$\overline{4321}$

- 1. Simplify these expressions:
 - (a) $\int_{x=-\infty}^{+\infty} \delta(x) \sin(x) dx$
 - (b) $\int_{x=-\infty}^{+\infty} \delta(x) \sin(t) dx$
 - (c) $\int_{x=-\infty}^{+\infty} \delta(x-t) \sin(x) dx$
 - (d) $\int_{x=-\infty}^{+\infty} \delta(x-t) \sin(x+t) dx$ (e) $\int_{x=-\infty}^{+\infty} \delta(3x) \cos(x) dx$

 - (f) $\int_{x=14}^{+\infty} \delta(3x) \cos(x) dx$
 - (g) $\int_{x=-\infty}^{+\infty} \delta'(x)(3x^2+x+7)dx$, where the prime means derivative.
 - (h) $\int_{x=-\infty}^{+\infty} \delta''(x) (3x^2 + x + 7) dx$
 - (i) $\int_{x=-\infty}^{+\infty} \delta''(x+2)(3x^2+x+7)dx$
- 2. Use the Heaviside or step function $\theta(t)$ to define the graph of a square wave pulse of height 4 that begins at t=3 and ends at t=6 using:
 - (a) two θ functions additively.
 - (b) two θ functions multiplicatively.
 - (c) a single θ function.
- 3. Sketch the graph of $\int_{x'=-\infty}^{x} \left[\int_{x''=-\infty}^{x'} \delta(x'') dx'' \right] dx'$ vs. x.

7305

- 1. If a and b are constants and $\delta^{(m)}$ means the m'th derivative of the delta function, show that $x^n \delta^{(m)}(x) =$
 - (a) 0, if m < n
 - (b) $(-1)^n n! \delta(x)$, if m = n
 - (c) $\frac{(-1)^n m!}{(m-n)!} \delta^{(m-n)}(x)$, if m > n

Don't forget that these distributions only make physical sense inside an integral and multiplied by a test function f(x) with bounded support.

2. You are most familiar with the Euclidean norm of an n-dimensional vector $\vec{r} = \sum_{i=1}^{n} x_i \hat{e}_i$,

$$|\vec{r}| = \sqrt{\sum_{i=1}^{n} (x_i)^2} = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

that assigns to every non-zero vector a strictly positive length, but this only one possible norm. In general the p-norm is

$$||\vec{r}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

- (a) Explain why p = 1 is called the "taxicab norm".
- (b) Explain why $p \to \infty$ is called the "maximum norm".
- (c) Draw graphs of "circles" in n=2 dimensions (that is, in the x,y-plane) of unit norm $||\vec{r}||_p = 1$ for

i.
$$p = 1$$

ii.
$$p = 1.5$$

iii. p = 2 (This is the only true circle.)

iv.
$$p = 3$$

v.
$$p = 6$$

vi.
$$p \to \infty$$

and describe what happens to the shape as p increases. What happens for p < 1?

Bonus: Solve as much of the other class' assignment as you can.