure and the minimal polynomial over the rationals

must be a ring isomorphism that act as the identity map on the rationals.
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Moreover, it is easy to see that any ring isomorphism from Q[
√

2] to

Q[
√

2] that is the identity on the rationals necessarily preserves the mini-

mal polynomial over the rationals of an arbitrary a ∈ Q[
√

2]: if a satisfies

the polynomial p(x) = xt + qt−1x
t−1 + · · · + q1x + q0 with coefficients

in Q, then applying f to the equation at + qt−1a
t−1 + · · ·+ q1a+ q0 = 0

and using the fact that f is a ring homomorphism that is the identity on

the rationals, we find that f (a)t + qt−1f (a)t−1 + · · · + q1f (a) + q0 = 0,

i.e., f (a) also satisfies p(x). Conversely, if f (a) satisfies some monic

polynomial q(x) with coefficients in the rationals, then applying f−1, we

find that a also satisfies q(x). In particular, since a and f (a) satisfy the

same monic polynomials with rational coefficients, they must both have

the same minimal polynomial over the rationals.

Thus, the symmetries of Q[
√

2] that preserve both the field structure

and the minimal polynomial of elements must be ring isomorphisms

from Q[
√

2] to Q[
√

2] which act as the identity on Q. But by Exercise

2.134 in Chapter 2, any ring homomorphism from Q to Q[
√

2] must au-

tomatically be the identity map on the rationals, so this extra condition
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is not necessary. It follows that the symmetries of Q[
√

2] that preserve

both the field structure and the minimal polynomial of elements over the

rationals are precisely the set of ring isomorphisms from Q[
√

2] to itself.

Exercise 4.101.1

Using the ideas developed in these remarks and using Exercise

2.106.1 in Chapter 2, prove that the only non-trivial symmetry of

Q[
√

2] with the structure above is the familiar conjugation map that

sends each a+ b
√

2 (a, b, in the rationals) to a− b
√

2. Hence, there

are precisely two symmetries of this set: the do nothing symmetry,

that is, the identity map on Q[
√

2], and this conjugation map.

Example 4.102

(This is also from Galois theory, and as with the previous example, you

may wish to postpone this for a future reading.) The set could be the

field Q[
√

2,
√

3], and the structure could be that (i) Q[
√

2,
√

3] is a field

(see Exercise 2.116 in Chapter 2), and (ii) every element in Q[
√

2,
√

3]
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satisfies a family of polynomials over the field Q[
√

2].

The same considerations as in Example 4.101 above apply: The symme-

tries of Q[
√

2,
√

3] that preserve the field structure are precisely the set

of ring isomorphisms from Q[
√

2,
√

3] to itself. The symmetries which

also preserve the minimal polynomial of elements over Q[
√

2] can be

determined exactly as above: these must be the ring isomorphisms from

Q[
√

2,
√

3] to itself that act as the identity on Q[
√

2]. (Note that unlike

the previous example, it is not true that every ring isomorphism from

Q[
√

2,
√

3] to itself acts as the identity on Q[
√

2].)
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Exercise 4.102.1

Using the ideas developed in these remarks and using Exercise 2.135

in Chapter 2, prove that the only non-trivial symmetry ofQ[
√

2,
√

3]

with the structure above is the map that sends a+b
√

2+c
√

3+d
√

6

to a+ b
√

2− c
√

3−d
√

6 (here a, b, c, and d are rational numbers).

Thus, there are precisely two symmetries of this set. Note, however,

that Exercise 2.135 of Chapter 2 shows that there are other ring

isomorphisms from Q[
√

2,
√

3] to itself: these however do not act as

the identity on Q[
√

2].

Remarks on Exercise 4.5.1 Here is how you may start this exercise: Let

j be an integer in the set Σn. Let us consider the case where j is one of the

b’s, say j = bk, for some k. Then t(j) = bk+1, where the subscript is taken

modulo e so as to lie in the set {1, 2, . . . , n}. Hence st(j) would be s(bk+1).

Now, because s and t are disjoint cycles, bk+1 will not appear among the a’s,

and hence, s(bk+1) would equal bk+1. Now work out ts(j) for this particular
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case. Next consider the case where j is not one of the b’s and work out the

details.

Remarks on structure-preserving maps forming a group It is not al-

ways true that the inverse of a structure preserving map also preserves the

structure. Typically this is so, but occasionally this is not the case. It is

for this reason that we only consider symmetries of a set whose inverse also

preserves the given structure when viewing the symmetries as a group. Here

is an example:

We consider the real numbers with its “differentiable structure.” What

this means is that there exists a notion of differentiability of functionsR→ R.

