Professor Scalise

Spring 2024

- 1. Find the real number coefficients b_i for the set of basis vectors \hat{u}_i from the lecture notes when you decompose the vector $\vec{F} = (4, -4, 4)$.
- 2. (a) Construct a 3-dimensional orthonormal basis $\{\hat{v}_1, \hat{v}_2, \hat{v}_3\}$ using (1, 0, 1) as one of the directions.
 - (b) Expand the vector $\vec{F} = (4, -4, 4)$ in your basis.
 - (c) Verify explicitly that your orthonormal basis is complete by showing that $\sum_{n=1}^{3} \hat{v}_n \hat{v}_n$ is the 3 by 3 identity matrix.
- 3. For $\vec{A} = (1, 2, 3)$ and $\vec{B} = (-1, 0, 2)$, find
 - (a) the inner product of \vec{A} and \vec{B} . What kind of object is this?
 - (b) the cross product of \vec{A} and \vec{B} . What kind of object is this?
 - (c) the outer product of \vec{A} and \vec{B} . What kind of object is this?

7305

1. The error

$$E_N(c_1,\ldots,c_N) \equiv \int_a^b d\xi \ |f(\xi) - f_N(\xi)|^2 = \int_a^b d\xi \ [f(\xi) - f_N(\xi)]^* [f(\xi) - f_N(\xi)]$$

made in the approximation

$$f_N(\xi) = \sum_{n=1}^N c_n u_n(\xi)$$

to the function $f(\xi)$ is minimized if the expansion coefficients are chosen as

$$c_n = \int_a^b d\xi \ u_n^*(\xi) f(\xi) \ .$$

Prove this assertion. Hint: Write $c_n = a_n + ib_n$ where a_n and b_n are real constants, and $\int_a^b d\xi \ u_n^*(\xi) f(\xi) = A_n + iB_n$ where A_n and B_n are real constants. Then require that

$$\frac{\partial E_N}{\partial a_k} = 0 = \frac{\partial E_N}{\partial b_k}$$

- 2. (a) Find \vec{A}_{\parallel} , the piece of \vec{A} parallel to \vec{B} , in terms of \vec{A} and \vec{B} .
 - (b) Find \vec{A}_{\perp} , the piece of \vec{A} perpendicular to \vec{B} , in terms of \vec{A} and \vec{B} .
 - (c) What are the two answers above for $\vec{A} = (1, 2, 3)$ and $\vec{B} = (-1, 0, 2)$?

Bonus: Solve as much of the other class' assignment as you can.