4321

1. Simplify these expressions:
(a) $\int_{x=-\infty}^{+\infty} \delta(x) \sin (x) d x$
(b) $\int_{x=-\infty}^{+\infty} \delta(x) \sin (t) d x$
(c) $\int_{x=-\infty}^{+\infty} \delta(x-t) \sin (x) d x$
(d) $\int_{x=-\infty}^{+\infty} \delta(x-t) \sin (x+t) d x$
(e) $\int_{x=-\infty}^{+\infty} \delta(3 x) \cos (x) d x$
(f) $\int_{x=14}^{+\infty} \delta(3 x) \cos (x) d x$
(g) $\int_{x=-\infty}^{+\infty} \delta^{\prime}(x)\left(3 x^{2}+x+7\right) d x$, where the prime means derivative.
(h) $\int_{x=-\infty}^{+\infty} \delta^{\prime \prime}(x)\left(3 x^{2}+x+7\right) d x$
(i) $\int_{x=-\infty}^{+\infty} \delta^{\prime \prime}(x+2)\left(3 x^{2}+x+7\right) d x$
2. Use the Heaviside or step function $\theta(t)$ to define the graph of a square wave pulse of height 4 that begins at $t=3$ and ends at $t=6$ using:
(a) two θ functions additively.
(b) two θ functions multiplicatively.
(c) a single θ function.
3. Sketch the graph of $\int_{x^{\prime}=-\infty}^{x}\left[\int_{x^{\prime \prime}=-\infty}^{x^{\prime}} \delta\left(x^{\prime \prime}\right) d x^{\prime \prime}\right] d x^{\prime}$ vs. x.

7305

1. If a and b are constants and $\delta^{(m)}$ means the m'th derivative of the delta function, show that $x^{n} \delta^{(m)}(x)=$
(a) 0 , if $m<n$
(b) $(-1)^{n} n!\delta(x)$, if $m=n$
(c) $\frac{(-1)^{n} m!}{(m-n)!} \delta^{(m-n)}(x)$, if $m>n$

Don't forget that these distributions only make physical sense inside an integral and multiplied by a test function $f(x)$ with bounded support.
2. You are most familiar with the Euclidean norm of an n-dimensional vector $\vec{r}=\sum_{i=1}^{n} x_{i} \hat{e}_{i}$,

$$
|\vec{r}|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

that assigns to every non-zero vector a strictly positive length, but this only one possible norm. In general the p-norm is

$$
\|\vec{r}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

(a) Explain why $p=1$ is called the "taxicab norm".
(b) Explain why $p \rightarrow \infty$ is called the "maximum norm".
(c) Draw graphs of "circles" in $\mathrm{n}=2$ dimensions (that is, in the x, y-plane) of unit norm $\|\vec{r}\|_{p}=1$ for
i. $p=1$
ii. $p=1.5$
iii. $p=2$ (This is the only true circle.)
iv. $p=3$
v. $p=6$
vi. $p \rightarrow \infty$
and describe what happens to the shape as p increases. What happens for $p<1$?
Bonus: Solve as much of the other class' assignment as you can.