A symmetry of R with its differential structure would be a one-to-one onto

function f : R→ R that “preserves this differentiable structure.” This means

that f should satisfy the condition that for any differentiable map g : R→ R,

the composite g ◦ f must also be differentiable. A necessary and sufficient

condition for this to happen is that f itself must be differentiable. It is

now easy to find bijections f : R → R that are differentiable, but whose

inverse is not differentiable. One example is the function f (x) = x3. It is
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differentiable at all values of x, but its inverse function f−1(x) = x1/3 fails

to be differentiable at x = 0.

Remarks on orthogonal groups Orthogonal groups come in more guises

than the one we have described in Example 4.21. Recall the origins of the

n = 2 case over R that we exhibited in Exercise 4.86: the group O2(R) is

the set of symmetries of R2 with the structure that it is a vector space over

the reals, and that every vector has a length (Example 4.100). Now let us

examine “length” more closely. The length of a vector pi+qj is defined to be√
p2 + q2. Temporarily ignoring the square root (we will put it back later),

the squared-length of a general vector xi + yj is thus given by x2 + y2. This

is an example of a “quadratic form”—a polynomial all of whose monomials

are of degree 2 in—in two variables. Now note that the polynomial x2 + y2

can be written as

(x, y)

 1 0

0 1

 (x, y)t

(Here, recall from elementary linear algebra that the product of a row vec-

tor (s, t) and a column vector (p, q)t is given by sp + tq. Thus, since
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0 1

 (x, y)t is just (x, y)t, the product above becomes (x, y)(x, y)t =

x2 + y2, as claimed.)

Mathematicians have found it useful to define length differently as well

(we will see a famous example of this ahead). More generally, let q = ax2 +

2bxy+ cy2 be any quadratic form with coefficients a, b, c from the reals. (It

is convenient to write the coefficient of xy as 2b.) Then, q may be written as

(x, y)

 a b

b c

 (x, y)t

(Check this! Notice how the fact that we wrote the coefficient of xy as 2b

allows us to write the (1, 2) and (2, 1) entries of the matrix above as b. Had

we taken the coefficient of xy as b, then these entries would have had to be

b/2.) Using this quadratic form, we define the q-length of a vector pi + qj

as
√
ap2 + 2bpq + cq2. (The length may well turn out to be imaginary—the

quantity under the square root sign may be negative—but that only makes

matters more interesting!) Moreover, we define the q-dot product of two

vectors si + tj and pi + qj to be asp+ b(sq + tp) + ctq. Writing Mq for the
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matrix

 a b

b c

 above, we find that the q-length of pi + qj is given by

(p, q)

 a b

b c

 (p, q)t,

and the q-dot-product of si + tj and pi + qj is given by

(s, t)

 a b

b c

 (p, q)t,

The matrix Mq allows us to compute q-lengths and q-dot products; notice

that Mq is a symmetric matrix (the (1, 2) entry and (2, 1) entry are equal).

Given an arbitrary quadratic form q in two variables with coefficients

in the reals, we may now consider the symmetries of R2 with q-structure:

this is the structure that R2 is a vector space over the reals, and that every

vector has a q-length. The symmetries then would be one-to-one onto linear

transformations of R2 that in addition preserve q-length. These symmetries

form a group that we will denote O2(R, q). It is called the orthogonal group

of q over R.
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Exercise 4.103

Prove that O2(R, q) consists of those 2 × 2 matrices A with entries in

R satisfying AtMqA = Mq.

Exercise 4.104

Given a one-to-one onto linear transform T , let us say that it satisfies

Property (1) if the q-length of T (v) is the same as the q-length of v for

all v in R2. Let us say that it satisfies Property (2) if the q-dot product

of T (v) and T (w) is the same as the q-dot product of v and w, for all v

and w in R2. Show that T satisfies Property (1) if and only if it satisfies

Property (2).

More generally, an arbitrary quadratic form q in n variables x1, x2, . . . ,

xn over a field F is a polynomial in these variables with coefficients in F , all

of whose monomials are of degree 2. As long as 2 6= 0 in this field (so we rule

out fields like Z/2Z), we may form a symmetric n× n matrix Mq as above,

where the entries in the slots (i, j) and (j, i) both equal half the coefficient

of xixj in the quadratic form q. (We have to impose the 2 6= 0 condition,

because otherwise, we would not be able to divide by 2!) The set of n × n



CHAPTER 4. GROUPS 494

matrices A satisfying AtMqA = Mq forms a group On(F, q), referred to as

the orthogonal group of q over F .

