4321

1. Consider two-dimensional polar coordinates $r(t)$ and $\phi(t)$.
(a) Find $\dot{\hat{e}}_{\phi}=\frac{d}{d t} \widehat{e}_{\phi}$ in terms of $\widehat{e}_{r}, \widehat{e}_{\phi}, r, \phi, \dot{r}$, and $\dot{\phi}$.
(b) Find the radial and tangential components of the acceleration.
(c) Find the radial and tangential components of the jerk (time derivative of the acceleration).
2. Find the scale functions ($h h^{\prime}$'s) for the transformation from Cartesian (x, y, z) to (u, v, w) coordinates:

$$
\begin{aligned}
& x=\frac{1}{2}\left(u^{2}-v^{2}\right) \\
& y=u v \\
& z=w
\end{aligned}
$$

3. Give a numerical answer or simplify as much as possible:
(a) $\vec{\nabla} \cdot \vec{r}$ (divergence of the displacement vector).
(b) $\vec{\nabla} \times \vec{r}$ (curl of the displacement vector).
(c) $\vec{\nabla}|\vec{r}|$ (gradient of the length of the displacement vector).
(d) $\nabla^{2}|\vec{r}|$ (Laplacian of the length of the displacement vector).
(e) $\vec{\nabla} \times \hat{\phi}$ (curl of the azimuthal angle unit vector in cylindrical polar coordinates).
4. Consider the vector field $\vec{v}(\vec{r})=\left(x^{2}+y^{2}\right) \hat{e}_{x}+\left(x^{2}+y^{2}\right) \hat{e}_{y}+z^{2} \hat{e}_{z}$. Decompose the vector field $\vec{v}(\vec{r})$ into the sum of two other vector fields, $\vec{a}(\vec{r})$ and $\vec{b}(\vec{r})$, such that $\vec{a}(\vec{r})$ has no divergence (it is solenoidal) and $\vec{b}(\vec{r})$ has no curl (it is irrotational). The answer is not unique. This is the Helmholtz decomposition.

7305

1. (a) What is $\frac{\partial}{\partial x_{j}}\left(\frac{1}{r}\right)$?
(b) What is $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\frac{1}{r}\right)$?
(c) Verify that $\nabla^{2}\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right)=0$ for $\vec{r} \neq \vec{r}^{\prime}$ by direct calculation in Cartesian coordinates. Use the previous result.
2. What is $\vec{\nabla} \times \hat{\phi}$ (curl of the azimuthal angle unit vector in spherical polar coordinates)?
3. What is the most general spherically-symmetric solution to Laplace's equation?

Bonus: Solve as much of the other class' assignment as you can.