Perhaps the most famous example of the length of vectors in Rn being

measured by quadratic forms other than x2
1 + x2

2 + · · · + x2
n is given by

Einstein’s theory of relativity. There, space-time is considered as a four

dimensional space, and the length of the vector (t, x, y, z)t, where t is the

time coordinate and x, y, and z are the usual spatial coordinates, is given

by
√
t2 − x2 − y2 − z2. (Actually, this is a drastic simplification: space-

time is not really a vector space but a four-dimensional manifold, and the

length formula above applies on the tangent spaces–which are actual vector

spaces–but that is too mathematically advanced for now.) This quadratic

form t2 − x2 − y2 − z2 has associated symmetric matrix
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


The associated orthogonal group is called the Lorentz group.
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Appendix A

Sets, Functions, and

Relations

We review here some basic notions that you would have seen in an earlier

course “on proofs” or on discrete mathematics.

A set is simply a collection of objects. We are of course being in-

formal here: there are more formal definitions of sets that are based on

various axioms designed to avoid paradoxes, but we will not go into such

496
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depths in this appendix. If A is a set, the objects whose collection make

up the set A are also referred to as the elements of A. You will be fa-

miliar with both notations for sets: the explicit notation, such as A =

{2, 3, 5, 7} as well as the implicit or set-builder notation, such as A =

{n |n is a prime integer between 2 and 10}. You will also be familiar with

the notation “∈” for “element of.”

If A and B are two sets, we say A is a subset of B (written A ⊆ B) if

x ∈ A implies x ∈ B. If A ⊆ B and B ⊆ A, we say A = B. If A ⊆ B but

A 6= B, we say that A is a proper subset of B, and we write A ⊂ B.

The union of two sets A and B, denoted A∪B, is simply the set {x | x ∈
A or x ∈ B}. The intersection of two sets A and B, denoted A∩B is the set

{x | x ∈ A and x ∈ B}. The difference of two sets A andB, denoted A−B,

is the set {x | x ∈ A and x 6∈ B}. (Note that in general, A−B 6= B −A.)

A function f from A to B (written f : A→ B) is a rule that assigns to

each element of A a unique element of B. A function f : A → B is called

injective or one-to-one if f (a1) = f (a2) for a1, a2 ∈ A implies that a1 = a2

(or alternatively, if a1 6= a2, then f (a1) 6= f (a2)). A function f : A → B

is called surjective or onto if for each b ∈ B, there exists a ∈ A such that
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f (a) = b. A function f : A → B that is both injective and surjective is

said to be bijective; also, f is said to provide a bijection or a one-to-one

correspondence between A and B.

Example A.1

Consider the following functions from the integers to itself:

1. f (n) = 2n.

2. g(n) =

n, if n is odd

n/2, if n is even

3. h(n) = n2 + 1.

4. b(n) = n + 1.

Then f is injective but not surjective, g is surjective but not injective, h

is neither injective nor surjective, and b is bijective.

The Cartesian Product of two sets A and B, denoted A×B, is simply

the set of all ordered pairs {(a, b) | a ∈ A, b ∈ B}. A relation on a set A is

simply a subset of A× A. Let R be a relation on a set A. If (a, b) ∈ R, we
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say a is related to b and we often write a R b to indicate that a is related

to b under the relation R. The relation R is said to be reflexive if for each

a ∈ A, a R a. R is said to be symmetric if whenever a R b, then b R a

as well. Finally, R is said to transitive if whenever a R b and b R c, then

a R c as well.

A relation R on a set A that is reflexive, symmetric, and transitive is

called an equivalence relation on A. For any a ∈ A, let us write [a] for the

set of all elements of B that are related to a, that is, [a] = {b | a R b}. The

set [a] is called the equivalence class of a. We have the following: if R is

an equivalence relation on A, then for any two elements a and b in A, either

[a] = [b] or else, [a] and [b] are disjoint. In particular, this means that the

equivalence classes divide A into disjoint sets of the form [a], whose union is

all of A.

The symbol ∼ is often used instead of “R” to denote a relation on a set.

Example A.2

The easiest and most central example perhaps of an equivalence relation

on a set is the relation∼ on Z defined by saying thatm is related to n (or
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m ∼ n) iffm−n is even. Convince yourself that this relation is indeed an

equivalence relation, and that there are precisely two equivalence classes:

the class [0] and the class [1].

A binary operation on a set A is simply a function f : A × A → A.

As we have seen, the usual operations of addition and multiplication in, for

example, the integers, are just binary operations on Z, that is, functions

Z× Z→ Z.

Question A.3I

s division a binary operation on the rationals? How about on the set

Q− {0}?

A setA is said to be countable if there exists a one-to-one correspondence

between A and some subset of N. If no such correspondence exists, then A is

said to be uncountable. If there exists a one-to-one correspondence between

A and the subset {1, 2, . . . , n} of Z (for some n), thenA is said to be finite. If

no such n ∈ Z exists for which there is a one-to-one correspondence between

A and {1, 2, . . . , n}, then A is said to be infinite. Note that an infinite set

can be either countable or uncountable.
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Example A.4

Any set with a finite number of elements is countable, by definition of

finiteness and countability.

Example A.5

Any subset of a countable set is also countable.

Example A.6

The integers are countable. One one-to-one correspondence between Z
and N is the one that sends a to 2a if a ≥ 0, and a to 2(−a) − 1 if

a < 0.

Example A.7

The Cartesian product of two countable sets is countable. Here is a

sketch of a proof when both A and B are infinite. There exists a one-

to-one correspondence between A and N (why?), and turn, there exists

a one-to-one correspondence between N and the set {2n n ∈ N}. Com-

posing, we get a one-to-one correspondence f between A and the set

{2n n ∈ N}. Similarly, we have a one-to-one correspondence g between

B and the set the set {3n n ∈ N}. Now define the map h : A×B → N
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by h(a, b) = f (a)g(b), and show that this is a bijection.

Example A.8

The rationals Q are countable. This is because we may view Q ⊆ Z×Z
by identifying the rational number a/b, written in lowest terms, with

the ordered pair (a, b). By Example A.7 above, Z×Z is countable, and

hence by Example A.5, Q is also countable.

Example A.9

The reals R are uncountable. The proof of this is the famous Cantor

diagaonalization argument.
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Appendix B

Partially Ordered Sets, and

Zorn’s Lemma

A Partial Order on a set S is a relation “≤” on S that is reflexive,

antisymmetric (i.e., a ≤ b and b ≤ a imply that a = b), and transitive.

Here are two examples:

504
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Example B.1

Define a relation “≤” on the positive integers by the rule m ≤ n if and

only if m divides n. Since m|m for all positive integers, ≤ is reflexive.

Since m|n and n|m imply m = n (recall that we are only allowing

positive integers in our set), our relation ≤ is indeed antisymmetric.

Finally, if m|n and n|q, then indeed m|q, so ≤ is transitive.

Example B.2

Let S be a nonempty set, and write T for the set of all proper subsets of

S. Define a relation “≤” on T by defining X ≤ Y if and only if X ⊆ Y .

You should be able to verify easily that ≤ is a partial order on T .

This partial order could also have been defined on the set of all subsets

of S, we chose to define it only on the set of proper subsets to make the

situation more interesting (see Example B.4 ahead, for instance)!

Given a partial order “≤” on a set, two elements x and y are said to

be comparable if either x ≤ y or y ≤ x. If neither x ≤ y or y ≤ x,

then x and y are said to be incomparable. For instance, in Example B.1,

2 and 3 are incomparable, since neither 2|3 nor 3|2. Similarly, in the set of
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all proper subsets of, say, the set {1, 2, 3}, the subsets {1, 2} and {1, 3} are

incomparable, since neither of these sets is a subset of the other.

Given a partial order ≤ on a set S, and given a subset A of S, an upper

bound of A is an element z ∈ S such that x ≤ z for all x ∈ A.

Example B.3

In Example B.1, if we take A to be the set {1, 2, 3, 4, 5, 6}, then

lcm(1, 2, 3, 4, 5, 6) = 60 is an upper bound for A.

Note that not all subsets of S need have an upper bound. For instance,

if we take B in this same example to be the set of all powers of 2, then

there is no integer divisible by 2m for all values of m, so B will not have

an upper bound.

Given a partial order ≤ on a set S, a maximal element in S is an element

x such that for any other element y, either y ≤ x or else x and y are

incomparable.

Example B.4

In Example B.2, suppose we took S = {1, 2, 3}, so

T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.
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Then {1, 2} is maximal: each of {1}, {2},, and {2} are ≤ {1, 2}, while

{1, 3}and {2, 3} cannot be compared with {1, 2}.
Of course, these same arguments show that {1, 3}and {2, 3} are also

maximal elements.

Note that instead, we had taken T to be the set of all subsets of {1, 2, 3},
then there would only have been one maximal element, namely {1, 2, 3, },
and all other subset X would have satisfied X ≤ {1, 2, 3}. Having

several maximal elements incomparable to one another is certainly a

more intriguing situation!

A partial order on a set that has the further property that any two ele-

ments are comparable is called a linear order. For example, the usual order

relation on R is a linear order.

Given a partial order ≤ on a set S, a chain in S is a nonempty subset A

of S that is linearly ordered with respect to ≤, i.e., for all x and y from A,

either x ≤ y or y ≤ x.
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Example B.5

In Example B.3, note that B is a chain, since every element of B is a

power of 2, and given elements 2m and 2n in B, if m ≤ n then 2m|2n,

else 2n|2m. On the other hand, A is not a chain: we have already seen

that 2 and 3 are incomparable.

Zorn’s Lemma, in spite of its name, is really not a lemma, but a universally

accepted axiom of logic. It states the following:

Zorn’s Lemma Let S be a nonempty set with a partial order ≤. If every

chain in S has an upper bound in S, then S has a maximal element.

Zorn’s Lemma is equivalent to certain other axioms of logic, most fa-

mously, to the Axiom of Choice. What this means that if one were to

accept the statement of Zorn’s Lemma as a fundamental axiom of logic, then

in conjunction with other accepted axioms of logic, one can derive the state-

ment of the Axiom of Choice. Conversely, if one were to accept the Axiom

of Choice as a fundamental axiom of logic, then in conjunction with other

accepted axioms of logic, one can derive the statement of Zorn’s Lemma.

Here is a typical application of Zorn’s Lemma. Recall from Exercise 2.132
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of Chapter 2 the definition of maximal ideals.

Theorem B.6. Let R be a ring. Then R contains maximal ideals.

Proof. Let S be the set of all proper ideals of R. Note that S is nonempty,

since the zero ideal 〈0〉 is in S. We define a partial order ≤ on S by I ≤ J

if and only if I ⊆ J (see Example B.2 above). Let T be a chain in S. Recall

what this means: T is a collection of proper ideals of R such that if I and

J are in the collection, then either I ⊆ J or else J ⊆ I . We claim that T

has an upper bound in S, i.e., there exists a proper ideal K in R such that

I ⊆ K for all I in our chain T . The proof of the claim is simple. By the

definition of being a chain, T is nonempty, so T contains at least one ideal of

R. We define K, as a set, to be the union of all the ideals I in T . We need

to show that K is a proper ideal of R. This is easy. Note that since there is

at least one ideal in T , and since this ideal contains 0, K must be nonempty

as it must contain at least the element 0. Now given a and b in K, note that

a must live in some ideal I in T and b must live in some ideal J in T , since

K is, after all, the union of all the ideals in T . Since T is linearly ordered

(this is where the property that chains are linearly ordered comes in), either
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I ⊆ J or else J ⊆ I . Say I ⊆ J . Then both a and b are in J . Hence,

a + b is also in J as J is an ideal. Since J in turn is contained in K, we

find a+ b ∈ K. This shows that K is closed under addition. Now given any

a ∈ K, as before, a ∈ I for some ideal I in T . Since I is an ideal, both ar

and ra are in I for all r ∈ R. Since I ⊆ K, we find ar and ra are in K. By

Lemma 2.65 of Chapter 2, we find K is an ideal. Of course, K is clearly an

upper bound for T , since I ⊆ K for all I in T by the very manner in which

we have defined K.

Note that indeed K is a proper ideal of R, i.e., K is in S. For, if not, then

K = R, so in particular, this means that 1 ∈ K. Since K is the union of the

ideals in T , we find 1 ∈ I for some ideal I in T . But this is a contradiction,

since I is a proper ideal of R (remember that the set S was defined as the

set of all proper ideals of R, and I is a member of S).

Since T was arbitrary, we have found that every chain in S has an upper

bound in S. By Zorn’s lemma, S has a maximal element. But a maximal

element of S is precisely a maximal ideal of R!

2
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Now we will present the proof that bases exist in all vector spaces, not just

in those with a finite spanning set; this proof invokes Zorn’s Lemma. Recall

that we can assume that our vector space is nontrivial, thanks to Example

3.35 of Chapter 3.

Theorem B.7. Every vector space has a basis.

Proof. Let S be the set of all linearly independent subsets of V . Since V is

not trivial by assumption, it has at least one nonzero vector, say v, and the

set {v} is then linearly independent (Exercise 3.22.1). It follows that S is a

nonempty set.

Define a partial order on S by declaring, for any two linearly independent

subsets X and Y , that X ≤ Y if and only if X ⊆ Y . It is easy to check that

this is indeed a partial order: First, given any linearly independent subset

X of V , clearly X ⊆ X , so indeed X ≤ X . Next, if X and Y are two

linearly independent subsets of V and if X ≤ Y and Y ≤ X , this means

that X ⊆ Y and Y ⊆ X , so indeed X = Y . Finally, if X ≤ Y and Y ≤ Z

for three linearly independent subsets X , Y , and Z of V , then this means

that X ⊆ Y ⊆ Z, i.e., X ⊆ Z, so indeed X ≤ Z.
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Our strategy will be to first establish that S has a maximal element with

respect to this partial order, and then to show that this maximal element

must be a basis for V .

Given any chain T in S (recall that this means that T consists of linearly

independent subsets of S with the property that if X and Y are in T , then

either X ⊆ Y or Y ⊆ X), we will show that T has an upper bound in

S. Write K for the union of all linearly independent subsets X that are

contained in T . We claim that K is an upper bound for T . Let us first show

that K is a linearly independent subset of V . By Definition 3.22 of Chapter

3, we need to show that every finite subset of K is linearly independent.

Given any finite set of vectors v1, . . . , vn from K, note that each vi must

live in some linearly independent subset Xi in the chain T . Since T is a

chain, the subsets in T are linearly ordered (this is where we use the defining

property that the elements of a chain are linearly ordered!), we must have

Xi1 ≤ Xi2 ≤ · · · ≤ Xin for some permutation (i1, i2, . . . , in) of the integers

(1, 2, . . . n). Thus, all the vectors v1, . . . , vn belong to Xin. But since Xi,n

is a linearly independent set, Definition 3.22 of Chapter 3 implies that the

vectors v1, . . . , vn must be linearly independent! Since this is true for any
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finite set of vectors in K, we find that K is a linearly independent set. In

particular, K is in S.

Now note that given any linearly independent subset X contained in the

chain T , we have X ⊆ K by the very definition of K, so by definition of the

order relation, X ≤ K. This shows that indeed T has an upper bound in S.

By Zorn’s Lemma, S has a maximal element, call it B. We will show that

B must be a basis of V . Since B is already linearly independent, we only

need to show that B spans V . So let v be any nonzero vector in V : we need

to show that v can be written as a linear combination of elements of B. If v is

already in B, there is nothing to prove (why?). If v is not in B, B∪{v} must

be linearly dependent, otherwise, B ∪ {v} would be a linearly independent

subset of V strictly containing B, violating the maximality of B. Thus,

there exists a relation f0v + f1b1 + f2b2 + · · · fkbk = 0 for some scalars f0,

f1, · · · , fk (not all zero), and some vectors b1, b2, · · · , bk of B. Notice that

f0 6= 0, since otherwise, our relation would read f1b1 + f2b2 + · · · fkbk = 0

(with not all fi equal to zero), which is impossible since the bi are in B

and B is a linearly independent set. Therefore, we can divide by f0 to find

v = (−f1/f0)b1 + (−f2/f0)b2 + · · · + (−fk/f0)bk. Hence v can be written
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as a linear combination of elements of B, so B spans V .

Thus, B is a basis of V . 2

Remarks on Proposition 3.37, Chapter 3: Shrinking infinite spanning

sets down to a basis The proof that any spanning set of V can be shrunk

to basis, even when V is infinite-dimensional, involves a modification of the

proof of Theorem B.7.

Let us use Σ to denote the given spanning set of V , and as in the proof

of Theorem B.7, let S denote the set of all linearly independent sets of V

that are contained in S. (The italicized condition is where we depart from

the proof of Theorem B.7.) Note that S is not empty, since Σ is nonempty

(recall V is not the trivial space), and therefore, for any nonzero v ∈ Σ,

{v} ⊆ Σ will be a linearly independent set, so {v} will be an element of S.

Now impose the same partial order on S as in the proof of Theorem B.7:

X ≤ Y if and only if X ⊆ Y for two sets X and Y in S. Argue exactly

as in that proof that S must have a maximal element. (Note that if T is

a chain in S, then K, the union of all the sets contained in T , will also be

contained in Σ, since every set in T is contained in Σ.) Let B be a maximal
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element of S. (Note that by construction B ⊆ Σ.) The claim is that B is a

basis for V .

To prove this it is of course sufficient to prove that B spans V since B is

already linearly independent. For this, we claim that it is sufficient to show

that every vector in Σ is expressible as a linear combination of elements of

B. For, assume that we have shown this. Then, given any vector v ∈ V ,

first write it as v = f1u1 + · · ·+ fnun for suitable vectors ui ∈ Σ and scalars

fi, invoking the fact that Σ spans V . Next, since we would have shown that

every vector in Σ is expressible as a linear combination of elements in B, we

find that each ui is expressible as ui = fi,1bi,1 +· · ·+fi,nibi,ni for some vectors

bi,j ∈ B and scalars fi,j. Substituting these expressions for each ui into the

expression above for v, we find that v is expressible as a linear combination

of elements of B, i.e., that B spans V .

To show that every vector in Σ is expressible as a linear combination

of elements of B, assume that some u ∈ Σ is not expressible as a linear

combination of elements of B. Then, exactly as in the proof of Proposition

3.49 (see how we showed C1 = C ∪ {vt+1} must be linearly independent),

we would find that B∪{u} is linearly independent. But this contradicts the
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maximality of B! Hence every vector in Σ must be expressible as a linear

combination of elements of B, which means that B must be a basis. Since

B ⊆ Σ, we have succeeded in shrinking Σ down to a basis.

Remarks on Proposition 3.49, Chapter 3: the general case The proof

of this proposition when V is not assumed to be finite-dimensional involves

just a minor modification of the proof of Theorem B.7. What we need to show

is that there is a maximal linearly independent subset B of V that contains

C. Then, exactly as in the proof of Theorem B.7, this maximal linearly

independent set would be a basis of V , and of course, it would have been

chosen so as to contain C. To show the existence of B, we need to consider

the set S of all linearly independent subsets of V that contain C. One

would impose a partial order on this set exactly as in the proof of Theorem

B.7. Once again, S, with this partial order, will turn out to satisfy the extra

hypothesis of Zorn’s Lemma, and will hence have a maximal element. That

maximal element would be our desired maximal linearly independent subset

of V that contains C.
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Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.
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The purpose of this License is to make a manual, textbook, or other functional

and useful document “free” in the sense of freedom: to assure everyone the effective

freedom to copy and redistribute it, with or without modifying it, either commercially

or noncommercially. Secondarily, this License preserves for the author and publisher

a way to get credit for their work, while not being considered responsible for modifi-

cations made by others.

This License is a kind of “copyleft”, which means that derivative works of the

document must themselves be free in the same sense. It complements the GNU General

Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come with

manuals providing the same freedoms that the software does. But this License is not

limited to software manuals; it can be used for any textual work, regardless of subject

matter or whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains

a notice placed by the copyright holder saying it can be distributed under the terms

of this License. Such a notice grants a world-wide, royalty-free license, unlimited in

duration, to use that work under the conditions stated herein. The “Document”,

below, refers to any such manual or work. Any member of the public is a licensee,
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and is addressed as “you”. You accept the license if you copy, modify or distribute

the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document

or a portion of it, either copied verbatim, or with modifications and/or translated into

another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-

ument that deals exclusively with the relationship of the publishers or authors of the

Document to the Document’s overall subject (or to related matters) and contains

nothing that could fall directly within that overall subject. (Thus, if the Document is

in part a textbook of mathematics, a Secondary Section may not explain any mathe-

matics.) The relationship could be a matter of historical connection with the subject

or with related matters, or of legal, commercial, philosophical, ethical or political

position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the Document

is released under this License. If a section does not fit the above definition of Secondary

then it is not allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant Sections then

there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover

Texts or Back-Cover Texts, in the notice that says that the Document is released under

this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text

may be at most 25 words.
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A “Transparent” copy of the Document means a machine-readable copy, repre-

sented in a format whose specification is available to the general public, that is suitable

for revising the document straightforwardly with generic text editors or (for images

composed of pixels) generic paint programs or (for drawings) some widely available

drawing editor, and that is suitable for input to text formatters or for automatic trans-

lation to a variety of formats suitable for input to text formatters. A copy made in

an otherwise Transparent file format whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent modification by readers is not Transpar-

ent. An image format is not Transparent if used for any substantial amount of text.

A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly

available DTD, and standard-conforming simple HTML, PostScript or PDF designed

for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited only

by proprietary word processors, SGML or XML for which the DTD and/or processing

tools are not generally available, and the machine-generated HTML, PostScript or

PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such follow-

ing pages as are needed to hold, legibly, the material this License requires to appear

in the title page. For works in formats which do not have any title page as such,

“Title Page” means the text near the most prominent appearance of the work’s title,

preceding the beginning of the body of the text.
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The “publisher” means any person or entity that distributes copies of the Docu-

ment to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that translates

XYZ in another language. (Here XYZ stands for a specific section name mentioned

below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.)

To “Preserve the Title” of such a section when you modify the Document means that

it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states

that this License applies to the Document. These Warranty Disclaimers are considered

to be included by reference in this License, but only as regards disclaiming warranties:

any other implication that these Warranty Disclaimers may have is void and has no

effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially

or noncommercially, provided that this License, the copyright notices, and the license

notice saying this License applies to the Document are reproduced in all copies, and

that you add no other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further copying of the

copies you make or distribute. However, you may accept compensation in exchange

for copies. If you distribute a large enough number of copies you must also follow the

conditions in section 3.
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You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document’s license notice

requires Cover Texts, you must enclose the copies in covers that carry, clearly and

legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover

Texts on the back cover. Both covers must also clearly and legibly identify you as the

publisher of these copies. The front cover must present the full title with all words

of the title equally prominent and visible. You may add other material on the covers

in addition. Copying with changes limited to the covers, as long as they preserve the

title of the Document and satisfy these conditions, can be treated as verbatim copying

in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should

put the first ones listed (as many as fit reasonably) on the actual cover, and continue

the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than

100, you must either include a machine-readable Transparent copy along with each

Opaque copy, or state in or with each Opaque copy a computer-network location from

which the general network-using public has access to download using public-standard

network protocols a complete Transparent copy of the Document, free of added mate-

rial. If you use the latter option, you must take reasonably prudent steps, when you
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begin distribution of Opaque copies in quantity, to ensure that this Transparent copy

will remain thus accessible at the stated location until at least one year after the last

time you distribute an Opaque copy (directly or through your agents or retailers) of

that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance to provide

you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-

ditions of sections 2 and 3 above, provided that you release the Modified Version under

precisely this License, with the Modified Version filling the role of the Document, thus

licensing distribution and modification of the Modified Version to whoever possesses

a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

be listed in the History section of the Document). You may use the same title

as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as

the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled “History” in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to

a Transparent copy of the Document, and likewise the network locations given

in the Document for previous versions it was based on. These may be placed
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in the “History” section. You may omit a network location for a work that

was published at least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the

Title of the section, and preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the

section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-

cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict

in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Document,

you may at your option designate some or all of these sections as invariant. To do

this, add their titles to the list of Invariant Sections in the Modified Version’s license

notice. These titles must be distinct from any other section titles.
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You may add a section Entitled “Endorsements”, provided it contains nothing but

endorsements of your Modified Version by various parties—for example, statements of

peer review or that the text has been approved by an organization as the authoritative

definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in

the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover

Text may be added by (or through arrangements made by) any one entity. If the

Document already includes a cover text for the same cover, previously added by you

or by arrangement made by the same entity you are acting on behalf of, you may

not add another; but you may replace the old one, on explicit permission from the

previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-

mission to use their names for publicity for or to assert or imply endorsement of any

Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that you

include in the combination all of the Invariant Sections of all of the original documents,

unmodified, and list them all as Invariant Sections of your combined work in its license

notice, and that you preserve all their Warranty Disclaimers.
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The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are multiple

Invariant Sections with the same name but different contents, make the title of each

such section unique by adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number. Make the same

adjustment to the section titles in the list of Invariant Sections in the license notice

of the combined work.

In the combination, you must combine any sections Entitled “History” in the

various original documents, forming one section Entitled “History”; likewise combine

any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.

You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License in the

various documents with a single copy that is included in the collection, provided that

you follow the rules of this License for verbatim copying of each of the documents in

all other respects.

You may extract a single document from such a collection, and distribute it in-

dividually under this License, provided you insert a copy of this License into the

extracted document, and follow this License in all other respects regarding verbatim

copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-

pendent documents or works, in or on a volume of a storage or distribution medium,

is called an “aggregate” if the copyright resulting from the compilation is not used

to limit the legal rights of the compilation’s users beyond what the individual works

permit. When the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative works of the

Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate, the

Document’s Cover Texts may be placed on covers that bracket the Document within

the aggregate, or the electronic equivalent of covers if the Document is in electronic

form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations

of the Document under the terms of section 4. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may

include translations of some or all Invariant Sections in addition to the original versions

of these Invariant Sections. You may include a translation of this License, and all the

license notices in the Document, and any Warranty Disclaimers, provided that you

also include the original English version of this License and the original versions of
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those notices and disclaimers. In case of a disagreement between the translation and

the original version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or

“History”, the requirement (section 4) to Preserve its Title (section 1) will typically

require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-

pressly provided under this License. Any attempt otherwise to copy, modify, subli-

cense, or distribute it is void, and will automatically terminate your rights under this

License.

However, if you cease all violation of this License, then your license from a par-

ticular copyright holder is reinstated (a) provisionally, unless and until the copyright

holder explicitly and finally terminates your license, and (b) permanently, if the copy-

right holder fails to notify you of the violation by some reasonable means prior to 60

days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently

if the copyright holder notifies you of the violation by some reasonable means, this is

the first time you have received notice of violation of this License (for any work) from

that copyright holder, and you cure the violation prior to 30 days after your receipt

of the notice.
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Termination of your rights under this section does not terminate the licenses of

parties who have received copies or rights from you under this License. If your rights

have been terminated and not permanently reinstated, receipt of a copy of some or

all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns.

See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-

ment specifies that a particular numbered version of this License “or any later version”

applies to it, you have the option of following the terms and conditions either of that

specified version or of any later version that has been published (not as a draft) by

the Free Software Foundation. If the Document does not specify a version number of

this License, you may choose any version ever published (not as a draft) by the Free

Software Foundation. If the Document specifies that a proxy can decide which future

versions of this License can be used, that proxy’s public statement of acceptance of a

version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World

Wide Web server that publishes copyrightable works and also provides prominent
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facilities for anybody to edit those works. A public wiki that anybody can edit is

an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”)

contained in the site means any set of copyrightable works thus published on the MMC

site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license

published by Creative Commons Corporation, a not-for-profit corporation with a prin-

cipal place of business in San Francisco, California, as well as future copyleft versions

of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as

part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all

works that were first published under this License somewhere other than this MMC,

and subsequently incorporated in whole or in part into the MMC, (1) had no cover

texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under

CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC

is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License

in the document and put the following copyright and license notices just after the title

page:
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Copyright © YEAR YOUR NAME. Permission is granted to copy, dis-

tribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.3 or any later version published by the

Free Software Foundation; with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace

the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-

Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of

the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such as

the GNU General Public License, to permit their use in free software.
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